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Part I

General introduction

Noncommutativity and modular time



Time as derived quantity

classical static space→ no time

quantum space→ quantum fluctuations

no static quantum space may exist

noncommutativity generates time



The arrow of time

The arrow of time is viewed both classically and in quantum
physics

thermodynamics→ positive entropy

quantum mechanics→ collapse of the wave function

Known question: is there a general frame to encompass both?

Of course, we keep in mind that time is a relative concept as we
learnt from Einstein.



Quantum Mechanics and Noncommutativity

Schrödinger

**

Heisenberg

uu
von Neumann uniqueness

• Schrödinger:

i~
∂

∂t
ψ(x , t) = Hψ(x , t)

Differential equations

• Heisenberg:
PQ − QP = i~I

Linear operators on Hilbert space, noncommutativity is
essential!



Operator Algebras

H = Hilbert space,

B(H) = algebra of all bounded linear operators on H.

Algebraic structure: linear structure, multiplication: B(H) is a
∗algebra

Derived structures:

Order structure: A ≥ 0⇔ A = B∗B: algebraic structure
determines order structure

Metric structure:
||A||2 = inf{λ > 0 : A∗A ≤ λI}: algebraic structure determines
metric structure

C ∗ property of the norm:
||A∗A|| = ||A||2. B(H) is a C ∗−algebra



C ∗-algebras = noncommutative topology

Gelfand-Naimark thm. ∃ contravariant functor F between
category of commutative C ∗-algebras and category of locally
compact topological spaces:

A
F−→ spec(A)

|| ||
C (X )

F−1

←−− X

C ∗-algebra = dual of a topological space

Every C ∗-algebra is isomorphic to a norm closed ∗-subalgebras of
B(H).

Noncommutative geometry = ∗-subalgebras of C ∗-algebras
+ structure (spectral triple), Connes NC geometry.



von Neumann algebras = noncommutative measure theory

M⊂ B(H) is a von Neumann algebra if M is a ∗-algebra on H
and is weakly closed. Equivalently (von Neumann density theorem)

M =M′′

with M′ = {T ∈ B(H) : TX = XT ∀X ∈M} the commutant.

M abelian ⇔ M = L∞(X , µ):

(M = {Mf : g ∈ L2 7→ fg ∈ L2})

von Neumann algebra = dual of a measure space

Physics: Observables are selfadjoint elements X of M, states are
normalised positive linear functionals ϕ,

ϕ(X ) = expected value of the observable X in the state ϕ



Operator Algebras

Classical
Commutative

Quantum
Noncommutative

Manifold X
C∞(X )

∗-algebra
A

Topological space X
C (X )

C ∗-algebra
A

Measure space X
L∞(X , µ)

von Neumann algebra
A



Quantum calculus with infinitely many degrees of freedom

CLASSICAL
Classical variables
Differential forms

Chern classes

Variational calculus
Infinite dimensional manifolds

Functions spaces
Wiener measure

QUANTUM

Quantum geometry
Fredholm operators

Index
Cyclic cohomology

Subfactors
Bimodules, Endomorphisms

Multiplicative index
Supersymmetric QFT, (A,H,Q)



Thermal equilibrium states

A primary role in thermodynamics is played by the equilibrium
distribution.

Gibbs states

Finite quantum system: A matrix algebra with Hamiltonian H and
evolution τt = Ade itH . Equilibrium state ϕ at inverse temperature
β is given by the Gibbs property

ϕ(X ) =
Tr(e−βHX )

Tr(e−βH)

What are the equilibrium states at infinite volume where there is
no trace, no inner Hamiltonian?



KMS states (HHW, Baton Rouge conference 1967)

Infinite volume. A a C ∗-algebra, τ a one-par. automorphism group
of A. A state ϕ of A is KMS at inverse temperature β > 0 if for
X ,Y ∈ A ∃ function FXY s.t.

