The Structure and Classification of Conformal Nets

Möbius covariants nets on S^1 . A (local) *Möbius covariant net* A on S^1 is a map

 $I \in \mathcal{I} \to \mathcal{A}(I) \subset B(\mathcal{H})$

 $\mathcal{I} \equiv$ family of proper intervals of S^1 , that satisfies:

A. Isotony. $I_1 \subset I_2 \implies \mathcal{A}(I_1) \subset \mathcal{A}(I_2)$

B. Locality. $I_1 \cap I_2 = \emptyset \implies [\mathcal{A}(I_1), \mathcal{A}(I_2)] = \{0\}$

C. *Möbius covariance*. \exists unitary rep. U of the Möbius group Möb on \mathcal{H} such that

 $U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI), \quad g \in \mathsf{M\"ob}, \ I \in \mathcal{I}.$

D. Positivity of the energy. Generator L_0 of rotation subgroup of U (conformal Hamiltonian) is positive.

E. Existence of the vacuum. $\exists ! U$ -invariant vector $\Omega \in \mathcal{H}$ (vacuum vector), and Ω is cyclic for $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I)$ and unique U-invariant.

First consequences

• Irreducibility: $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I) = B(\mathcal{H}).$

• Reeh-Schlieder theorem: Ω is cyclic and separating for each $\mathcal{A}(I)$.

Proof. $H \ge 0$ Hamiltonian. $\xi \perp \mathcal{A}(I)\Omega \implies (\xi, e^{itH}X\Omega) = 0$, X localized in $I_0 \subset I$, $|t| < \varepsilon$.

 $(\xi, e^{izH}X\Omega)$ analytic in $\Im z > 0 \implies (\xi, e^{itH}X\Omega) = 0 \forall t...$

• Bisognano-Wichmann property: Tomita-Takesaki modular operator Δ_I and conjugation J_I of $(\mathcal{A}(I), \Omega)$, are

$U(\Lambda_I(2\pi t)) = \Delta_I^{it}, t \in \mathbb{R},$	dilations
$U(r_I) = J_I$	reflection

(Guido-L., Frölich-Gabbiani)

 $\Lambda_I(t)$: $x \mapsto e^{-t}x$ on $\mathbb{R}^+ \sim S^+$ (stereograph. map)

Proof based on the following:

Borchers thm. M vN algebra, Ω cyclic separating vector, T(t) one-parameter unitary group, $T(t)\Omega = \Omega$

$$T(t)\mathcal{M}T(-t) \subset \mathcal{M}, \quad t \ge 0$$

 $T(t) = \exp(iHt), \quad H \ge 0$

then

$$\Delta^{is}T(t)\Delta^{-is} = T(e^{-2\pi s}t), \quad JT(t)J = T(-t)$$

• Haag duality:

$$\mathcal{A}(I)' = \mathcal{A}(I')$$

Proof. $\mathcal{A}(I)' = J_I \mathcal{A}(I) J_I = \mathcal{A}(I').$

• Factoriality: $\mathcal{A}(I)$ is III₁-factor (or $\mathcal{A}(I) = \mathbb{C}$).

Proof. Modular group is ergodic.

• Additivity: $I \subset \cup_i I_i \implies \mathcal{A}(I) \subset \vee_i \mathcal{A}(I_i)$ (Fredenhagen, Jorss).

Wiesbrock characterization (variant)

Thm. (Guido, Wiesbrock, L.)

 \mathcal{A} local Möb covariant net $\Leftrightarrow (\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \Omega)$

 \mathcal{M}_k commuting vN algebras, Ω cycl.sep. vector, $\Delta_k^{is} \mathcal{M}_{k+1} \Delta_k^{-is} \subset \mathcal{M}_{k+1}$, $s \ge 0$, $k \in \mathbb{Z}_3$.

Split property and Buchholz nuclearity. \mathcal{A} satisfies the *split* property if the von Neumann algebra

$$\mathcal{A}(I_1) \vee \mathcal{A}(I_2) \simeq \mathcal{A}(I_1) \otimes \mathcal{A}(I_2)$$

(natural isomorphism) if $\overline{I}_1 \cap \overline{I}_2 = \emptyset$.

$$\operatorname{Tr}(e^{-tL_0}) < \infty, \ \forall t > 0 \implies \text{split}$$

(nuclearity)

Representations. A representation π of \mathcal{A} on a Hilbert space \mathcal{H} is a map $I \in \mathcal{I} \mapsto \pi_I$, with π_I a normal representation of $\mathcal{A}(I)$ on $B(\mathcal{H})$ such that

$$\pi_{\widetilde{I}} \upharpoonright \mathcal{A}(I) = \pi_{I}, \quad I \subset \widetilde{I}, \quad I, \widetilde{I} \subset \mathcal{I} \;.$$

 π is Möbius *covariant* if there is a projective unitary representation U_{π} of Möb on \mathcal{H} such that

$$\pi_{gI}(U(g)xU(g)^*) = U_{\pi}(g)\pi_I(x)U_{\pi}(g)^*$$

for all $I \in \mathcal{I}$, $x \in \mathcal{A}(I)$ and $g \in M\"ob$.

