
The Structure and Classification
of Conformal Nets

Möbius covariants nets on S1. A (local)

Möbius covariant net A on S1 is a map

I ∈ I → A(I) ⊂ B(H)

I ≡ family of proper intervals of S1, that sat-

isfies:

A. Isotony. I1 ⊂ I2 =⇒ A(I1) ⊂ A(I2)

B. Locality. I1∩I2 = ∅ =⇒ [A(I1),A(I2)] = {0}

C. Möbius covariance. ∃ unitary rep. U of the

Möbius group Möb on H such that

U(g)A(I)U(g)∗ = A(gI), g ∈ Möb, I ∈ I.

D. Positivity of the energy. Generator L0 of

rotation subgroup of U (conformal Hamilto-

nian) is positive.



E. Existence of the vacuum. ∃! U-invariant
vector Ω ∈ H (vacuum vector), and Ω is cyclic
for

∨
I∈I A(I) and unique U-invariant.

First consequences

• Irreducibility:
∨

I∈I A(I) = B(H).

• Reeh-Schlieder theorem: Ω is cyclic and sep-
arating for each A(I).

Proof. H ≥ 0 Hamiltonian. ξ ⊥ A(I)Ω =⇒
(ξ, eitHXΩ) = 0, X localized in I0 ⊂⊂ I, |t| < ε.

(ξ, eizHXΩ) analytic in �z > 0 =⇒ (ξ, eitHXΩ) =
0 ∀t. . .

• Bisognano-Wichmann property: Tomita-Ta-
kesaki modular operator ∆I and conjugation
JI of (A(I), Ω), are

U(ΛI(2πt)) = ∆it
I , t ∈ R, dilations

U(rI) = JI reflection



(Guido-L., Frölich-Gabbiani)

ΛI(t) : x → e−tx on R+ ∼ S+ (stereograph.

map)

Proof based on the following:

Borchers thm. M vN algebra, Ω cyclic separat-

ing vector, T(t) one-parameter unitary group,

T(t)Ω = Ω

T(t)MT(−t) ⊂ M, t ≥ 0

T(t) = exp(iHt), H ≥ 0

then

∆isT(t)∆−is = T(e−2πst), JT(t)J = T(−t)

• Haag duality:

A(I)′ = A(I′)

Proof. A(I)′ = JIA(I)JI = A(I′).

• Factoriality: A(I) is III1-factor (or A(I) = C).



Proof. Modular group is ergodic.

• Additivity: I ⊂ ∪iIi =⇒ A(I) ⊂ ∨iA(Ii)
(Fredenhagen, Jorss).

Wiesbrock characterization (variant)

Thm. (Guido, Wiesbrock, L.)

A local Möb covariant net ⇔ (M0,M1,M2, Ω)

Mk commuting vN algebras, Ω cycl.sep. vec-

tor, ∆is
k Mk+1∆

−is
k ⊂ Mk+1, s ≥ 0, k ∈ Z3.

Split property and Buchholz nuclearity. A
satisfies the split property if the von Neumann

algebra

A(I1) ∨ A(I2) � A(I1) ⊗A(I2)

(natural isomorphism) if Ī1 ∩ Ī2 = ∅.

Tr(e−tL0) < ∞, ∀t > 0 =⇒ split

(nuclearity)



Representations. A representation π of A on

a Hilbert space H is a map I ∈ I → πI, with πI

a normal representation of A(I) on B(H) such

that

πĨ�A(I) = πI, I ⊂ Ĩ , I, Ĩ ⊂ I .

π is Möbius covariant if there is a projective

unitary representation Uπ of Möb on H such

that

πgI(U(g)xU(g)∗) = Uπ(g)πI(x)Uπ(g)
∗

for all I ∈ I, x ∈ A(I) and g ∈ Möb.

Version of DHR argument: given I and π rep.

of A, ∃ an endomorphism ρ � π of A localized

in I; i.e. ρI ′ = id �A(I ′).

Proof. A(I) is a type III factor, thus only one

normal rep.

– Fix I: choose ρ � π, πI ′ = id.

– By Haag duality ρI(A(I)) ⊂ A(I).



Fredenhagen universal algebra.

A(I)
ιI−→ C∗(A)

πI

⏐⏐⏐� ⏐⏐⏐�π

B(H) B(H)

Reps of A ↔ Endom. of C∗(A)

⇓
Fusion of representations

↓
End(C∗(A)) is braided tensor category

||
canonical intertwiners ε(ρ, σ) : ρσ → σρ

(Fredenhagen, Rehren, Schroer)

Example. Let A be the local conformal net on

S1 associated with the U(1)-current algebra.

