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Part I: General motivations and an in-
dex theorem

Ingredients for QFT analysis. Two paths from

the finite-dimensional classical calculus to QFT:

Classical, finite dim. −→ Variational calculus⏐⏐⏐�
⏐⏐⏐�

Quantum, finite dim. −→ Quantum Field Th.

Ordinary manifolds → variational calculus did

not require a new calculus; e.g. derivative

makes sense replacing points by functions.

Classical → quantum mechanics does require a

new structure (noncommutativity) and a new

calculus.



Standard quantization:

functions → selfadjoint operators

Poisson brackets → commutators

xh → Ph

−i
∂

∂xh
→ Qh

position and momentum with Heisenberg com-

mutation relations [Ph, Qk] = iδhkI.

Connes quantized, finite-dimensional calculus:

CLASSICAL QUANTUM
Variable Operator
Differential [F, ·]
Integral

∫
− (Dixmier trace)

Infinitesimal Compact operator
· · · · · ·

Concerning Quantum Field Theory, we shall

consider the underlying structure illustrated in

the following table:



Non-trivial map

points −→ fields ,

(second quantization functor), cf. the multi-

plicative structure of the index.

Superselection sectors as QFT analogs of

elliptic operator. Atiyah–Singer index thm:

analytic index(D) = geom.–topol. index(D)

D elliptic operator.

Analytic index = Fredholm index, integer!

Geometric index: invariant under deformations.

Major consequence: integrality of the geomet-

ical index.

Operator Algebras: proper noncommutative set-

ting for measure theory, topology and geome-

try.



QFT proper noncommuative setting with

infinitely many degrees of freedom.

Fredholm linear operators → End(M)

Elliptic operators → Localized endomorphisms

Fredholm index → Jones index/DHR dimension

Geometric index → ???

look geometric counterparts of index.

NC manifold: net

O → A(O) .

Endomorphism ρ localized O0 is local

ρ(A(O)) ⊂ A(O), O ⊃ O0,

cf. locality characterization of differential op-

erators.

Roberts cohomology : geometrical description

of the superselection structure of A, non-abelian



cohomology ring H1
R(A). How to get dimen-

sion?

Consider only localized unitary cocycles asso-

ciated with translations H1
τ (A) which describes

the covariant superselection sectors. Denoting

by SKMS the set of extremal KMS states for

the time evolution, at inverse temperature β,

satisfying Haag duality, we have a pairing

SKMS×H1
τ (A) � ϕ×[u] → 〈ϕ, [u]〉 =

∫
u(iβ)dϕ ∈ R

where
∫
udϕ ≡ ϕ(u).

QFT index theorem.

Let V be a d+1 dimensional globally hyperbolic

spacetime manifold with a bifurcate Killing hori-

zon and R a “wedge” of V (Kay-Wald setting).

Typical examples: Schwartzschild ⊂ Schwartzschild-

Kruskal, Rindler ⊂ Minkowski.



κ = κ(R) be the surface gravity

A(O) local von Neumann algebras with usual

properties. Restriction to the horizon is a Möb

covariant (Wiesbrock, Summers, Verch, Guido,

Roberts, R.L.) and expected uniquely confor-

mal (Weiner, Carpi)

ϕ (KMS) Hartle-Hawking state (often unique

KMS for Killing evolution). Hawking temper-

ature β−1 = κ(R)/2π

ρ and σ endomorphisms localized on the hori-

zon with KMS states ϕρ, ϕσ

dF ≡ 1
2(F (ϕρ|ϕσ) + F (ϕρ̄|ϕσ̄)) incremental free

energy (can be defined!), then

log d(ρ) − log d(σ) =
2π

κ(R)
dF

analytical index = geometric index



Part II: Topological sectors

Diff(S1) and its covers. Diff(S1) = smooth

oriented diffeomorphisms of S1. The Lie al-

gebra of Diff(S1) is Vect(S1) The Virasoro al-

gebra is the (complexification of) the unique,

non-trivial one-dim. central extension of Vect(S1).