Version of DHR argument: given I and π rep. of \mathcal{A} , \exists an endomorphism $\rho \simeq \pi$ of \mathcal{A} localized in I; i.e. $\rho_{I'} = \operatorname{id} \upharpoonright_{\mathcal{A}(I')}$.

Proof. $\mathcal{A}(I)$ is a type III factor, thus only one normal rep.

- Fix I: choose $\rho \simeq \pi$, $\pi_{I'} = id$.

- By Haag duality $\rho_I(\mathcal{A}(I)) \subset \mathcal{A}(I)$.

Fredenhagen universal algebra.

Example. Let \mathcal{A} be the local conformal net on S^1 associated with the U(1)-current algebra. In the real line picture \mathcal{A} is given by

$$\mathcal{A}(I) \equiv \{W(f) : f \in C^{\infty}_{\mathbb{R}}(\mathbb{R}), \text{ supp} f \subset I\}''$$

where W is the representation of the Weyl commutation relations

$$W(f)W(g) = e^{-i\int fg'}W(f+g)$$

associated with the vacuum state $\boldsymbol{\omega}$

$$\omega(W(f)) \equiv e^{-||f||^2}, \quad ||f||^2 \equiv \int_0^\infty |\tilde{f}(p)|^2 p \mathrm{d}p$$

where \tilde{f} is the Fourier transform of f.

Buchholz-Mack-Todorov sectors There is a one parameter family $\{\alpha_q, q \in \mathbb{R}\}$ of irreducible sectors and all have index 1.

 $\alpha_q(W(f)) \equiv e^{2i\int Ff}W(f), \quad F \in C^{\infty}, \quad \int F = q.$

Index-statistics thm.

DHR dim.
$$d(\rho) = \sqrt{\text{Jones index Ind}(\rho)}$$

tensor category <u>full functor</u> tensor category End. local. in I restriction End. of $\mathcal{A}(I)$

$$\operatorname{Hom}(\rho, \sigma) = \operatorname{Hom}(\rho_I, \sigma_I)$$

Local intertwiners = global intertwiners (Guido,L.)

Conformal spin-statistics thm. (Guido, L.) π rep. of A, λ_{ρ} DHR statistics parameter

$$\kappa_{\rho} \equiv \mathsf{ph}(\lambda_{\rho}) = e^{2\pi i h_{\rho}}$$

 $h_{\rho} = = spin$, i.e. lowest eigenvalue of L_{ρ} .

Proof. (some argument) I_1 = upper half-circle, I_2 = right half-circle ρ automorphism localized in $I_1 \cap I_2$.

 $\rho|_{\mathcal{A}(I_i)} \rightarrow \text{Araki-Connes-Haagerup unitary standard implementation } V_i$

 V_1 and V_2 commute up to a phase

$$V_1 V_2 = \mu V_2 V_1.$$

 μ algebraic invariant & geometric invariant: compare the two aspects. . .

Diff(S¹) and the Virasoro algebra. Diff(S^1) = smooth oriented diffeomorphisms of S^1 . The (complexification of) Lie algebra of Diff(S^1) is Vect(S^1) (Witt algebra)

$$[L_m, L_n] = (m-n)L_{m+n}, \quad L_n = ie^{int}\frac{\mathsf{d}}{\mathsf{d}t}$$

The Virasoro algebra is the unique, non-trivial one-dim. central extension of De Witt alg.

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m, -n}$$

and $[L_n, c] = 0$. c is called *central charge*.

Unitary irreducible representation of Virasoro alg. on Hilbert space \mathcal{H} \uparrow Irr. family of operators L_n on \mathcal{H} and $c \in \mathbb{R}$

with Virasoro relations and $L_n^* = L_{-n}$.