(a) FXY (t) = ϕ
(
X τt(Y )

)
(b) FXY (t + iβ) = ϕ

(
τt(Y )X

)
FXY bounded analytic on Sβ = {0 < =z < β}

ϕ
(
τt (Y )X

)∣∣β
ϕ
(
Xτt (Y )

)

KMS states generalise Gibbs states, equilibrium condition for
infinite systems



Tomita-Takesaki modular theory

M be a von Neumann algebra on H, ϕ = (Ω, ·Ω) normal faithful
state on M. Embed M into H

M X 7→X∗−−−−−→
isometric

M

X→XΩ

y yX→XΩ

H S0:XΩ7→X∗Ω−−−−−−−−→
non isometric

H

S = S̄0, ∆ = S∗S > 0 positive selfadjoint

t ∈ R 7→ σϕt ∈ Aut(M)

σϕt (X ) = ∆itX∆−it

intrinisic dynamics associated with ϕ (modular automorphisms).



Modular theory and temperature

By a remarkable historical accident, Tomita announced the
theorem at the 1967 Baton Rouge conference. Soon later Takesaki
completed the theory and charcterised the modular group by the
KMS condition.

• σϕ is a purely noncommutative object (trivial in the
commutative case)

• it is a thermal equilibrium evolution If ϕ(X ) = Tr(ρX ) (type I
case) then σϕt (X ) = ρitXρ−it

• arrow of modular time is thermodynamical KMS condition at
inverse temperature β = −1

• modular time is intrinsic modulo scaling the rescaled group
t 7→ σϕ−t/β is physical, β−1 KMS temperature



Time as thermodynamical effect

quantum physics
l

KMS with positive temperature
l

modular time arrow
l

positive entropy
l

thermodynamical arrow

If time is the modular time, then the time arrow is associated both
with positive entropy and with quantum structure!



Jones index

Factors (von Neumann algebras with trivial center) are “very
infinite-dimensional” objects. For an inclusion of factors N ⊂M
the Jones index [M : N ] measure the relative size of N in M.
Surprisingly, the index values are quantised:

[M : N ] = 4 cos2
(π
n

)
, n = 3, 4, . . . or [M : N ] ≥ 4

Jones index appears in many places in math and in physics.

	

		2cos(π/10)	



Quantum Field Theory

In QFT we have a quantum system with infinitely many degrees of
freedom. The system is relativistic and there is particle creation
and annihilation.

No mathematically rigorous QFT model with interaction still exists
in 3+1 dimensions!

Haag local QFT:

O spacetime regions 7→ von Neumann algebras A(O)

to each region one associates the “noncommutative functions”
with support in O.



Local QFT nets

Local net A on spacetime M: map O ⊂ M 7→ A(O) ⊂ B(H) s.t.

• Isotony, O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2)

• Locality, O1, O2 spacelike =⇒ [A(O1),A(O2)] = {0}

• Poincaré covariance (conformal, diffeomorphism) .

• Positive energy and vacuum vector.

O 7→ A(O): “Noncommutative chart” in QFT



Bisognano-Wichmann theorem ‘75, Sewell comment ‘80

Rindler spacetime (wedge x1 > 0), vacuum modular group

•

t

1/a x1

t = a−1 sinh 2πs, x1 = a−1 cosh 2πs

trajectory unif. accelerated observer O

a uniform acceleration of O
s/a proper time of O
β = 2π/a inverse KMS temperature of O

Hawking-Unruh effect!
Time is geodesic, quantum gravitational effect!



Representations

A (DHR) representation ρ of local net A maps A(O) on a different
Hilbert space H s.t. but ρ|A(O′) is equivalent to the vacuum rep.

Index-statistics theorem (R.L. 1988):

d(ρ) =
[
A(O) : ρ

(
A(O)

)] 1
2

DHR dimension =
√

Jones index

Physical index

44

Anal . index

jj

(basis for a QFT index theorem).



Part II

Applications

Intrinsic bounds on entropy



Bekenstein’s bound

For decades, modular theory has played a central role in the
operator algebraic approach to QFT, very recently several physical
papers in other QFT settings are dealing with the modular group,
although often in a heuristic (yet powerful) way!

