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Things to discuss

I Prelude on black hole entropy

I Symmetry and supersymmetry

I Local conformal nets

I Modularity and asymptotic formulae

I Fermi and superconformal nets

I Neveu-Schwarz and Ramond representations

I Fredholm index and Jones index

I Noncommutative geometrization (in progress)



Prelude. Black hole entropy

Bekenstein: The entropy S of a black hole is proportional to the
area A of its horizon

S = A/4

I S is proportional to the area, not to the volume as a naive
microscopic interpretation of entropy would suggest
(logarithmic counting of possible states).

I This dimensional reduction has led to the holographic
principle by t’Hooft, Susskind, . . .

I The horizon is not a physical boundary, but a submanifold
where coordinates pick critical values → conformal symmetries

I The proportionality factor 1/4 is fixed by Hawking
temperature (quantum effect).



Black hole entropy
Discretization of the horizon (Bekenstein): horizon is made of cells
or area `2 and k degrees of freedom (` = Planck length):

A = n`2,

Degrees of freedom = kn,

S = Cn log k = C
A

`2
log k ,

dS = C log k

Conclusion.

Black hole entropy

↓
Two-dimensional conformal quantum field theory

with a “fuzzy” point of view

Legenda: Fuzzy = noncommutative geometrical



Symmetries in Physics

Spacetime symme-
tries
Lorentz,
Poincaré,. . .
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Gauge, . . .
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SUSY
Bose-Fermi

SUSY: H = Q2, Q odd operator, [·,Q] graded super-derivation
interchanging Boson and Fermions

Among consequences: Cancellation of some Higgs boson
divergence



Conformal and superconformal

I Low dimension, conformal → infinite dim. symmetry

I Low dimension, conformal + SUSY → Superconformal
symmetry (very stringent)



Three approaches to CFT

Vertex Algebras
(algebraic)
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Operator Algebras
(algebraic & ana-
lytic)

partial relations known



von Neumann algebras

H Hilbert space, B(H) ∗algebra of all bounded linear operators on
H.

weak topology. Ai → A weakly: (Aiξ, η)→ (Aξ, η).

Def. A von Neumann algebra M is a weakly closed non-degenerate
∗-subalgebra of B(H).

• von Neumann density thm. A ⊂ B(H) non-degenerate
∗-subalgebra

A− = A′′

where ′ denotes the commutant

A′ = {T ∈ B(H) : TA = AT ∀A ∈ A}

Double aspect, analytical and algebraic

M is a factor if its center M ∩M ′ = C.



The tensor category End(M)
M an infinite factor → End(M) is a tensor C ∗-category:

I Objects: End(M)

I Arrows: Hom(ρ, ρ′) ≡ {t ∈ M : tρ(x) = ρ′(x)t ∀x ∈ M}
I Tensor product of objects: ρ⊗ ρ′ = ρρ′

I Tensor product of arrows: σ, σ′ ∈ End(M), t ∈ Hom(ρ, ρ′),
s ∈ Hom(σ, σ′),

t ⊗ s ≡ tρ(s) = ρ′(s)t ∈ Hom(ρ⊗ σ, ρ′ ⊗ σ′)

I Conjugation: ∃ isometries v ∈ Hom(ι, ρρ̄) and v̄ ∈ Hom(ι, ρ̄ρ)
such that

(v̄∗ ⊗ 1ρ̄) · (1ρ̄ ⊗ v) ≡ v̄∗ρ̄(v) =
1

d

(v∗ ⊗ 1ρ) · (1ρ ⊗ v̄) ≡ v∗ρ(v̄) =
1

d

for some d > 0.



Dimension

The minimal d is the dimension d(ρ)

[M : ρ(M)] = d(ρ)2

(tensor categorical definition of the Jones index)

d(ρ1 ⊕ ρ2) = d(ρ1) + d(ρ2)

d(ρ1ρ2) = d(ρ1)d(ρ2)

d(ρ̄) = d(ρ)

End(M) is a “universal” tensor category



Local conformal nets
A local Möbius covariant net A on S1 is a map

I ∈ I → A(I ) ⊂ B(H)

I ≡ family of proper intervals of S1, that satisfies:

I A. Isotony. I1 ⊂ I2 =⇒ A(I1) ⊂ A(I2)

I B. Locality. I1 ∩ I2 = ∅ =⇒ [A(I1),A(I2)] = {0}
I C. Möbius covariance. ∃ unitary rep. U of the Möbius group

Möb on H such that

U(g)A(I )U(g)∗ = A(gI ), g ∈ Möb, I ∈ I.