 $L_1, L_{-1}, L_0 =$ generators of $s\ell(2, \mathbb{R})$ (Lie algebra of Möbius group):

 $[L_1, L_0] = L_1, \ [L_{-1}, L_0] = -L_{-1}, \ [L_1, L_{-1}] = 2L_0.$

 $L_0 \stackrel{\text{def}}{=} conformal Hamiltonian (= generator of rotations).$

Positive energy unitary rep. U of Diff (S^1) : $L_0 \ge 0$. Thus sp $U \subset \{h, h+1, h+2, \dots\}, h \ge 0$. h is called *lowest weight*.

For every possible value of c and $h \exists !$ irr. pos. energy rep. $V_{c,h}$ of Diff (S^1) . Possible values (Friedan, Qui, Shenker '86):

$$c = 1 - \frac{6}{n(n+1)}$$
 or $c \ge 1$

$$h_{p,q} = rac{((n+1)p - nq)^2 - 1}{4n(n+1)},$$

 $1 \leq p \leq n-1$, $1 \leq q \leq n$, $p,q \in \mathbb{N}$, $(p.q) \sim (n-p, n+1-q)$. All values are taken (Goddard, Kent, Olive '86).

Reps. with the same c have *fusion* (internal tensor product).

Popa-Ocneanu clssification of subfactors (discrete series). \mathcal{M} a finite amenable (inductive limit of finite-dim. *-algebras) factor. Subfactors $\mathcal{N} \subset \mathcal{M}$ with index < 4 are in Jones discrete series, i.e. $[\mathcal{M} : \mathcal{N}] = 4\cos^2 \frac{\pi}{n}, n \geq 3$. Let $\iota : \mathcal{N} \to \mathcal{M}$ embedding

 $\operatorname{Hom}(\iota,\iota) \hookrightarrow \operatorname{Hom}(\iota\overline{\iota},\iota\overline{\iota}) \hookrightarrow \operatorname{Hom}(\iota\overline{\iota}\iota,\iota\overline{\iota}\iota) \hookrightarrow \cdots$

is a tower of multi-matrix algebras described by a Bratteli embedding graph. Moreover $\iota \overline{\iota}$ (canonical endomorphism) *shifts by 2* the tower. The remaining principal graph gives a complete

 $A - D_{even} - E_{6,8}$ classification

A - D case unique, E case two subfactors.

Long standing problem: <u>is there a relation</u> <u>between Jones index discrete series and Virasoro</u> <u>central charge discrete series</u>? We shall provide a connection below. **Conformal nets.** A local conformal net \mathcal{A} is a local Möbius covariant net s.t. \exists proj. unitary rep. U of Diff (S^1) , extendending the Möbius rep., s.t.

 $U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI), \quad g \in \mathsf{Diff}(S^1),$ $U(g)xU(g)^* = x, \quad x \in \mathcal{A}(I), \quad g \in \mathsf{Diff}(I'),$ $\mathsf{Diff}(I) \stackrel{\mathsf{def}}{=} \{g \in \mathsf{Diff}(S^1) : g(t) = t \; \forall t \in I'\}.$

U is <u>unique</u> (Weiner), hence canonical.

Virasoro nets Vir_c.

 $\operatorname{Vir}_{c}(I) \equiv V_{c}(\operatorname{Diff}(I))''$

 $V_c \equiv V_{c,h=0}$ (vacuum representation).

 \mathcal{A} (local) conformal net, Haag duality implies $U(\mathsf{Diff}(I)) \subset \mathcal{A}(I),$

U is direct sum of reps $V_{c,h}$ with the same central charge c: the central charge of \mathcal{A}

 $\mathcal{A} \supset \mathsf{Vir}_c$

every local conformal net is an extension of a Virasoro net

On the other hand Vir_c is <u>minimal</u>, no nontrivial subnet (Carpi):

universal role of Vir_c

A (irred.) representation π of \mathcal{A} on \mathcal{H} is diffeomorphism *covariant* if \exists projective unitary rep. U_{π} of Diff(S¹) extending the rep. U_{π} of Möb s.t.

 $\pi_{qI}(U(g)xU(g)^*) = U_{\pi}(g)\pi_I(x)U_{\pi}(g)^*$

Automatic diff. covariance: D'Antoni, Fredenhagen, Koester, Weiner.

Complete rationality. Problem: characterize intrinsically a "rational" net (= finitely many irr. sectors, all with $d(\rho) < \infty$)

Def. \mathcal{A} is completely rational if

- \mathcal{A} is split, i.e. $\mathcal{A}(I_1) \vee \mathcal{A}(I_2) \simeq \mathcal{A}(I_1) \otimes \mathcal{A}(I_2)$
- The μ -index $\mu_{\mathcal{A}}$ is finite, i.e.