In the real line picture A is given by

A(I) ≡ {W (f) : f ∈ C∞
R

(R), suppf ⊂ I}′′



where W is the representation of the Weyl

commutation relations

W (f)W (g) = e−i
∫

fg′W (f + g)

associated with the vacuum state ω

ω(W (f)) ≡ e−||f ||2, ||f ||2 ≡
∫ ∞

0
|f̃(p)|2pdp

where f̃ is the Fourier transform of f .

Buchholz-Mack-Todorov sectors There is a one

parameter family {αq, q ∈ R} of irreducible sec-

tors and all have index 1.

αq(W (f)) ≡ e2i
∫

FfW (f), F ∈ C∞,
∫

F = q .

Index-statistics thm.

DHR dim. d(ρ) =
√

Jones index Ind(ρ)

tensor category

End. local. in I

full functor−−−−−−−−→
restriction

tensor category

End. of A(I)

Hom(ρ, σ) = Hom(ρI, σI)



Local intertwiners = global intertwiners (Guido,L.)

Conformal spin-statistics thm. (Guido, L.)

π rep. of A, λρ DHR statistics parameter

κρ ≡ ph(λρ) = e2πihρ

hρ = = spin, i.e. lowest eigenvalue of Lρ.

Proof. (some argument) I1 = upper half-circle,

I2 = right half-circle ρ automorphism localized

in I1 ∩ I2.

ρ|A(Ii)
→ Araki-Connes-Haagerup unitary stan-

dard implementation Vi

V1 and V2 commute up to a phase

V1V2 = µV2V1.

µ algebraic invariant & geometric invariant:

compare the two aspects. . .



Diff(S1) and the Virasoro algebra. Diff(S1) =
smooth oriented diffeomorphisms of S1. The
(complexification of) Lie algebra of Diff(S1) is
Vect(S1) (Witt algebra)

[Lm, Ln] = (m − n)Lm+n, Ln = ieint d

dt
The Virasoro algebra is the unique, non-trivial
one-dim. central extension of De Witt alg.

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 − m)δm,−n

and [Ln, c] = 0. c is called central charge.

Unitary irreducible representation

of Virasoro alg. on Hilbert space H
�

Irr. family of operators Ln on H and c ∈ R

with Virasoro relations and L∗
n = L−n.

L1, L−1, L0 = generators of s�(2, R) (Lie alge-
bra of Möbius group):

[L1, L0] = L1, [L−1, L0] = −L−1, [L1, L−1] = 2L0.



L0
def
= conformal Hamiltonian (= generator of

rotations).

Positive energy unitary rep. U of Diff(S1):

L0 ≥ 0. Thus spU ⊂ {h, h+1, h+2, · · · }, h ≥ 0.

h is called lowest weight.

For every possible value of c and h ∃! irr. pos.

energy rep. Vc,h of Diff(S1). Possible values

(Friedan, Qui, Shenker ‘86):

c = 1 − 6

n(n + 1)
or c ≥ 1

hp,q =
((n + 1)p − nq)2 − 1

4n(n + 1)
,

1 ≤ p ≤ n − 1, 1 ≤ q ≤ n, p, q ∈ N, (p.q) ∼
(n−p, n+1−q). All values are taken (Goddard,

Kent, Olive ‘86).

Reps. with the same c have fusion (internal

tensor product).



Popa-Ocneanu clssification of subfactors

(discrete series). M a finite amenable (in-

ductive limit of finite-dim. ∗-algebras) factor.

Subfactors N ⊂ M with index < 4 are in Jones

discrete series, i.e. [M : N ] = 4cos2 π
n, n ≥ 3.

Let ι : N → M embedding

Hom(ι, ι) ↪→ Hom(ῑι, ῑι) ↪→ Hom(ῑιι, ῑιι) ↪→ · · ·

is a tower of multi-matrix algebras described

by a Bratteli embedding graph. Moreover ῑι

(canonical endomorphism) shifts by 2 the tower.

The remaining principal graph gives a complete

A − Deven − E6,8 classification

A − D case unique, E case two subfactors.

Long standing problem: is there a relation

between Jones index discrete series and Virasoro

central charge discrete series? We shall pro-

vide a connection below.



Conformal nets. A local conformal net A is a

local Möbius covariant net s.t. ∃ proj. unitary

rep. U of Diff(S1), extendending the Möbius

rep., s.t.