Generators:

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 − m)δm,−n

and [Ln, c] = 0.

Diff(n)(S1) = n−cover of Diff(S1). Set for a

fixed n > 0

L
(n)
±m ≡ 1

n
L±mn ,

L
(n)
0 ≡ 1

n
L0 +

c

24

(n2 − 1)

n
.

The map {
Lm 	→ L

(n)
m

c 	→ nc ,



gives an embedding of the Virasoro algebra
into itself. There corresponds an embedding
of Diff(n)(S1): There is a unique continuous
isomorphism M(n) of Diff(n)(S1) into Diff(S1)
such that for all g ∈ Diff(n)(S1) the following
diagram commutes

S1 M
(n)
g−−−→ S1

zn

⏐⏐⏐�
⏐⏐⏐�zn

S1
g

−→ S1

i.e. M
(n)
g (z)n = g(zn) for all z ∈ S1. g ∈

Diff(S1) corresponds to g.

Conformal nets on S1. Let A be a conformal
net on S1.

U (projective) rep. of Diff(S1). Given n ∈ N,
projective unitary representation U(n) of Diff(n)(S1)

U(n) ≡ U · M(n) .

central charge c → central charge nc.



Topological sectors and an index theorem

ζ ∈ S1 and

h : S1
� {ζ} 
 R → S1

smooth injective map which is smooth also at

±∞, i.e. ∃ limz→ζ±
dnh
dzn ∀n.

I ∈ I, ζ /∈ I, set

Φ(ζ)
h,I ≡ AdU(k) ,

k ∈ Diff(S1) and k(z) = h(z) for all z ∈ I

Φ(ζ)
h,I does not depend on k ∈ Diff(S1)

Φ(ζ)
h : I 	→ Φ(ζ)

h,I

is well defined (soliton) rep. of A0 ≡ A � R.

Now f smooth, locally injective map

f : S1 → S1, degf = n ≥ 1.



ζ ∈ S1 → n right inverses hi, i = 0,1, . . . n − 1,

for f ;

hi : S1
� {ζ} → S1, f(hi(z)) = z,

(smooth at ±∞). Order hi e.g. counterclock-

wise

Example. f(z) = zn, hi(z) = n
√

z (n choices)

We get a soliton π
(ζ)
f of A0 ⊗A0 ⊗ · · · ⊗ A0

π
(ζ)
f,I ≡ χI · (Φ(ζ)

h0,I ⊗ Φ(ζ)
h1,I ⊗ · · · ⊗ Φ(ζ)

hn−1,I)

χI : A(I0)⊗· · ·⊗A(In−1) → A(I0)∨· · ·∨A(In−1)

(split property), Ik ≡ hk(I).

Reordering the hi’s →

πf,p = πf · βp

• degf0 = degf =⇒ πf0 
 πf,p (some p ∈ Sn)



• πf,p depends only on degf and p up to unitary

equivalence.

• Index(πf) = µn−1
A .

• The conjugate of πf is given by

π̄f = πf̄,p

where f̄(z) ≡ f(z̄) and p : m 	→ −m in Zn.

Set

τf ≡ π
(ζ)
f � (A⊗A · · · ⊗ A)Zn

is DHR representation independent of ζ up to

unitary equivalence.

Thm. (Xu, L.) (a): τf depends only on n =

degf up to unitary equivalence.

(b): τf is diffeomorphism covariant; projective

unitary representation U(n) = U · M(n)



(c): Index(τf) = n2µn−1
A

(d): τf direct sum of n irreducibles

τ
(0)
f , τ

(1)
f , . . . , τ

(n−1)
f

(e):

spin(τ(i)
f ) =

i

n
+

n2 − 1

24n
c ,

Index(τ(i)
f ) = µn−1

A ,

Some consequences

Rationality implies modularity

Split & µA < ∞ imply strong additivity

Sectors with infinite statistics

Dichotomy rational/uncountably many sectors

Fusion for cyclic/permutation orbifold (Kac,
Xu, L.)



Example Let A be the local conformal net on

S1 associated with the U(1)-current algebra.