 $\mu_{\mathcal{A}} \equiv [\widehat{\mathcal{A}}(E) : \mathcal{A}(E)] < \infty$

 $E = I_1 \cup I_2, I_1 \cap I_2 = \emptyset, \ \widehat{\mathcal{A}}(E) = \mathcal{A}(E')'$ (failure of Haag duality for disconneted regions).

 $\mu_{\mathcal{A}} < \infty$ for SU(N) loop group models (F. Xu).

General theory (Kawahigashi, Müger, L.)

 \mathcal{A} completely rational \Rightarrow

$$\mu_{\mathcal{A}} = \sum_{i} d(\rho_i)^2$$

sum of the indeces of all irreducible sectors

• *A* is *rational* and the representation tensor category is *modular* has <u>non-degenerate</u> braiding

• $\mathcal{A}(E) \subset \widehat{\mathcal{A}}(E)$ is the quantum double inclusion of Rehren, L. (see below)

• All irreducible extensions of \mathcal{A} have <u>finite Jones</u> index (by Izumi, Popa, L.)

• \mathcal{A} is strongly additive (Xu, L.)

$$\mathcal{A}(I \smallsetminus \{\mathsf{point}\}) = \mathcal{A}(I)$$

Loop group and coset models. *G* compact Lie group,

LG loop group, i.e. $LG = \{g : t \in S^1 \to G\}$ (smooth maps with pointwise multiplication),

 $U: LG \to B(\mathcal{H})$ pos. energy unitary rep. of LG, i.e. the action of $\text{Diff}(S^1)$ on Aut(LG) is implementes by a pos. energy rep.

Vacuum irr. reps. (pos. energy) U of LG (0 eigenvalue of L_0) are labaled by a parameter, the *level* of U. Fix a level ℓ rep. U:

 $\mathcal{A}(I) \equiv \{U(g), g \in LG : g(t) = t, t \in I'\}''$

is a conformal net.

 $H \subset G$ closed subgroup

 $\mathcal{B}(I) \equiv \{U(g), g \in LH : g(t) = 1, t \in I'\}''$ conformal subnet.

 $C(I) = \mathcal{B}(I)' \cap \mathcal{A}(I) \text{ coset model of } H \subset G.$ $Vir_c = \text{coset } SU(2)_{m-1} \subset SU(2)_{m-1} \times SU(2)_1$ $c = 1 - \frac{6}{m(m+1)} \text{ (GKO, Xu, Carpi, Kawahigashi, L.).}$

 \Rightarrow Vir_c is completely rational c < 1

 \Rightarrow All extensions of Vir $_c$ have finite Jones index

 \Rightarrow Sectors of Vir_c have finite index (Loke)

The classification problem for the discrete series.

Classify conformal nets with
$$c < 1$$
 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Classify all irreducible extensions of Vir_c$

Verlinde-Rehren matrices. \mathcal{A} rational, i.e. finitely many irr. sectors $\rho_o = id, \rho_1, \dots, \rho_n$

$$Y_{ij} \equiv d_i d_j \Phi_j(\varepsilon(\rho_j, \rho_i)^* \varepsilon(\rho_i, \rho_j)^*)$$

 ε non degenerate $\Leftrightarrow |\sigma|^2 = \sum d_i^2$ with $\sigma \equiv \sum \kappa_i^{-1} d_i^2$

$$S \equiv |\sigma|^{-1}Y, \qquad T \equiv \left(\frac{\sigma}{|\sigma|}\right)^{1/3} \text{Diag}(\kappa_i)$$

$$SS^{\dagger} = TT^{\dagger} = \mathrm{id},$$

$$STS = T^{-1}ST^{-1},$$

$$S^{2} = C,$$

$$TC = CT,$$

where $C_{ij} = \delta_{i\overline{j}}$. In our case (Vir_c) C = id.

 \Rightarrow <u>T</u> and <u>S</u> generate unitary rep. of $SL(2,\mathbb{Z})$.

Modular invariants. Given a unitary, finitedim. rep. of $SL(2,\mathbb{Z})$, a *modular invariant* is a matrix $Z \in Mat(\mathbb{Z}_+)$, $Z_{00} = 1$, s.t.