U(g)A(I)U(g)∗ = A(gI), g ∈ Diff(S1),

U(g)xU(g)∗ = x, x ∈ A(I), g ∈ Diff(I′),

Diff(I)
def
= {g ∈ Diff(S1) : g(t) = t ∀t ∈ I′}.

U is unique (Weiner), hence canonical.

Virasoro nets Virc.

Virc(I) ≡ Vc(Diff(I))′′

Vc ≡ Vc,h=0 (vacuum representation).

A (local) conformal net, Haag duality implies

U(Diff(I)) ⊂ A(I),



U is direct sum of reps Vc,h with the same cen-
tral charge c: the central charge of A

A ⊃ Virc

every local conformal net

is an extension of a Virasoro net

On the other hand Virc is minimal, no nontriv-
ial subnet (Carpi):

universal role of Virc

A (irred.) representation π of A on H is diffeo-
morphism covariant if ∃ projective unitary rep.
Uπ of Diff(S1) extending the rep. Uπ of Möb
s.t.

πgI(U(g)xU(g)∗) = Uπ(g)πI(x)Uπ(g)
∗

Automatic diff. covariance: D’Antoni, Freden-
hagen, Koester, Weiner.

Complete rationality. Problem: characterize
intrinsically a “rational” net (= finitely many
irr. sectors, all with d(ρ) < ∞)



Def. A is completely rational if

• A is split, i.e. A(I1) ∨ A(I2) � A(I1) ⊗A(I2)

• The µ-index µA is finite, i.e.

µA ≡ [Â(E) : A(E)] < ∞

E = I1∪ I2, I1∩ I2 = ∅, Â(E) = A(E′)′ (failure

of Haag duality for disconneted regions).

µA < ∞ for SU(N) loop group models (F. Xu).

General theory (Kawahigashi, Müger, L.)

A completely rational ⇒
•

µA =
∑
i

d(ρi)
2

sum of the indeces of all irreducible sectors



• A is rational and the representation tensor

category is modular has non-degenerate braiding

• A(E) ⊂ Â(E) is the quantum double inclusion

of Rehren, L. (see below)

• All irreducible extensions of A have finite Jones

index (by Izumi, Popa, L.)

• A is strongly additive (Xu, L.)

A(I � {point}) = A(I)

Loop group and coset models. G compact

Lie group,

LG loop group, i.e. LG = {g : t ∈ S1 → G}
(smooth maps with pointwise multiplication),

U : LG → B(H) pos. energy unitary rep. of

LG, i.e. the action of Diff(S1) on Aut(LG) is

implementes by a pos. energy rep.



Vacuum irr. reps. (pos. energy) U of LG ( 0
eigenvalue of L0) are labaled by a parameter,
the level of U. Fix a level � rep. U:

A(I) ≡ {U(g), g ∈ LG : g(t) = t, t ∈ I′}′′

is a conformal net.

H ⊂ G closed subgroup

B(I) ≡ {U(g), g ∈ LH : g(t) = 1, t ∈ I ′}′′

conformal subnet.

C(I) = B(I)′ ∩ A(I) coset model of H ⊂ G.

Virc = coset SU(2)m−1 ⊂ SU(2)m−1 × SU(2)1

c = 1− 6
m(m+1) (GKO, Xu, Carpi, Kawahigashi,

L.).

⇒ Virc is completely rational c < 1

⇒ All extensions of Virc have finite Jones index

⇒ Sectors of Virc have finite index (Loke)



The classification problem for the discrete
series.

Classify conformal nets with c < 1

�
Classify all irreducible extensions of Virc

Verlinde-Rehren matrices. A rational, i.e.
finitely many irr. sectors ρo = id, ρ1, . . . ρn

Yij ≡ didjΦj(ε(ρj, ρi)
∗ε(ρi, ρj)

∗)

ε non degenerate ⇔ |σ|2 =
∑

d2
i with σ ≡∑

κ−1
i d2

i

S ≡ |σ|−1Y, T ≡
(

σ

|σ|

)1/3

Diag(κi)

SS† = TT † = id,

STS = T−1ST−1,

S2 = C,

TC = CT,

where Cij = δīj. In our case (Virc) C = id.

⇒ T and S generate unitary rep. of SL(2, Z).



Modular invariants. Given a unitary, finite-

dim. rep. of SL(2, Z), a modular invariant is a

matrix Z ∈ Mat(Z+), Z00 = 1, s.t.