In the real line picture A is given by

A(I) ≡ {W (f) : f ∈ C∞
R

(R), suppf ⊂ I}′′

associated with the vacuum state ω

ω(W (f)) ≡ e−||f ||2, ||f ||2 ≡
∫ ∞

0
|f̃(p)|2pdp

{αq, q ∈ R} Buchholz-Mack-Totodorovsectors

αq(W (f)) ≡ e2i
∫

FfW (f), F ∈ C∞,
∫

F = q .

Now consider A⊗A. irreducible sectors of A⊗A
are αq ⊗ αq′, index = 1.

Yet, the index 2 subnet (A⊗A)flip has an irre-

ducible sector with infinite index, as A is not

completely rational. (compare with Freden-

hagen sectors).

Compare: in higher dimension mass gap =⇒
finite index (Buchholz-Fredenagen).



Part III: Noncommutative spectral in-
variants

Bekenstein formula. The entropy S of a

black hole is proportional to the area A of its

horizon

S = A/4

Note: S is proportional to the area, not to the

volume as a naive microscopic interpretation of

entropy would suggest (logarithmic counting

of possible states).

This dimensional reduction has led to the holo-

graphic principle by t’Hooft, Susskind, . . .

The horizon is not a physical boundary, but

a submanifold where coordinates pick critical

values → conformal symmetries



The proportionality factor 1/4 is fixed by Hawk-

ing temperature (quantum effect).

Discretization of the horizon (Bekenstein): hori-

zon is made of cells or area �2 and k degrees
of freedom (� = Planck length):

A = n�2,

Degrees of freedom = kn,

S = Cn log k = C
A

�2
log k,

dS = C logk

Conclusion.

Black hole entropy

↓
Two-dimensional conformal quantum field theory

with a “fuzzy” point of view

Legenda: Fuzzy = noncommutative geometri-
cal



Weyl’s theorem and ellipticity. M compact

oriented Riemann manifold, ∆ Laplace opera-

tor on L2(M). The eigenvalues of M can be

thought as “resonant frequencies” of M and

capture most of the geometry of M (M. Kac).

Weyl theorem: heat kernel expansion as t →
0+

Tr(e−t∆) ∼ 1

(4πt)n/2
(a0 + a1t + · · · )

or, by Tauberian theorems, asymptotic density

distribution of eigenvalues of ∆ as λ → +∞,

N(λ) ∼ vol(M)

(4π)n/2Γ((n/2) + 1)
λn/2

N(λ) eigenvalues ≤ λ, Γ Euler Gamma-function.

The spectral invariants n and a0, a1, . . . encode

geometric information and in particular

a0 = vol(M), a1 =
1

6

∫
M

κ(m)dvol(m),



κ scalar curvature. n = 2: a1 is proportional to

the Euler characteristic = 1
2π

∫
M κ(m)dvol(m)

by Gauss-Bonnet theorem.

Infinite dim. quantum systems; log-ellipticity.

h positive selfadjoint operator on Hilbert space

H and H the Fermi second quantization of h

on the exponential of H. Then as t → 0+:

logTr(e−tH)

Tr(e−th)
=

Tr log(1 + e−th)

Tr(e−th)
= O(t)

A positive linear operator H on a Hilbert space

is log-elliptic (or QFT elliptic) if there exists

n > 0 and ai ∈ R, a0 �= 0, such that

logTr(e−tH) ∼ 1

tn/2
(a0 + a1t + · · · ) as t → 0+

n ≡ dimension of H, ai ≡ ith spectral invariant

of H. Thus

finitely many degrees of freedom → ellipticity

infinitely many degrees of freedom → log-ellipticity



and log-ellipticity captures the spectral invari-
ants of the existing one-particle Hamiltonian.

Modularity and log-ellipticity of A. A con-
formal net A is two-dimensional log-elliptic if
its conformal Hamiltonian L0 is log-elliptic with
dimension 2, i.e.

logTr(e−2πtL0) ∼ 1

t
(a0+a1t+ · · · ) as t → 0+

log-ellipticity is essentially the nuclearity con-
dition of Buchholz and Wichmann (and we fix
the dimension).