I D. Positivity of the energy. Generator L0 of rotation subgroup
of U (conformal Hamiltonian) is positive.

I E. Existence of the vacuum. ∃! U-invariant vector Ω ∈ H
(vacuum vector), and Ω is cyclic for

∨
I∈I A(I ).



First consequences

I Irreducibility:
∨

I∈I A(I ) = B(H).

I Reeh-Schlieder theorem: Ω is cyclic and separating for each
A(I ).

I Bisognano-Wichmann property: Tomita-Takesaki modular
operator ∆I and conjugation JI of (A(I ),Ω), are

U(ΛI (2πt)) = ∆it
I , t ∈ R, dilations

U(rI ) = JI reflection

(Guido-L., Frölich-Gabbiani)

I Haag duality: A(I )′ = A(I ′)

I Factoriality: A(I ) is III1-factor

I Additivity: I ⊂ ∪i Ii =⇒ A(I ) ⊂ ∨iA(Ii ) (Fredenhagen,
Jorss).



Local conformal nets

Diff(S1) ≡ group of orientation-preserving smooth diffeomorphisms of S1.

Diff I (S1) ≡ {g ∈ Diff(S1) : g(t) = t ∀t ∈ I ′}.

A local conformal net A is a Möbius covariant net s.t.

F. Conformal covariance. ∃ a projective unitary representation U
of Diff(S1) on H extending the unitary representation of Möb s.t.

U(g)A(I )U(g)∗ = A(gI ), g ∈ Diff(S1),

U(g)xU(g)∗ = x , x ∈ A(I ), g ∈ Diff I ′(S1),

−→ unitary representation of the Virasoro algebra

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 −m)δm,−n

[Ln, c] = 0, L∗n = L−n.



Representations

A representation π of A on a Hilbert space H is a map

I ∈ I 7→ πI , normal rep. of A(I ) on B(H)

πĨ �A(I ) = πI , I ⊂ Ĩ

π is automatically diffeomorphism covariant: ∃ a projective, pos.
energy, unitary rep. Uπ of Diff(∞)(S1) s.t.

πgI (U(g)xU(g)∗) = Uπ(g)πI (x)Uπ(g)∗

for all I ∈ I, x ∈ A(I ), g ∈ Diff(∞)(S1) (Carpi & Weiner)

DHR argument: given I , there is an endomorphism of A localized
in I equivalent to π; namely ρ is a representation of A on the
vacuum Hilbert space H, unitarily equivalent to π, such that
ρI ′ = id �A(I ′).

• Rep(A) is a braided tensor category (DHR, FRS, L.)



Index-statistics theorem

DHR dimension d(ρ) =
√

Jones index Ind(ρ)

tensor category RepI (A)
full functor−−−−−−→
restriction

tensor category End(A(I ))



Complete rationality

I1, I2 intervals Ī1 ∩ Ī2 = ∅, E ≡ I1 ∪ I2.

µ-index : µA ≡ [A(E ′)′ : A(E )]

(Jones index). A conformal:

A completely rational
def
= A split & µA <∞

Thm. (Y. Kawahigashi, M. Müger, R.L.) A completely rational:
then

µA =
∑

i

d(ρi )
2

sum over all irreducible sectors. (F. Xu in SU(N) models);

• A(E ) ⊂ A(E ′)′ ∼ LR inclusion (quantum double);

• Representations form a modular tensor category (i.e.
non-degenerate braiding).



Weyl’s theorem

M compact oriented Riemann manifold, ∆ Laplace operator on
L2(M).

Theorem (Weyl)

Heat kernel expansion as t → 0+ :

Tr(e−t∆) ∼ 1

(4πt)n/2
(a0 + a1t + · · · )

The spectral invariants n and a0, a1, . . . encode geometric
information and in particular

a0 = vol(M), a1 =
1

6

∫
M
κ(m)dvol(m),

κ scalar curvature. n = 2: a1 is proportional to the Euler
characteristic = 1

2π

∫
M κ(m)dvol(m) by Gauss-Bonnet theorem.