I will discuss the Bekenstein bound, a universal limit on the
entropy that can be contained in a physical system with given size
and given total energy

If R is the radius of a sphere that can enclose our system, while E
is its total energy including any rest masses, then its entropy S is
bounded by

S ≤ λRE

The constant λ is often proposed λ = 2π (natural units).



Casini’s argument
Subtract to the bare entropy of the local state the entropy
corresponding to the vacuum fluctuations. V bounded region.

The restriction ρV of a global state ρ to von Neumann algebra
A(V ) has formally entropy given by

S(ρV ) = −Tr(ρV log ρV ) ,

known to be infinite. So subtract the vacuum state entropy

SV = S(ρV )− S(ρ0
V )

with ρ0
V the density matrix of the restriction of the vacuum state.

Similarly, K Hamiltonian for V , consider

KV = Tr(ρVK )− Tr(ρ0
VK )

Bekenstein bound is now SV ≤ KV which is equivalent to the
positivity of the relative entropy

S(ρV |ρ0
V ) ≡ Tr

(
ρV (log ρV − log ρ0

V )
)
≥ 0 ,



Araki’s relative entropy

An infinite quantum system is described by a von Neumann
algebra M typically not of type I so Tr does not exists; however
Araki’s relative entropy between two faithful normal states ϕ and
ψ on M is defined in general by

S(ϕ|ψ) ≡ −(η, log ∆ξ,η η)

where ξ, η are cyclic vector representatives of ϕ,ψ and ∆ξ,η is the
relative modular operator associated with ξ, η.

S(ϕ|ψ) ≥ 0

positivity of the relative entropy

Relative entropy is one of the key concepts. We take the view that
relative entropy is a primary concept and all entropy notions are
derived concepts



Analog of the Kac-Wakimoto formula (L. ‘97)

The root of our work relies in this formula for the incremental free
energy of a black hole (cf. the Kac-Wakimoto formula,
Kawahigashi, Xu, L.)

Hρ be the Hamiltonian for a uniformly accelerated observer in the
Minkowski spacetime with acceleration a > 0 in representation ρ
(localised in the wedge for Hρ)

(Ω, e−tHρΩ)
∣∣
t=β

= d(ρ)

with Ω the vacuum vector and β = 2π
a the inverse Hawking-Unruh

temperature. d(ρ)2 is Jones’ index.

The left hand side is a generalised partition formula, so log d(ρ)
has an entropy meaning in accordance with Pimsner-Popa work.

Here we generalise this formula



CP maps, quantum channels and entropy
N ,M vN algebras. A linear map α : N →M is completely
positive if

α⊗ idn : N ⊗Matn(C)→M⊗Matn(C)

is positive ∀n (quantum operation)
ω faithful normal state of M and α : N →M CP map as above.
Set

Hω(α) ≡ sup
(ωi )

∑
i

S(ω|ωi )− S(ω · α|ωi · α)

supremum over all ωi with
∑

i ωi = ω.
The conditional entropy H(α) of α is defined by

H(α) = inf
ω
Hω(α)

infimum over all “full” states ω for α. Clearly H(α) ≥ 0 because
Hω(α) ≥ 0 by the monotonicity of the relative entropy .
α is a quantum channel if its conditional entropy H(α) is finite.



Generalisation of Stinespring dilation

Let α : N →M be a normal, completely positive unital map
between the vN algebras N , M. A pair (ρ, v) ρ : N →M a
homomorphism, v ∈M an isometry s.t.

α(n) = v∗ρ(n)v , n ∈ N .

(ρ, v) is minimal if the left support of ρ(N )vH is qual to 1.