With ρ rep. of A, set L0,ρ conf. Hamiltonian
of ρ,

χρ(τ) = Tr
(
e2πiτ(L0,ρ−c/24)

)
Im τ > 0.

specialized character, c the central charge.

A is modular if µA < ∞ and

χρ(−1/τ) =
∑
ν

Sρ,νχν(τ),

χρ(τ + 1) =
∑
ν

Tρ,νχν(τ).



with S, T the (algebraically defined) Verlinde-
Rehren matrices generating a representation of
SL(2, Z). One has:

• Modularity =⇒ complete rationality

• Modularity holds in all computed rational
case, e.g. SU(N)k-models

• A modular, B ⊃ A irreducible extension =⇒
B modular.

• All conformal nets with central charge c < 1
are modular.

Modular nets as NC manifolds (∞ degrees
of freedom)

2-dim. cpt manifold M conformal net A
supp(f) ⊂ I x ∈ A(I)
Laplacian ∆ conf. Hamiltonian L0
∆ elliptic L0 log-elliptic
area vol(M) NC area a0(2πL0)
Euler charact. χ(M) NC Euler char. 12a1



Thm. (Kawahigashi, L.) A is modular. The

following asymptotic formula holds as t → 0+:

logTr(e−2πtL0) ∼ πc

12

1

t
− 1

2
logµA − πc

12
t

Thus A is two-dimensional log-elliptic with non-

commutative area a0 = 2πc/24

In any representation ρ, as t → 0+:

logTr(e−2πtL0,ρ) ∼ πc

12

1

t
+

1

2
log

d(ρ)2

µA
− πc

12
t

Note: spectral density L0 → normalized index

log d(ρ) − 1

2
logµA = lim

t→0+

d

dt
t logTr(e−tL0,ρ) .

Conjecture 1:

A c. rational ⇔ lim
t→0+

d

dt
t logTr(e−tL0) > −∞

Conjecture 2:

A modular ⇔ A completely rational



By Kohlbecker’s Tauberian theorem as λ → ∞

logN(λ) ∼ 2π

√
c

6
λ

where N(λ) is the number of eigenvalues (with
multiplicity) of L0,ρ that are ≤ λ. (Partial ver-
sion of Cardy’s formula on the 2-dim. Minkowski
space).

Entropy. From the physics viewpoint it is nat-
ural to define SA, the entropy of A, as the lead-
ing coefficient of the expansion of logTr(e−2πtL0),
thus

a0 = SA ,

a1, a2, · · · = higher order corrections to SA .

By definition, the entropy is proportional to the
noncommutative area: it is just a matter of
reading the same formula from different point
of views. Meaning of spectral invariants:

Inv. Value Geometry Physics
a0 πc/12 NC area Entropy
a1 −1

2
logµA NC Euler charact. 1st order entr.

a2 −πc/12 2nd spectral invariant 2nd order entr.



a2 = −a0, consequence of modular symmetry.

Incremental free energy. A modular implies

a strong Kac-Wakimoto formula

logTr(e−2πtL0,ρ)− logTr(e−2πtL0,σ)

= log d(ρ) − logd(σ) + o(t)

cf. QFT index theorem: here true difference

of free energy

dF =
2π

κ

(
log d(ρ) − log d(σ)

)
=

π

6κ

(
χσ − χρ

)

Relation to black hole entropy. I. Micro-

scopic derivation of black hole entropy and its

relation to conformal symmetries and central

charge is discussed Strominger, Vafa and oth-

ers. We illustrate our discussion by the work of

Carlip. Yet we use here only the value of the

central charge and not Cardy’s formula nor the

boundary term of the energy.