ZU = UZ

• Rational net with non-degenerate braiding \rightarrow unitary rep. of $SL(2,\mathbb{Z}) \rightarrow$ modular invariants

• Thus (KLM): complete rational nets \rightarrow modular invariants

• Capelli, Itzykson, Zuber '87: ADE classification of modular invariants for Vir $_c$, c < 1

• Böckenhaur, Evans, Kawahigashi 2000: $\mathcal{A} \subset \mathcal{B}$ conformal nets, $[\mathcal{B} : \mathcal{A}] < \infty$, then

 $\alpha - induction \longrightarrow modular invariants$

$$Z_{\mu\nu} = \operatorname{dimHom}(\alpha_{\mu}^{+}, \alpha_{\nu}^{-})$$

 $\alpha_{\mu}^{\pm} = \text{extension of DHR sector } \mu \text{ of } \mathcal{A} \text{ to right/left}$ solitonic sector of \mathcal{B} (Roberts, Rehren-L., Xu) **Q-systems.** Recall: \mathcal{M} factor, $\rho \in \text{End}(\mathcal{M})$ then

$$\gamma_{\rho} = \rho \bar{\rho}$$

<u>Converse problem</u>: given $\gamma \in End(M)$, when is γ canonical?

The problem is finding a "square root" ρ .

The conjugate equations give conditions:

 γ canonical with finite index

 \Downarrow

 \exists isometry $T \in \text{Hom}(\iota, \gamma)$, and a co-isometry $S \in \text{Hom}(\gamma^2, \gamma)$

$$SS = S\gamma(S)$$

 $S\gamma(T) \in \mathbb{C} \setminus \{0\}, \quad ST \in \mathbb{C} \setminus \{0\}$

Def. A *Q*-system is a triple (γ, T, S) where $\gamma \in \text{End}(M)$, $T \in \text{Hom}(\iota, \gamma)$ is an isometry,

 $S \in \text{Hom}(\gamma^2, \gamma)$ is a co-isometry satisfying the above relations.

Thm. Q-system $(\gamma, T, S) \rightarrow$ finite-index subfactor $\mathcal{N} \subset \mathcal{M}$ with $\gamma : \mathcal{M} \rightarrow \mathcal{N}$ canonical endomorphism.

 \exists bijection

subfactors \leftrightarrow Q-systems

Proof. $\varepsilon \equiv S \cdot S^*$ is a positive map $\mathcal{M} \to \mathcal{M}$.

$$\varepsilon^2 = \varepsilon$$
 (use $SS = S\gamma(S)$)

 $\mathcal{N} \equiv \varepsilon(\mathcal{M})$ is a von Neumann subalgebra (again the relation) and ε is an expectation

Any $\rho \in \text{End}(M)$, $\rho(\mathcal{M}) = \mathcal{N}$ is a "square root" with $\overline{\rho} = \rho^{-1}\gamma$ (last relations give the conjugate equations) Application 1: Quantum double (Rehren, L.), see below.

Application 2: Duality for finite-dimensional complex semisimple Hopf algebras (L.).

An (irreducible) abstract *Q*-system is $(\mathcal{T}, \lambda, S)$ where λ an object of \mathcal{T} :

a): (ι, λ) is one-dimensional; namely there exists a unique element $T \in \text{Hom}(\iota, \lambda)$, up to a phase; T is proportional to an isometry.

b): there exists an arrow $S \in \text{Hom}(\lambda \otimes \lambda, \lambda)$ proportional to an coisometry ($SS^* = 1$) such that

$$b_{1}) S \circ \mathbf{1}_{\lambda} \otimes S = S \circ S \otimes \mathbf{1}_{\lambda}$$
$$b_{2}) \begin{cases} S \circ \mathbf{1}_{\lambda} \otimes T = \mathbf{1}_{\lambda} \\ S \circ T \otimes \mathbf{1}_{\lambda} = \mathbf{1}_{\lambda} \end{cases}$$

Thm. A finite-dimensional Hopf algebra is a Q-system s.t.

$$\lambda\otimes\lambda\simeq d\lambda$$

distiguished propery of regular representation.

Compare with Doplicher-Roberts duality for compact groups.

Two Q-systems (ρ, T_1, S_1) and (ρ, T_2, S_2) are equivalent if $\exists u \in \text{Hom}(\rho, \rho)$ satisfying

 $T_2 = uT_1, \qquad uS_1 = S_2 u\rho(u).$

Equivalence of Q-systems \Leftrightarrow inner conjugacy of subfactors.

 $\begin{array}{ccc} N \subset M & \stackrel{\text{Jones construction}}{\xleftarrow} & \tilde{M} \supset M \\ \text{can. endomorphism} & \end{array}$

<u>Problem</u>: classify Q-systems up to equivalence when a system of endomorphisms is given and ρ is a direct sum of endomorphisms in the system.