Modularity
With ρ rep. of A, set L0,ρ conf. Hamiltonian of ρ,

χρ(τ) = Tr
(
e2πiτ(L0,ρ−c/24)

)
Im τ > 0.

specialized character, c the central charge.
A is modular if µA <∞ and

χρ(−1/τ) =
∑
ν

Sρ,νχν(τ),

χρ(τ + 1) =
∑
ν

Tρ,νχν(τ).

with S ,T the (algebraically defined) Kac-Peterson Rehren matrices
generating a representation of SL(2,Z). One has:

• Modularity =⇒ complete rationality

• Modularity holds in all computed rational case, e.g.
SU(N)k -models

• A modular, B ⊃ A irreducible extension =⇒ B modular.

• All conformal nets with central charge c < 1 are modular.



Asymptotics

A modular. The following asymptotic formula holds as t → 0+:

log Tr(e−2πtL0) ∼ πc

12

1

t
− 1

2
logµA −

πc

12
t

In any representation ρ, as t → 0+:

log Tr(e−2πtL0,ρ) ∼ πc

12

1

t
+

1

2
log

d(ρ)2

µA
− πc

12
t



Modular nets as NC manifolds (∞ degrees of freedom)

2-dim. cpt manifold M conformal net A
supp(f ) ⊂ I x ∈ A(I )
Laplacian ∆ conf. Hamiltonian L0

∆ elliptic L0 log-elliptic
area vol(M) NC area a0(2πL0)
Euler charact. χ(M) NC Euler char. 12a1

Entropy. Physics and geometric viewpoints:

Inv. Value Geometry Physics

a0 πc/12 NC area Entropy
a1 − 1

2
logµA NC Euler charact. 1st order entr.

a2 −πc/12 2nd spectral invariant 2nd order entr.

Rem. Physical literature: arguments for 2πc/12 = A/4.

Question: What can we say for SUSY? (Dirac operator case)



McKean-Singer formula

Γ be a selfadjoint unitary on a Hilbert space H, thus
H = H+ ⊕H− is graded.

Q selfadjoint odd operator: ΓQΓ−1 = −Q or

Q =

[
0 Q−

Q+ 0

]
Trs = Tr(Γ ·) the supertrace.

If e−tQ2
is trace class then Trs(e−tQ2

) is an integer independent of
t:

Trs(e−tQ2
) = ind(Q+) ∀t > 0

ind(Q+) ≡ Dim ker(Q+)− Dim ker(Q∗+) is the Fredholm index of
Q+.



Fermi conformal nets
A is a Fermi net if locality is replaced by twisted locality:
∃ self-adjoint unitary Γ, ΓΩ = Ω, ΓA(I )Γ = A(I ); if I1 ∩ I2 = ∅

[x , y ] = 0, x ∈ A(I1), y ∈ A(I2) .

[x , y ] is the graded commutator w.r.t. γ = AdΓ: if x , y are
homogeneous

[x , y ] ≡ xy − (−1)∂x ·∂y yx

The Bose subnet Ab ≡ Aγ of degree zero elements is local. Setting

Z ≡ 1− iΓ

1− i

then the unitary Z fixes Ω and

A(I ′) ⊂ ZA(I )′Z ∗

(indeed A(I ′) = ZA(I )′Z ∗ twisted duality). Spin-statistics:

U(2π) = Γ .

Therefore, in the Fermi case, U is representation of Diff(2)(S1).



Nets on a cover of S1

A conformal net A on S1(n) is a isotone map

I ∈ I(n) 7→ A(I ) ⊂ B(H)

with a projective unitary, positive energy representation U of
Diff(∞)(S1) on H with

U(g)A(I )U(g)−1 = A(ġ I ), I ∈ I(n), g ∈ Diff(∞)(S1)

conformal net A on S1 promotion−−−−−−→ conformal net A(n) on S1(n)



Representations of a Fermi net

Let A be a Fermi net on S1. A general representation λ of A is a
representation the cover net of A(∞) such that λ|Ab

is a DHR
representation Ab.

λ is indeed a representation of A(2). The following alternative
holds:

(a) λ is a DHR representation of A. Equivalently Uλb
(2π) is not

a scalar.

(b) λ is the restriction of a representation of A(2) and λ is not a
DHR representation of A. Equivalently Uλb

(2π) is a scalar.

