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Things to discuss

I Inner functions and Beurling-Lax theorem

I Real Hilbert subspaces

I Algebraic Boundary Conformal Field Theory (K.H. Rehren,
R.L.)

I Models of Boundary QFT (E. Witten, R.L.)



Inner functions

D ≡ {z ∈ C : |z | < 1} unit disk, H∞(D) Hardy space.

ϕ ∈ H∞(D)⇒ ∃ϕ(e iθ) ≡ limr→1− ϕ(re iθ) a.e. on ∂D

ϕ ∈ H∞(D) is an inner function if |ϕ(z)| = 1 for almost all
z ∈ ∂D.

Examples:
B0(z) ≡ z , or its Möbius transform:

Ba(z) = |a|
a

z−a
1−āz (Blaschke factor),

B(z) ≡
∞∏

n=1

Ban(z) (Blaschke product),

an ∈ D,
∑∞

n=1(1− |an|) <∞.



B(z) has zeros exactly at {an}, with multiplicity.
If an inner function ϕ has no zeros on D, then ϕ is called a
singular inner function.
ϕ is an inner function iff (uniquely)

ϕ(z) = αB(z) exp

(
−
∫ π

−π

e iθ + z

e iθ − z
dµ(e iθ)

)
,

where µ is a positive, Lebesgue singular measure on ∂D, B(z) is a
Blaschke product and α is a constant with |α| = 1. All the zeros of
ϕ come from B so ϕ is singular if and only if B is the identity.
Inner functions form a (multiplicative) semigroup, singular inner
functions a sub-semigroup.

One-param. semigroup {ϕt} of inner functions:

ϕt(z) = e itλ exp

(
−t

∫ π

−π

e iθ + z

e iθ − z
dµ(e iθ)

)



Symmetric inner functions:

ϕ is symmetric ϕ̄(z) = ϕ(z̄).

Notions go S∞ and Sπ: h(z) ≡ i 1+z
1−z ,

D h−→ S∞
log−→ Sπ

ϕ ∈ H∞(Sπ) inner: |ϕ(q)| = |ϕ(q + iπ)| = 1
symmetric: ϕ(q + iπ) = ϕ̄(q), q ∈ R a.e.

ϕ ∈ H∞(S∞) inner: |ϕ(q)| = 1, q > 0
symmetric: ϕ(−q) = ϕ̄(q) a.e.

Scattering functions
A scattering function is a symmetric innere function f on Sπ s.t.
ϕ(−p) = ϕ(p).

Inverse scattering program: construct QFT models from scattering
function.



Beurling-Lax theorem (1949-1959)

S shift operator on H2(D):

Sf (z) = zf (z)

A closed S-invariant subspace K of H2(D) has the form

K = ϕH2(D), ϕ an inner function

⇓
f ∈ H2 (or f ∈ Hp, p ≥ 1) has a factorization

f (z) = ϕ(z)ψ(z)

ϕ is inner and ψ is outer ψ(z) = exp
(

1
2π

∫ π
−π

e it+z
e it−z

log |f (e it)|dt
)

Lax generalization to H2(S∞), one-param. unitary translations.



Standard real Hilbert subspaces

H complex Hilbert space and H ⊂ H a real

linear subspace.

Symplectic complement:

H ′ ≡ {ξ ∈ H : =(ξ, η) = 0 ∀η ∈ H}.

H ′ = (iH)⊥ (real orthogonal complement)

H1 ⊂ H2 ⇒ H ′1 ⊃ H
′
2 .

A standard subspace H of H is a closed, real

linear subspace of H which is both cyclic (H + iH =

H) and separating (H ∩ iH = {0}). H is stan-

dard iff H ′ is standard.

H standard subspace → anti-linear operator

S ≡ SH : D(S) ⊂ H → H, where D(S) ≡ H+iH,

S : ξ+ iη 7→ ξ − iη , ξ, η ∈ H .

S2 = 1�D(S). S is closed and densely defined.



Conversely, S densely defined, closed, anti-linear
involution on H gives

H = {ξ : Sξ = ξ} is a standard subspace

H ←→ S bijection

Modular theory. Set

SH = JH∆
1/2
H

polar decomposition of S = SH. Then JH is
an anti-unitary involution ∆ ≡ S∗S > 0

∆−itH H = H, JHH = H ′

Borchers theorem (real subspace version)

H standard subspace, U a one-parameter group
with positive generator

U(s)H ⊂ H s > 0.

Then:∆it
HU(s)∆−itH = U(e−2πts),

JHU(s)JH = U(−s), t, s ∈ R.