Izumi-Kosaki cohomology for Q-systems: <u>finite</u> groups.

Classification of local extensions of the Virasoro nets (Kawahigashi, L.)

• Consider the Cappelli-Itzykson-Zuber classification of the modular invariants for the Virasoro nets with central charge c = 1 - 6/m(m + 1) < 1, m = 2, 3, 4, ...

• Show that each "type I" modular invariant is realized with α -induction for an extension $\operatorname{Vir}_c \subset \mathcal{M}$ as in Bockenhauer-Evans-Kawahigashi

 \bullet Use $Q\mbox{-system}$ to detect the local extension of ${\rm Vir}_c,\ c<1$

 \Downarrow

Classification of local conformal nets, $c = 1 - \frac{6}{m(m+1)}$

m	Labels for Z
n	(A_{n-1},A_n)
4n + 1	(A_{4n}, D_{2n+2})
4n + 2	(D_{2n+2}, A_{4n+2})
11	(A_{10}, E_6)
12	(E_{6}, A_{12})
29	(A_{28}, E_8)
30	(E_8, A_{30})

Thm. (Kawahigashi,L.) Local conformal nets with c < 1 are classified by pair of Dynkin diagrams $A - D_{2n} - E_{6,8}$ s.t. the difference of Coxeter numbers is 1.

Simple current extensions. The simple current extensions of index 2

The four exceptional cases.

 $(E_6, A_{12}), (E_8, A_{30})$ coset constructions (conjectuered by Böckenhauer-Evans

 (A_{10}, E_6) coset construction (Köster)

One *new example* (A_{28}, E_8) , most probably not constructable as coset.

Case c = 1 classified by Xu, Carpi (with a spectral condition, probably always true)

Subnet structure. Alternative labels for the classification.

Let \mathcal{A} be an irreducible local conformal net with central charge c < 1. Let s be the number of finite-index conformal subnets, up to conjugacy (including \mathcal{A} itself). Then $s \in \{1, 2, 3\}$. \mathcal{A} is completely classified by the pair (m, s) where c = 1-6/m(m+1). For any $m \in \mathbb{N}$ the possible values of s are:

- s = 1 for all $m \in \mathbb{N}$;
- s = 2 if $m = 1, 2 \mod 4$, and if m = 11, 12;
- s = 3 if m = 29, 30.

Classification of 2-dimensional CFT.

Quantum double inclusion (Rehren, L., related to Popa and Ocneanu)

 \mathcal{T} a rational tensor subcategory of End(\mathcal{M}), objects $\{\rho_i\}$

$$\lambda \equiv \bigoplus_i \rho_i \otimes \rho_i^{\mathsf{opp}}$$

 $\lambda \in \mathsf{End}(\mathcal{M}\otimes \mathcal{M}^{\mathsf{opp}})$

 V_{ℓ} basis in Hom $(\rho_k, \rho_i \rho_j)$

 \rightarrow <u>canonical</u> element

 $\bigoplus_{i} V_i \otimes V_i^{\mathsf{opp}} \in \mathsf{Hom}(\rho_k \otimes \rho_k^{\mathsf{opp}}, \rho_i \rho_j \otimes \rho_i^{\mathsf{opp}} \rho_j^{\mathsf{opp}})$

 \rightarrow canonical isometry $S \in \operatorname{Hom}(\lambda, \lambda^2)$

 \rightarrow canonical Q-system (λ, T, S^*)

 \rightarrow <u>canonical</u> inclusion

$$\mathcal{M}\otimes\mathcal{M}^{\text{opp}}\subset\tilde{\mathcal{M}}$$

 $[\tilde{\mathcal{M}}: \mathcal{M} \otimes \mathcal{M}^{\mathsf{opp}}] = \sum_i d(\rho_i)^2$

 $\gamma:\tilde{\mathcal{M}}\to \mathcal{M}\otimes \mathcal{M}^{\text{opp}}$ can. endomrphism

Tensor category generated by γ is <u>braided</u>, the quantum double of \mathcal{T} in the sense of Drinfeld.

Sector structure studied by Izumi.

Canonical tensor product inclusions (Rehren)

The above generalizes to inclusion of the form $\mathcal{M}\otimes\mathcal{M}^{opp}\subset\tilde{\mathcal{M}}\text{ with }$

$$\lambda = Z_{ij} \bigoplus_i \rho_i \otimes \rho_j^{\mathsf{opp}}$$

where $p \in S_n$ and Z_{ij} is nonnegative integer matrix related to modular invariants.