ZU = UZ

• Rational net with non-degenerate braiding →
unitary rep. of SL(2, Z) → modular invariants

• Thus (KLM): complete rational nets → mod-

ular invariants

• Capelli, Itzykson, Zuber ‘87: ADE classifica-

tion of modular invariants for Virc, c < 1

• Böckenhaur, Evans, Kawahigashi 2000: A ⊂
B conformal nets, [B : A] < ∞, then

α − induction −→ modular invariants

Zµν = dimHom(α+
µ , α−

ν )

α±
µ = extension of DHR sector µ of A to right/left

solitonic sector of B (Roberts, Rehren-L., Xu)



Q-systems. Recall: M factor, ρ ∈ End(M)

then

γρ = ρρ̄

Converse problem: given γ ∈ End(M), when is

γ canonical?

The problem is finding a “square root” ρ.

The conjugate equations give conditions:

γ canonical with finite index

⇓

∃ isometry T ∈ Hom(ι, γ), and a co-isometry

S ∈ Hom(γ2, γ)

SS = Sγ(S)

Sγ(T) ∈ C\{0} , ST ∈ C\{0}

Def. A Q-system is a triple (γ, T, S) where

γ ∈ End(M), T ∈ Hom(ι, γ) is an isometry,



S ∈ Hom(γ2, γ) is a co-isometry satisfying the

above relations.

Thm. Q-system (γ, T, S) → finite-index sub-

factor N ⊂ M with γ : M → N canonical en-

domorphism.

∃ bijection

subfactors ↔ Q-systems

Proof. ε ≡ S · S∗ is a positive map M → M.

ε2 = ε (use SS = Sγ(S))

N ≡ ε(M) is a von Neumann subalgebra (again

the relation) and ε is an expectation

Any ρ ∈ End(M), ρ(M) = N is a “square root”

with ρ̄ = ρ−1γ (last relations give the conjugate

equations)



Application 1 : Quantum double (Rehren, L.),

see below.

Application 2 : Duality for finite-dimensional

complex semisimple Hopf algebras (L.).

An (irreducible) abstract Q-system is (T , λ, S)

where λ an object of T :

a): (ι, λ) is one–dimensional; namely there ex-

ists a unique element T ∈ Hom(ι, λ), up to a

phase; T is proportional to an isometry.

b): there exists an arrow S ∈ Hom(λ ⊗ λ, λ)

proportional to an coisometry (SS∗ = 1) such

that

b1) S ◦ 1λ ⊗ S = S ◦ S ⊗ 1λ

b2)

⎧⎨⎩S ◦ 1λ ⊗ T = 1λ

S ◦ T ⊗ 1λ = 1λ



Thm. A finite-dimensional Hopf algebra is a
Q-system s.t.

λ ⊗ λ � dλ

distiguished propery of regular representation.

Compare with Doplicher-Roberts duality for com-
pact groups.

Two Q-systems (ρ, T1, S1) and (ρ, T2, S2) are
equivalent if ∃u ∈ Hom(ρ, ρ) satisfying

T2 = uT1, uS1 = S2uρ(u).

Equivalence of Q-systems ⇔ inner conjugacy
of subfactors.

N ⊂ M
Jones construction←→
can. endomorphism

M̃ ⊃ M

Problem: classify Q-systems up to equivalence
when a system of endomorphisms is given and
ρ is a direct sum of endomorphisms in the sys-
tem.

Izumi-Kosaki cohomology for Q-systems: finite
groups.



Classification of local extensions of the Vi-

rasoro nets (Kawahigashi, L.)

• Consider the Cappelli-Itzykson-Zuber classi-

fication of the modular invariants for the Vira-

soro nets with central charge c = 1−6/m(m+

1) < 1, m = 2,3,4, . . . .

• Show that each “type I” modular invariant

is realized with α-induction for an extension

Virc ⊂ M as in Bockenhauer-Evans-Kawahigashi

• Use Q-system to detect the local extension

of Virc, c < 1

⇓

Classification of local conformal nets, c = 1 − 6
m(m+1)



m Labels for Z
n (An−1, An)

4n + 1 (A4n, D2n+2)
4n + 2 (D2n+2, A4n+2)

11 (A10, E6)
12 (E6, A12)
29 (A28, E8)
30 (E8, A30)

Thm. (Kawahigashi,L.) Local conformal nets
with c < 1 are classified by pair of Dynkin di-
agrams A − D2n − E6,8 s.t. the difference of
Coxeter numbers is 1.

Simple current extensions. The simple current
extensions of index 2

The four exceptional cases.