Note: Setting K ≡ U(1)H we have

∆−itH K = ∆−itH U(1)H = U(e2πt)∆−itH H

= U(e2πt)H ⊂ K, t ≥ 0 .

K ⊂ H is a half-sided modular inclusion.

About the proof (adapted from Florig). With

ξ ∈ H, ξ′ ∈ H ′

fU(z) = (∆iz̄ξ′, U(e2πzs)∆−izξ).

is analytic in S1/2 = {z ∈ C : 0 < = z < 1
2} (the

generator of U(t) is positive and =e2πzs > 0 for

z ∈ S1/2).

V (t) = JU(−t)J satisfies the same assump-

tions then U because of JH = H ′

fU

(
t+

i

2

)
= (∆−1/2∆−itξ′, U(e2πt+iπs)∆−it∆1/2ξ)

= (∆−1/2∆−itξ′, JV (e2πts)∆−itξ)

= (∆−itξ′, (J∆1/2)V (e2πts)∆−itξ)

= (∆−itξ′, V (e2πts)∆−itξ) = fV (t)



(KMS and positivity of energy) analogously

V (t) = JU(−t)J satisfies the same assump-

tions then U because of JH = H ′

fV

(
t+

i

2

)
= fU(t)

fU and fV glue to an entire bounded function,

thus constant.

Converse: Wiesbrock, Borchers, Araki-Zsido

theorem (real subspace version)

Let H,K be standard subspaces. Assume half-

sided modular inclusion:

∆−itH K ⊂ K, t ≥ 0

Then {∆it
K , ∆

is
H} generates a unitary represen-

taion of the “ax+b” group with positive energy

dilation group = ∆
−is/2π
H

gen. of translations P =
1

2π
( log∆K−log∆H)



Möbius covariant nets of real Hilbert sub-

spaces

A local Möbius covariant net of standard sub-

spaces A of real Hilbert subspaces on the in-

tervals of S1 is a map

I → H(I)

with

1. Isotony : If I1, I2 are intervals and I1 ⊂ I2,

then

H(I1) ⊂ H(I2) .

2. Möbius invariance: There is a unitary rep-

resentation U of Mob on H such that

U(g)H(I) = H(gI) , g ∈Mob, I ∈ I.

Here Mob ' PSL(2,R) acts on S1 as usual.



3. Positivity of the energy : L0 ≥ 0

4. Cyclicity : the complex linear span of all spaces

H(I) is dense in H.

5. Locality : If I1 and I2 are disjoint intervals

then

H(I1) ⊂ H(I2)
′

First consequences

Irreducibility: real lin.spanI∈IH(I) = H.

Reeh-Schlieder theorem: H(I) is a standard

subspace for every I.

Bisognano-Wichmann property: Tomita-Takesaki

modular operator ∆I and conjugation JI of



H(I), are

U(ΛI(2πt)) = ∆−itI , t ∈ R, dilations

U(rI) = JI reflection

(ΛI1(t)x = etx, x ∈ R, I1 ' R+ upper semi-

circle)

Haag duality: H(I)′ = H(I ′) (I ′ ≡ S1 r I) .

Factoriality: H(I) ∩H(I)′ = 0

Additivity: I ⊂ ∪iIi =⇒ H(I) ⊂ real lin.spaniH(Ii).

Modular theory and representations of SL(2,R)

(Brunetti, Guido, L.)

U a unitary, positive energy representation of

Mob on H and J anti-unitary involution on H
s.t.

JU(g)J = U(rgr), g ∈Mob



where r : z 7→ z̄ reflection on S1 w.r.t. the

upper semicircle I1. Then define

JI ≡ U(g)JU(g)∗

where g ∈Mob maps I1 onto I.

∆it
I ≡ U(ΛI(−2πt)), t ∈ R

namely − 1
2π log∆I generator of dilations of I,

SI ≡ JI∆
1/2
I

is a densely defined, antilinear, closed involu-

tion on H.

H(I) standard subspace associated with SI

↓
Möbius covariant local net of real Hilbert spaces

A ±hsm factorization of real subspaces is a

triple K0,K1,K2, where {Ki, i ∈ Z3} is a set of



standard subspaces s.t. Ki ⊂ K′i+1 is a ±hsm

inclusion.

Factorization

m
Local Möbius covariant net of real Hilbert spaces

m
Positive energy representation of SL(2,R)/{1,−1}

Note: Irr. positive energy rep. of SL(2,R)/{1,−1}
are parametrized by N



Endomorphisms of standard subspaces

A standard pair of H is a pair (H,T ) such that

• H is a standard subspace,
• T is a one-par. unitary group, with positive generator P, s.t.
T (t)H ⊂ H, t ≥ 0.