Case (a): Neveu-Schwarz representation
Case (b): Ramond representation



Representations of the Bose subnets

ρ DHR representation of Ab: we have
m(σ, ρ) ≡ ε(ρ, σ)ε(σ, ρ) = ±1.
ρ is σ-Bose if m(σ, ρ) = 1, σ-Fermi if m(σ, ρ) = −1.

id |Ab
≡ id ⊕ σ, ν DHR irreducible rep. of Ab:

ν is σ-Bose⇔ αν is Neveu-Schwarz

ν is σ-Fermi⇔ αν is Ramond



Fermi nets and modularity
λ graded irreducible general rep. of the Fermi modular conformal
net A.
Hλ = Hλ,+ ⊕Hλ,− graded by Γλand

Hλ ' L0,ρ ⊕ L0,ρ′

where λAb
= ρ⊕ ρ′

Trs(e−tHλ) = Tr(e−tL0,ρ)− Tr(e−tL0,ρ′ )

We also set

H̃λ ≡ Hλ − c/24, L̃0,ρ ≡ L0,ρ − c/24 . . .

Then Sρ,ν = ±Sρ′,ν according ν is s-Bose/Fermi.

Trs(e−2πtH̃λ) =
∑
ν

Sρ,ν Tr(e−2πL̃ρ,ν/t)−
∑
ν

Sρ′,ν Tr(e−2πL̃ρ′,ν/t)

=
∑
ν

(Sρ,ν − Sρ′,ν) Tr(e−2πL̃0,ν/t)

=2
∑

ν Ramond

Sρ,ν Tr(e−2πL̃0,ν/t)



Super-Virasoro algebra

The super-Virasoro algebra governs the superconformal invariance:

local conformal↔ Virasoro

superconformal↔ super-Virasoro

Two super-Virasoro algebras: They are the super-Lie algebras
generated by Ln, n ∈ Z (even), Gr (odd), and c (central):

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 −m)δm+n,0

[Lm,Gr ] = (
m

2
− r)Gm+r

[Gr ,Gs ] = 2Lr+s +
c

3
(r 2 − 1

4
)δr+s,0

Neveu-Schwarz case: r ∈ Z + 1/2, Ramond case: r ∈ Z.

Note: G 2
0 = 2L0 − c/12 in Ramond sectors



FQS: admissible values for central charge c and lowest
weight h

Either c ≥ 3/2, h ≥ 0 (h ≥ c/24 in the Ramond case) or

c =
3

2

(
1− 8

m(m + 2)

)
, m = 2, 3, . . .

and

h = hp,q(c) ≡ [(m + 2)p −mq]2 − 4

8m(m + 2)
+
ε

8

where p = 1, 2, . . . ,m− 1, q = 1, 2, . . . ,m + 1 and p− q is even or
odd corresponding to the Neveu-Schwarz case (ε = 0) or Ramond
case (ε = 1/2).

Neveu-Schwarz algebra has a vacuum representation, the Ramond
algebra has no vacuum representation.



Super-Virasoro nets
c an admissible value, h = 0. Bose and Fermi stress-energy tensors:

TB(z) =
∑
n

z−n−2Ln

TF (z) =
1

2

∑
r

z−r−3/2Gr

in any Neveu-Schwarz/Ramond rep. and we have:

[TF (z1),TF (z2)] =
1

2
z−1

1 TF (z1)δ(w)+z−3
1 w−

3
2

c

12

(
w 2δ′′(w)+

3

4
δ(w)

)
(w ≡ z2/z1). In the Neveu-Schwarz vacuum rep. define:

SVir(I ) ≡ {e iTB(f1), e iTF (f2) : f1, f2 ∈ C∞(S1) real, suppf1, suppf2 ⊂ I}′′

Neveu-Schwarz rep. of SVir net ←→ rep. of Neveu-Schwarz algebra
Ramond rep. of SVir net ←→ rep. of Ramond algebra

SVirb is modular (F. Xu)
SVirb =

(
SU(2)N+2

)′ ∩ (SU(2)2 ⊗ SU(2)N

)
(GKO)



Supersymmetric representations
A general representation λ of the Fermi conformal net A is
supersymmetric if λ is graded

λ(γ(x)) = Γλλ(x)Γ∗λ

and the conformal Hamiltonian Hλ satisfies

H̃λ ≡ Hλ − c/24 = Q2
λ

where Qλ is a selfadjoint odd w.r.t. Γλ.