(E6, A12), (E8, A30) coset constructions (con-
jectuered by Böckenhauer-Evans

(A10, E6) coset construction (Köster)



One new example (A28, E8), most probably
not constructable as coset.

Case c = 1 classified by Xu, Carpi (with a
spectral condition, probably always true)

Subnet structure. Alternative labels for the
classification.

Let A be an irreducible local conformal net
with central charge c < 1. Let s be the number
of finite-index conformal subnets, up to conju-
gacy (including A itself). Then s ∈ {1,2,3}. A
is completely classified by the pair (m, s) where
c = 1−6/m(m+1). For any m ∈ N the possible
values of s are:

• s = 1 for all m ∈ N;

• s = 2 if m = 1,2 mod 4, and if m = 11,12;

• s = 3 if m = 29,30.



Classification of 2-dimensional CFT.

Quantum double inclusion (Rehren, L., related

to Popa and Ocneanu)

T a rational tensor subcategory of End(M),

objects {ρi}

λ ≡
⊕
i

ρi ⊗ ρopp
i

λ ∈ End(M⊗Mopp)

V� basis in Hom(ρk, ρiρj)

→ canonical element⊕
i

Vi ⊗ V opp
i ∈ Hom(ρk ⊗ ρopp

k , ρiρj ⊗ ρopp
i ρopp

j )

→ canonical isometry S ∈ Hom(λ, λ2)

→ canonical Q-system (λ, T, S∗)



→ canonical inclusion

M⊗Mopp ⊂ M̃

[M̃ : M⊗Mopp] =
∑

i d(ρi)
2

γ : M̃ → M⊗Mopp can. endomrphism

Tensor category generated by γ is braided, the

quantum double of T in the sense of Drinfeld.

Sector structure studied by Izumi.

Canonical tensor product inclusions (Rehren)

The above generalizes to inclusion of the form

M⊗Mopp ⊂ M̃ with

λ = Zij

⊕
i

ρi ⊗ ρopp
j

where p ∈ Sn and Zij is nonnegative integer

matrix related to modular invariants.



Two-dimensional conformal nets. A net vN

algebras on Minkowski space.

A is conformal if r : x → x/||x||2 is a symmetry

(x = x2 − t2)

Free field: �Ψ = 0 is preserved by r.

dim = 2 =⇒ Ψ(x) = Ψ+(x + t) + Ψ−(x − t)

In general:

A conformal net on R
2

restriction ↓ to x ± t = 0

two conf. net A± on R

Thm (Rehren)

A+(I) ⊗A−(J) ⊂ Amax
+ (I) ⊗Amax

− (J) ⊂ A

A+(I) ⊗A−(J) ⊂ A c. t. p. subfactor



Amax
+ (I) ⊗ Amax

− (J) ⊂ A quantum double can.
endom.

λ =
⊕
i

ρi ⊗ ρopp
p(i)

The classification problem for two-dim CFT.

c < 1 We have

A+(I) ⊗A−(J) ⊃ Virc ⊗ Virc

and Virc ⊂ Amax
± is classified.

c < 1, maximal nets.

Classify irr. extensions of Amax
+ ⊗Amax

−
with canonical endomorphism⊕

i

ρi ⊗ ρopp
p(i)

Classification problem

�
cohomological problem for Q-systems

Vanishing of Izumi-Kosaki 2-cohomology for
the tensor categories that appear.



Canoninal endom. λ : A → Virc ⊗ Virc is

λ =
⊕

Zijαi ⊗ αopp
j

and Z is a modular invariant (Müger).

Modular invariants for the Virasoro tensor cat-
egory Virc:

m Labels for modular invariants Type
n (An−1, An) I
4n (D2n+1, A4n) II

4n + 1 (A4n, D2n+2) I
4n + 2 (D2n+2, A4n+2) I
4n + 3 (A4n+2, D2n+3) II

11 (A10, E6) I
12 (E6, A12) I
17 (A16, E7) II
18 (E7, A18) II
29 (A28, E8) I
30 (E8, A30) I

A → Z is bijection two-dimensional max local
conformal nets ↔ modular invariants Z:



Thm. (Kawahigashi,L.) Two-dimensional max-

imal local conformal nets with c < 1 are classi-

fied by pair of Dynkin diagrams A − D − E s.t.

the difference of Coxeter numbers is 1.

Note: One-dimensional case Dodd and E7 do

not appaear.

Non-maximal are also classified.



Classification of non-local extensions. Kawahi-

gashi, Rehren, L.