Two-dimensional conformal nets. A net vN algebras on Minkowski space.

 \mathcal{A} is conformal if $r : \mathbf{x} \mapsto \mathbf{x}/||\mathbf{x}||^2$ is a symmetry $(\mathbf{x} = x^2 - t^2)$

Free field: $\Box \Psi = 0$ is preserved by r. dim = 2 $\implies \Psi(\mathbf{x}) = \Psi_+(x+t) + \Psi_-(x-t)$

In general:

$$\mathcal{A}$$
 conformal net on \mathbb{R}^2
restriction \downarrow to $x \pm t = 0$
two conf. net \mathcal{A}_{\pm} on \mathbb{R}

Thm (Rehren)

 $\mathcal{A}_{+}(I) \otimes \mathcal{A}_{-}(J) \subset \mathcal{A}_{+}^{\max}(I) \otimes \mathcal{A}_{-}^{\max}(J) \subset \mathcal{A}$ $\mathcal{A}_{+}(I) \otimes \mathcal{A}_{-}(J) \subset \mathcal{A} \text{ c. t. p. subfactor}$

 $\mathcal{A}^{\max}_+(I)\otimes \mathcal{A}^{\max}_-(J)\subset \mathcal{A}$ quantum double can. endom.

$$\lambda = \bigoplus_i \rho_i \otimes \rho_{p(i)}^{\mathsf{opp}}$$

The classification problem for two-dim CFT. c < 1 We have

$$\mathcal{A}_+(I)\otimes \mathcal{A}_-(J)\supset \operatorname{Vir}_c\otimes \operatorname{Vir}_c$$

and $\operatorname{Vir}_c \subset \mathcal{A}^{\max}_{\pm}$ is classified.

c < 1, maximal nets.

Classify irr. extensions of
$$\mathcal{A}^{\max}_+ \otimes \mathcal{A}^{\max}_-$$

with canonical endomorphism
 $\bigoplus_i \rho_i \otimes \rho_{p(i)}^{\text{opp}}$

Classification problem

 \uparrow

cohomological problem for Q-systems

Vanishing of Izumi-Kosaki 2-cohomology for the tensor categories that appear.

Canoninal endom. $\lambda : \mathcal{A} \to \operatorname{Vir}_c \otimes \operatorname{Vir}_c$ is

$$\lambda = \bigoplus Z_{ij} \alpha_i \otimes \alpha_j^{\mathsf{opp}}$$

and Z is a modular invariant (Müger).

Modular invariants for the Virasoro tensor category Vir_c :

m	Labels for modular invariants	Туре
n	(A_{n-1}, A_n)	Ι
4 <i>n</i>	(D_{2n+1}, A_{4n})	II
4n + 1	(A_{4n}, D_{2n+2})	Ι
4n + 2	(D_{2n+2}, A_{4n+2})	Ι
4n + 3	(A_{4n+2}, D_{2n+3})	II
11	(A_{10}, E_6)	I
12	(E_{6}, A_{12})	I
17	(A_{16}, E_7)	II
18	(E_7, A_{18})	II
29	(A_{28}, E_8)	I
30	(E_8, A_{30})	Ι

 $\mathcal{A} \to Z$ is <u>bijection</u> two-dimensional max local conformal nets \leftrightarrow modular invariants Z:

Thm. (Kawahigashi,L.) Two-dimensional maximal local conformal nets with c < 1 are classified by pair of Dynkin diagrams A - D - E s.t. the difference of Coxeter numbers is 1.

Note: One-dimensional case D_{odd} and E_7 do not appaear.

Non-maximal are also classified.

Classification of non-local extensions. Kawahigashi, Rehren, L.

Classify all, relatively non-local, irreducible extensions \mathcal{B} of $\mathcal{A} = \text{Vir}_c$. c < 1.

For c = 1 - 6/m(m+1), m = 3, 4, 5, ...

DHR sectors: $\sigma_{j,k}$, $j = 0, 1, \dots, m-2$, $k = 0, 1, \dots, m-1$, $\sigma_{j,k} = \sigma_{m-2-j,m-1-k}$ (m(m-1)/2 irreducible DHR sectors).

Consider the following sequence of commuting squares

Bratteli diagram of the second row $\rightarrow A-D-E$ Dynkin diagram with Coxeter number m, vertex v_1 $\sigma_{0,1}$ instead of $\sigma_{1,0} \rightarrow \text{graph } G_2$ Coxeter number m, vertex v_2 .