For a black hole in the above class considered
by Carlip we have

SA = A/4

where A is the area of the black hole horizon.
Thus

Entropy
physics−−−−−→ a0

geometry←−−−−−−− 4π · NC area

modular

⏐⏐⏐�nets

2πc/12

black hole

⏐⏐⏐�models

A/4

The mean free energy (topological incre-
ment of the second spectral invariant). A
conformal net in any representation. We di-
vide S1 into n equally spaced cells, namely we
consider the n-interval En ≡ n√

S+, S+ upper
semicircle. Each interval Ik contains minimal
information (as the cells of Planck length).

Two canonical evolution associated with En

corresponding to the rotations on the full S1:



First: rescaled rotations R(1
nϑ), rescaled con-

formal Hamiltonian L̂
(n)
0 ≡ 1

nL0

Second: associated with U(n) (rep. of Diff(n)(S1)),

Hamiltonian L
(n)
0 = 1

nL0 + c
24

(n2−1)
n , takes care

of “boundary effects”. The geometrical com-
plexity should be encoded in the difference be-
tween the two terms.

Associated free energy: difference of the free
energy given the corresponding partition func-
tions at infinite temperature:

Fn ≡ t−1 logTr(e−t2πL
(n)
0 )−t−1 logTr(e−t2πL̂

(n)
0 )

thus

Fn =
c

24

(n2 − 1)

n
2π

hence: model independent formula for the mean
free energy associated to the “discretization of
S1”.

Fmean = 2π
c

24



Note:

a2(2πL
(n)
0 )− a2(2πL̂

(n)
0 ) = Fn

NC geometrical meaning of Fmean.

Two-dimensional conformal QFT, both chiral

components contribute to the topological en-

tropy and physical topological entropy dupli-

cates:

Fmean = 2π
c

12

Relation to black hole entropy. II As above

Fmean = A/4

model independent, no modularity assumption.

The modular group of a n-interval von Neu-

mann algebra. Model independent, in arbi-

trary representation, of Schroer and Wiesbrock

formula for U(1)-current algebra.



E ≡ n
√

I symmetric n-interval of S1, E = {z ∈
S1 : zn ∈ I}. I0, I1, · · · In−1 n connected com-

ponents of E, Ik = R(2πk/n)I0. A split confor-

mal net on S1, in a irreducible representation.

Split isomorphism:

χE : A(I0)∨· · ·∨A(In−1) → A(I0)⊗· · ·⊗A(In−1) .

Rotation invariant product state ϕ on A(E):

ϕ ≡ (ϕ0 ⊗ ϕ1 ⊗ · · · ⊗ ϕn−1) · χE ,

ϕk normal faithful state on A(Ik) and ϕk =

ϕ0 · AdU(R(2kπ/n)).

Φk : A(Ik) → A(I) isomorphism associated

with zn, namely

Φk(x) ≡ U(hk)xU(hk)
∗, x ∈ A(Ik)

where hk ∈ Diff(S1) s.t. hk(z) = zn, z ∈ Ik.

ϕk ≡ ωI · Φk, where ω vacuum state (or KMS

state), ϕE the associated rotation invariant



product state on A(E). Then the modular

group σϕE is given by

σ
ϕE
t = AdU(n)(ΛI(−2πt))�A(E)

ΛI lift to Möb(n) of “dilation” of I.

indeed, with V (t) ≡ U(n)(ΛI(−2πt)),

AdV (t) �A(E)= σ
ϕE
t , AdV (−t) �A(E′)= σ

ϕE′
t

Index and entropy. Abstract mathematical

results concerning Jones index in the Kosaki

framework and Connes-Haagerup noncommu-

tative measure theory.

N1, N2 commuting factors on a Hilbert space

H, N1 ∨ N2 = B(H), i.e. M1 ≡ N ′
2 ⊃ N1, M2 ≡

N ′
1 ⊃ N2 irreducible subfactors

ϕi = (· ξi, ξi) state on Ni, ξi cycl. separ. for Ni



V (t) = e−itK a one-parameter unitary group

on H s.t.

AdV (t) �N1
= σ

ϕ1
t , AdV (−t) �N2

= σ
ϕ2
t ,

where σϕi is the modular group of (Ni, ϕi).