Classify all, relatively non-local, irreducible ex-

tensions B of A = Virc. c < 1.

For c = 1 − 6/m(m + 1), m = 3,4,5, . . .

DHR sectors: σj,k, j = 0,1, . . . , m − 2, k =

0,1, . . . , m − 1, σj,k = σm−2−j,m−1−k (m(m −
1)/2 irreducible DHR sectors).

Consider the following sequence of commuting

squares

End(AidA) ⊂ End(Aσ1,0A) ⊂ End(Aσ2
1,0A) · · ·

∩ ∩ ∩
End(BιA) ⊂ End(Bισ1,0A) ⊂ End(Bισ2

1,0A) · · ·

Bratteli diagram of the second row → A-D-E

Dynkin diagram with Coxeter number m, ver-

tex v1



σ0,1 instead of σ1,0 → graph G2 Coxeter num-

ber m, vertex v2.

Thm. The quadruple (G1, [v1], G2, [v2]) gives a

complete invariant for irreducible extensions of

nets Virc, and an arbitrary quadruple, subject

to the conditions on the Coxeter numbers as

above, arises as an invariant of some extension.



ABC: Algebraic Boundary CFT. H.K. Rehren, L.

M+ ≡ {(t, x) ∈ R2 : x > 0}

Chiral net A −→ two local nets on double-cones

of M+

1) trivial boundary CFT

O → A+(O) := A(I) ∨ A(J)

2) its dual

O → Ad
+(O) := A(L) ∩ A(K)′

(
= A+(O′)′

)

Ad is local and A+(O) ⊂ Ad
+(O) is the “two-

interval subfactor”.

Def. A boundary CFT (BCFT) associated

with A is a local, isotonous net

O → B+(O)



on double-cones of M+, of vN algebras on a

fixed Hilbert space HB s.t.

(i) ∃ unitary, pos. energy rep. U of the cover-

ing G = M̃öb s.t.

U(g)B+(O)U(g)∗ = B+(gO)

“within M+” .

(ii) ∃ rep. π of A on HB such that B+(O)

contains π(A+(O)), and

U(g)π(A+(O))U(g)∗ = π(A+(gO))

(iii) “Joint irreducibility”: ∀ O, B+(O)∨π(A+)′′

is irreducible on HB.

Dual net:

Bd
+(O) = B+(O′)′ ≡ B+(O<)′ ∩ B+(O>)′.

B+(O<), B+(O>) vN algebras of wedges.



Prop. Wedge duality:

Bd
+(O) := B+(O′

>) ∩ B+(O′
<).

⇒ Bd
+ is local

Shall assume A is completely rational

The non-local chiral net associated with a BCFT.

A boundary CFT O → B+(O) generates a chi-

ral net I → Bgen(I) (the associated boundary

net) on HB, by

Bgen(I) :=
∨

O⊂WL

B+(O) ≡ B+(WL)

where WL is the left wedge spanned by I.

Prop. (i) The boundary net Bgen generated

from B+ is isotonous, and it is covariant:

U(g)Bgen(I)U(g)∗ = Bgen(gI)



whenever I ⊂ R, gI ⊂ R

π(A(I)) ⊂ Bgen(I) ⊂ π(A(I′))′.

(ii) There is a consistent family of vacuum-

preserving expectations EI : Bgen(I) → A(I).

(iii) The local subfactors π(A(I)) ⊂ Bgen(I)

are irreducible and have finite index. The index

is independent of I.

In general, the boundary net Bgen is a non-

local.

Prop. If B+ is relatively local with respect to

π(Ad
+), then Bgen = A, and B+ lies between

A+ and Ad
+.

By the definition of the boundary net B and

locality of B+, we obviously have B+(O) ⊂



Bgen(L) ∩ Bgen(K)′. This suggests the follow-
ing definition of a local boundary CFT induced
by a given (possibly non-local) chiral net:

Def. If I → B(I) is an irreducible chiral ex-
tension of I → A(I) (possibly non-local, but
relatively local with respect to A), then the
induced net is defined by

O → Bind
+ (O) := B(L) ∩ B(K)′.

Prop. Bind is a boundary CFT associated with
A (special case B = A: Bind = Adual

+ )

gen ◦ ind = id, ind ◦ gen = dual

⇒ dual ◦ ind = ind and dual ◦ dual = dual

Every induced net Bind
+ is self-dual (Haag dual).

Classif. Haag dual ABC on A, c < 1

�
Classif. non-local chiral extension of A, c < 1