Thm. The quadruple $(G_1, [v_1], G_2, [v_2])$ gives a complete invariant for irreducible extensions of nets Vir_c, and an arbitrary quadruple, subject to the conditions on the Coxeter numbers as above, arises as an invariant of some extension.

ABC: Algebraic Boundary CFT. H.K. Rehren, L.

 $M_+ \equiv \{(t, x) \in \mathbb{R}^2 : x > 0\}$

Chiral net $\mathcal{A} \longrightarrow$ two local nets on double-cones of M_+

1) trivial boundary CFT

$$O \mapsto A_+(O) := A(I) \lor A(J)$$

2) its dual

$$O \mapsto A^d_+(O) := A(L) \cap A(K)' \left(= A_+(O')' \right)$$

 A^d is local and $A_+(O) \subset A^d_+(O)$ is the "two-interval subfactor".

Def. A boundary CFT (BCFT) associated with A is a local, isotonous net

$$O \mapsto B_+(O)$$

on double-cones of M_+ , of vN algebras on a fixed Hilbert space \mathcal{H}_B s.t.

(i) \exists unitary, pos. energy rep. U of the covering $G = \widetilde{\text{M\"ob}}$ s.t.

$$U(g)B_+(O)U(g)^* = B_+(gO)$$

"within M_+ ".

(ii) \exists rep. π of A on \mathcal{H}_B such that $B_+(O)$ contains $\pi(A_+(O))$, and

$$U(g)\pi(A_{+}(O))U(g)^{*} = \pi(A_{+}(gO))$$

(iii) "Joint irreducibility": $\forall O, B_+(O) \lor \pi(A_+)$ " is irreducible on \mathcal{H}_B .

Dual net:

 $B^d_+(O) = B_+(O')' \equiv B_+(O_<)' \cap B_+(O_>)'.$ $B_+(O_<), B_+(O_>)$ vN algebras of wedges. Prop. Wedge duality:

$$B_{+}^{d}(O) := B_{+}(O'_{>}) \cap B_{+}(O'_{<}).$$

 $\Rightarrow B^d_+$ is local

Shall assume A is completely rational

The non-local chiral net associated with a BCFT.

A boundary CFT $O \mapsto B_+(O)$ generates a chiral net $I \mapsto B^{\text{gen}}(I)$ (the associated *boundary net*) on \mathcal{H}_B , by

$$B^{\text{gen}}(I) := \bigvee_{O \subset W_L} B_+(O) \equiv B_+(W_L)$$

where W_L is the left wedge spanned by I.

Prop. (i) The boundary net B^{gen} generated from B_+ is isotonous, and it is covariant:

$$U(g)B^{gen}(I)U(g)^* = B^{gen}(gI)$$

whenever $I \subset \mathbb{R}$, $gI \subset \mathbb{R}$

$$\pi(A(I)) \subset B^{\operatorname{gen}}(I) \subset \pi(A(I'))'.$$

(ii) There is a consistent family of vacuumpreserving expectations $\mathcal{E}^I : B^{\text{gen}}(I) \to A(I)$.

(iii) The local subfactors $\pi(A(I)) \subset B^{\text{gen}}(I)$ are irreducible and have finite index. The index is independent of I.

In general, the boundary net B^{gen} is a *nonlocal*.

Prop. If B_+ is relatively local with respect to $\pi(A_+^d)$, then $B^{\text{gen}} = A$, and B_+ lies between A_+ and A_+^d .

By the definition of the boundary net B and locality of B_+ , we obviously have $B_+(O) \subset$

 $B^{\text{gen}}(L) \cap B^{\text{gen}}(K)'$. This suggests the following definition of a local boundary CFT *induced* by a given (possibly non-local) chiral net:

Def. If $I \mapsto B(I)$ is an irreducible chiral extension of $I \mapsto A(I)$ (possibly non-local, but relatively local with respect to A), then the *induced net* is defined by

$$O \mapsto B^{\operatorname{ind}}_+(O) := B(L) \cap B(K)'.$$

Prop. B^{ind} is a boundary CFT associated with A (special case B = A: $B^{\text{ind}} = A_+^{\text{dual}}$)

gen \circ ind = id, ind \circ gen = dual

 \Rightarrow dual \circ ind = ind and dual \circ dual = dual

Every induced net B_{+}^{ind} is self-dual (Haag dual).

Classif. Haag dual ABC on A, c < 1

$$\uparrow$$

Classif. non-local chiral extension of A, c < 1