Thm Let α : N →M be a normal, CP unital map with N , M
properly infinite. There exists a minimal dilation pair (ρ, v) for α.
If (ρ1, v1) is another minimal pair, ∃! unitary u ∈M such that

uρ(n) = ρ1(n)u , v1 = uv , n ∈ N

We have
H(α) = log Ind(α) (minimal index)



Bimodules and CP maps

Let α : N →M be a completely positive, normal, unital map and
ω a faithful normal state of M

∃! N −M bimodule Hα, with a cyclic vector ξα ∈ H and left and
right actions `α and rα, such that

(ξα, `α(n)ξα) = ωout(n) , (ξα, rα(m)ξα) = ωin(m) ,

with ωin ≡ ω, ωout ≡ ωin · α. Converse is true.

CP map α←→ cyclic bimodule Hα
We have

H(α) = log Ind(Hα) (Jones’ index)



Promoting modular theory to the bimodule setting

H an N −M-bimodule with finite Jones’ index Ind(H)

Given faithful, normal, states ϕ,ψ on N and M, I define the
modular operator ∆H(ϕ|ψ) of H with respect to ϕ,ψ as

∆H(ϕ|ψ) ≡ d(ϕ · `−1)
/
d(ψ · r−1 · ε) ,

Connes’ spatial derivative, ε : `(N )′ → r(M) is the minimal
conditional expectation

log ∆H(ϕ|ψ) is called the modular Hamiltonian of the bimodule H,
or of the quantum channel α if H is associated with α.



Properties of the modular Hamiltonian

If N , M factors

∆it
H(ϕ|ψ)`(n)∆−itH (ϕ|ψ) = `

(
σϕt (n)

)
∆it
H(ϕ|ψ)r(m)∆−itH (ϕ|ψ) = r

(
σψt (m)

)
(implements the dynamics)

∆it
H(ϕ1|ϕ2)⊗∆it

K(ϕ2|ϕ3) = ∆it
H⊗K(ϕ1|ϕ3)

(additivity of the energy)

∆it
H̄(ϕ2|ϕ1) = d−i2tH ∆it

H(ϕ1|ϕ2)

If T : H → H′ is a bimodule intertwiner, then

T∆it
H(ϕ1|ϕ2) = (dH′/dH)it∆it

H′(ϕ1|ϕ2)T

Connes’s bimodule tensor product w.r.t. ϕ2; dH =
√
Ind(H)



Physical Hamiltonian

We may modify the modular Hamiltonian in order to fulfil the right
physical requirements (additivity of energy, invariance under charge
conjugation,...)

K (ϕ1|ϕ2) = − log ∆H(ϕ1|ϕ2)− log d

is the physical Hamiltonian (at inverse temperature 1).

The physical Hamiltonian at inverse temperature β > 0 is given by

−β−1 log ∆− β−1 log d

From the modular Hamiltonian to the physical Hamiltonian:

− log ∆
shifting−−−−→ − log ∆− log d

scaling−−−−→ β−1
(
− log ∆− log d

)
The shifting is intrinsic, the scaling is to be determined by the
context!



Modular and Physical Hamiltonians for a quantum channel

We now are going to compare two states of a physical system, ωin

is a suitable reference state, e.g. the vacuum in QFT, and ωout is a
state that can be reached from ωin by some physically realisable
process (quantum channel).

α : N →M be a quantum channel (normal, unital CP map with
finite entropy) and ωin a faithful normal state ofM. ωout = ωin ·α

log ∆α ≡ log ∆Hα

Kα = β−1KHα = β−1
(
− log ∆Hα − log dHα

)
(physical Hamiltonian at inverse temperature β)

Kα may be considered as a local Hamiltonian associated with α
and the state transfer with input state ωin.



Thermodynamical quantities

The entropy S ≡ Sα,ωin of α is

S = −(ξ̂, log ∆αξ̂)

where ξ̂ is a vector representative of the state ωin · r−1 · ε in Hα.

The quantity
E = (ξ̂,K ξ̂)

is the relative energy w.r.t. the states ωin and ωout.