Thm. [M1 : N1] = (eKξ1, ξ1)(e
−Kξ2, ξ2)

If ∃ unitary U s.t. UN1U∗ = N2, ϕ2 = ϕ1 ·AdU

and UV (t)U∗ = V (−t), then

(eKξ1, ξ1) = (e−Kξ2, ξ2) = [M1 : N1]
1
2 ,

thus

K = − log
dϕ1 · ε1

dϕ2
+

1

2
log[M1 : N1]

where ε1 : M1 → N1 expectation (finite-index

case). Thus

(Kξ2, ξ2) = −(log
dϕ1 · ε1

dϕ2
ξ2, ξ2)+

1

2
log[M1 : N1]

= Araki entropy + Pimsner-Popa entropy.



Entropy and spectral invariants with the

proper Hamiltonian. We replace the confor-

mal Hamiltonian L0 with the “local” Hamilto-

nian

K1 ≡ i(L1 − L−1) ,

the generator of the one-parameter dilatation

unitary group associated with the upper semi-

circle S+.

Dynamics rotations dilations
Hamiltonian L0 K1
State ω ω�A(I)
Pos. energy L0 ≥ 0 KMS condition

Dilations satisfy the equilibrium condition at

Hawking temperature and are natural to be

considered.

We will now consider the “n-cell” dynamics

dilations −→ n-dilations



in analogy with the passage rotation → n-rotation

with the action of Diff(n)(S1) and compute

noncommutative spectral invariants in complete

generality.

A split local conformal net on S1, E ≡ En = n
√

I

and Kn the infinitesimal generator of V (n)(t) =

U(n)(ΛI(−2πt))

Kn ≡ i(L(n)
1 − L

(n)
−1 ) = i

n(Ln − L−n),

E′
n = n

√
I′. ϕEn = (·ξn, ξn) canonical rotation-

invariant product state on A(En). We have:

(e−2πKnξn, ξn) = d(ρ)µ
n−1
2

A

thus

log(e−
2πi
n (Ln−L−n)ξn, ξn)

= n−1
2 log(

∑
i

d(ρi)
2) + logd(ρ)

Let ϕ̂En = ϕEn · εEn the state on Â(En) ex-

tended by the expectation εEn : Â(En) → A(En).



Then

Kn = − 1

2π

(
log

(dϕ̂En

dϕE′
n

)
+ n−1

2 logµA + log d(ρ)
)

The quantity

Zn(t) ≡ (e−tKnξn, ξn)

is the geometric partition function associated

to the symmetric n-interval partition of S1,

thus

Fn,µ ≡ −t−1 logZn(t)|t=2π

= −n−1
4π logµA − 1

2π logd(ρ)

is the associated n-µ-free energy. Dividing by

the numbers of cells (intervals) we get mean

µ-free energy.

Fmean,µ = − 1
4π logµA

The 0th and 1st spectral invariants are then



defined by

a0,µ ≡ lim
n→∞

t logZn(t)

n
|t=2π

a1,µ ≡ lim
n→∞

d

dt

t logZn(t)

n
|t=2π

Note that − d
dt logZn(t) is the n-µ-energy Hn,µ

associated with Zn(t). Due to the thermody-

namical relation

Free energy = T · Entropy − Energy

where T is the temperature, we thus define the

mean n − µ-entropy by Sn,µ = t(Fn,µ + Hn,µ).

We have:

Sn,µ = S(ϕ̂En|ϕE′
n
)

Araki relative entropy.

We have the “local” spectral invariants⎧⎨
⎩ a0,µ = 1

2 logµA ,

a1,µ = −Smean,µ = logµA − lim
n→∞

1
nS(ϕ̂En|ϕE′

n
)



Final comment. It would be interesting to

relate our setting with Connes’ Noncommuta-

tive Geometry. A link should be possible in

a supersymmetric context, where cyclic coho-

mology appears. In this respect model analysis

with our point of view, in particular in the su-

persymmetric frame, may be of interest. Note

also that Connes’ spectral action concerns the

Hamiltonian spectral density behavior.