Then
Hλ ≥ c/24

McKean-Singer lemma:

Trs(e−t(Hλ−c/24)) = dim ker(Hλ − c/24) ,

the multiplicity of the lowest eigenvalue c/24 of Hλ.

Super-Virasoro net:

λ supersymmetric⇒ λ Ramond (irr. iff h = c/24 i.e. minimal)



SUSY, Fredholm and Jones index
Assume Ab modular λ|Ab

= ρ⊕ ρ′.

Trs(e−2πtH̃λ) = 2
∑

ν Ramond

Sρ,ν Tr(e−2πL̃0,ν/t) .

If λ is supersymmetric then

Trs(e−2πtH̃λ) = 2
∑

ν Ramond

Sρ,νnull(ν, c/24)

on the other hand

Trs(e−2πtH̃λ) = ind(Qλ+) .

Therefore we have

ind(Qλ+) = 2
∑

ν Ramond

Sρ,νnull(ν, c/24)

then, writing Rehren definition of the S matrix, we have

ind(Qλ+) =
d(ρ)
√
µA

∑
ν Ramond

K (ρ, ν)d(ν)null(ν, c/24)

The Fredholm index of the supercharge operator Qλ+ and the
Jones index both appear



Some consequences

I An identity for the S matrix:∑
ν Ramond

Sρ,νd(ν) = 0

I If ind(Qλ+) 6= 0 there exists a Ramond sector ν such that
c/24 is an eigenvalue of L0,ν .

I Suppose that ρ is the only Ramond sector with lowest
eigenvalue c/24 modulo integers. Then

Sρ,ρ =
d(ρ)2

√
µAb

K (ρ, ρ) =
1

2
.



Further structure. Topological embedding of
super-Virasoro algebras and nets

Proposition

For each integer k ∈ N consider the linear map ϕ(k) determined by

Lm 7→ L
(k)
m ≡ 1

k
Lkm , m 6= 0 ,

L0 7→ L
(k)
0 ≡ 1

k
L0 +

c

24

(k2 − 1)

k

Gr 7→ G
(k)
r ≡ 1√

k
Gkr

c 7→ kc

If k is even, ϕ(k) is an isomorphic embedding of NS into R and of
R into R. If k is odd, ϕ(k) is an isomorphic embedding of NS into
NS and of R into R.



Some consequences

I The double cover SVir
(2)
2c of SVir2c is isomorphic to R2c

(ramond net).

I Topological sectors give new class of non-trivial
supersymmetric representations

τf · ρ⊗ · · · ⊗ ρ|(A⊗···⊗A)Zk

τf = top. sector (Xu, L.), A = SVir.



Classification (S. Carpi, Y. Kawahigashi, R. L.)

Complete list of superconformal nets, i.e. Fermi extensions of the

super-Virasoro net, with c = 3
2

(
1− 8

m(m+2)

)
1. The super Virasoro net: (Am−1,Am+1).

2. Index 2 extensions of the above: (A4m′−1,D2m′+2), m = 4m′

and (D2m′+2,A4m′+3), m = 4m′ + 2.

3. Six exceptionals: (A9,E6), (E6,A13), (A27,E8), (E8,A31),
(D6,E6), (E6,D8).



Work in progress (S. Carpi, R. Hillier, R.L.)

Relation with the Noncommutative Geometrical framework of A.
Connes.

A supersymmetric representation ρ of a Fermi net A gives rise to a
θ-summable spectral triple if the superderivation δ

δ(a) ≡ [a,Q]

has a dense domain in the representation ρ.
Then the JLO cocycle (Chern character) on the Bose algebra

τρn (a0, a1, . . . , an) ≡

(−1)−
n
2

∫
0≤t1≤···≤tn≤1

Trs

(
e−Hρa0αit1(δa1)αit2(δa2) . . . αitn(δan)

)
dt1dt2 . . . dtn

(n even) is entire cyclic coclycle



Noncommutative geometrization

We want to associate to each supersymmetric sector the above
Chern character

ρ→ τρ

• The supersymmetric Ramond sectors of SVir give rise to
θ-summable spectral triple (δ has a dense domain)

For the super-Virasoro net the index map

ρ→
∑

τρn (1, 1, . . . , 1) = Trs(e−tHρ)

for Ramond sectors is given by

Index(ρh=c/24) = 1, Index(ρh 6=c/24) = 0
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