The free energy F is now defined by the relative partition function

F = −β−1 log(ξ̂, e−βK ξ̂)

F satisfies the thermodynamical relation

F = E − TS



A form of Bekenstein bound

As F = 1
2β
−1H(α), we have

F ≥ 0 (positivity of the free energy)

because
H(α) ≥ 0 (monotonicity of the entropy)

So the above thermodynamical relation

F = E − β−1S

entails the following general, rigorous version of the Bekenstein
bound

S ≤ βE

To determine β we have to plug this general formula in a physical
context



Fixing the temperature in QFT

O a spacetime region s.t. the modular group σωt of the local von
Neumann algebra A(O) associated with vacuum ω has a geometric
meaning. So there is a geometric flow θs : O → O and a
re-parametrisation of σωt that acts covariantly w.r.t θ.

Motivated by the Rindler case onedefine locally the inverse
temperature by

βs =

∥∥∥∥dθsds

∥∥∥∥
the Minkowskian length of the tangent vector to the modular

orbit. Namely dτ = βsds with τ proper time (cf. Connes and
Rovelli).



Schwarzschild black hole

Schwarzschild-Kruskal spacetime of mass M > 0, namely the
region inside the event horizon, and N ≡ A(O) the local von
Neumann algebra associated with O on the underlying Hilbert
space H, O Schwarzschild black hole region, ω vacuum state

H is a N −N bimodule, indeed the identity N −N bimodule
L2(N ) associated with ω.

The modular group of A(O) associated with ω is geometric and
corresponds to the geodesic flow. KMS Hawking temperature is

T = 1/8πM = 1/4πR

with R = 2M the Schwarzschild radius, then

S ≤ 4πRE

with S the entropy associated with the state transfer of ω by a
quantum channel, and E the corresponding relative energy.



Conformal QFT

Conformal Quantum Field Theory on the Minkowski spacetime,
any spacetime dimension. OR double cone with basis a radius
R > 0 sphere centered at the origin and A(OR) associated local
vN algebra.

The modular group of A(OR) w.r.t. the vacuum state ω has a
geometrical meaning (Hislop, L. 1982):

∆−isOR
= U

(
ΛOR

(2πs)
)

with U is the representation of the conformal group and ΛOR
is a

one-parameter group of conformal transformation leaving OR

globally invariant and conjugate to the boost one-parameter group
of pure Lorentz transformations.



The inverse temperature βR =
∣∣∣∣ d

ds ΛOR
(s)x

∣∣∣∣
s=0

in OR is maximal
on the time-zero basis of OR , in fact at the origin x = 0 with value

βR = πR

So
S ≤ πRE

with S and E the entropy and energy associated with any
quantum channel by the vacuum state.



Summary

von Neumann algebra ←→ quantum system

CP map with finite entropy between q. systems ←→ quantum channel

quantum channel ←→ finite index bimodule

finite index bimodule and state −→ modular Hamiltonian

modular Hamiltonian & physical functoriality −→ phys. Hamiltonian

modular and physical Hamiltonians −→ F = E − TS

F = E − TS & autom. positivity of the free energy F −→ S ≤ βE

S ≤ βE & geometrical modular flow −→ Bekenstein’s bound



Landauer’s bound for infinite systems

Let α : N →M be a quantum channel between quantum systems
N , M. If α is irreversible, then

Fα ≥
1

2
kT log 2

The original lower bound for the incremental free energy is
Fα ≥ kT log 2, it remains true for finite-dimensional systems N ,
M.



Entropy distribution of localised states

Case of U(1)-current j : ` real function in S(R) and t ∈ R. We
have

S(t) = π

∫ +∞

t
(x − t)`2(x)dx ,

S(t) vacuum relative entropy of excited state by j 7→ j + `, so

S ′(t) = −π
∫ +∞

t
`2(x)dx ≤ 0 ,

S ′′(t) = π`2(t) ≥ 0

positivity of S ′′



Quantum Null Energy Condition

The vacuum energy density is E (t) = 1
2`

2(t) so we have here the
QNEC:

E (t) =
1

2π
S ′′(t) ≥ 0

QNEC is not saturated in every point of positive energy density.

` `

Figure: Two distributions, blue and red, for the same charge q =
∫
`. The

dashed lines plot the corresponding entropy density rate S ′′(t): blue high
entropy, red low entropy.