Thm. Assume (H,T ) to be irreducible and let K ⊂ H be a real
subspace. The following are equivalent:

(i) T (t)K ⊂ K , t ≥ 0,

(ii) K = VH where V is a unitary commuting with T ,

(iii) K = VH where V = ψ(Q) with Q ≡ log P and
ψ ∈ L∞(R, dq) is the boundary value of an inner function in
H∞(Sπ) such that ψ(q + iπ) = ψ̄(q), for almost all q ∈ R.

The semigroup E(H) of endomorphisms of (H,T ) is isomorphic to
the semigroup of symmetric inner functions on the strip
0 < =z < π.



2-dimensional CFT

M = R2 Minkowski plane.(
T00 T10

T01 T11

)
conserved and traceless stress-energy tensor.

As is well known, TL = 1
2 (T00 + T01) and TR = 1

2 (T00 − T01) are
chiral fields,

TL = TL(t + x), TR = TR(t − x).

Left and right movers.



Two-dimensional conformal fields and nets

Ψk family of conformal fields on M: Tij + relatively local fields
O = I × J double cone, I , J intervals of the chiral lines t ± x = 0

A(O) = {e iΨk (f ), suppf ⊂ O}′′

then by relative locality

A(O) ⊃ AL(I )⊗AR(J)

AL,AR chiral fields on t ± x = 0 generated by TL,TR and other
chiral fields

(completely) rational case: AL(I )⊗AR(J) ⊂ A(O) finite Jones
index



Local conformal nets
A local Möbius covariant net A on S1 is a map

I ∈ I → A(I ) ⊂ B(H)

I ≡ family of proper intervals of S1, that satisfies:

I A. Isotony. I1 ⊂ I2 =⇒ A(I1) ⊂ A(I2)

I B. Locality. I1 ∩ I2 = ∅ =⇒ [A(I1),A(I2)] = {0}
I C. Möbius covariance. ∃ unitary rep. U of the Möbius group

Möb on H such that

U(g)A(I )U(g)∗ = A(gI ), g ∈ Möb, I ∈ I.

I D. Positivity of the energy. Generator L0 of rotation subgroup
of U (conformal Hamiltonian) is positive.

I E. Existence of the vacuum. ∃! U-invariant vector Ω ∈ H
(vacuum vector), and Ω is cyclic for

∨
I∈I A(I ).



First consequences

I Irreducibility:
∨

I∈I A(I ) = B(H).

I Reeh-Schlieder theorem: Ω is cyclic and separating for each
A(I ).

I Bisognano-Wichmann property: Tomita-Takesaki modular
operator ∆I and conjugation JI of (A(I ),Ω), are

U(ΛI (2πt)) = ∆it
I , t ∈ R, dilations

U(rI ) = JI reflection

(Frölich-Gabbiani, Guido-L.)

I Haag duality: A(I )′ = A(I ′)

I Factoriality: A(I ) is III1-factor (in Connes classification)

I Additivity: I ⊂ ∪i Ii =⇒ A(I ) ⊂ ∨iA(Ii ) (Fredenhagen,
Jorss).



Representations

A representation π of A on a Hilbert space H is a map

I ∈ I 7→ πI , normal rep. of A(I ) on B(H)

πĨ �A(I ) = πI , I ⊂ Ĩ

π is automatically diffeomorphism covariant: ∃ a projective, pos.
energy, unitary rep. Uπ of Diff(∞)(S1) s.t.

πgI (U(g)xU(g)∗) = Uπ(g)πI (x)Uπ(g)∗

for all I ∈ I, x ∈ A(I ), g ∈ Diff(∞)(S1) (Carpi & Weiner)

DHR argument: given I , there is an endomorphism of A localized
in I equivalent to π; namely ρ is a representation of A on the
vacuum Hilbert space H, unitarily equivalent to π, such that
ρI ′ = id �A(I ′).

• Rep(A) is a braided tensor category (DHR, FRS, L.)



Split property

A satisfies the split property if the von Neumann algebra

A(I1) ∨ A(I2) ' A(I1)⊗A(I2)

(natural isomorphism) if Ī1 ∩ Ī2 = ∅.

Tr(e−tL0) <∞, ∀t > 0 =⇒ split .



Complete rationality

I1, I2 intervals Ī1 ∩ Ī2 = ∅, E ≡ I1 ∪ I2.

µ-index : µA ≡ [A(E ′)′ : A(E )]

(Jones index). A conformal:

A completely rational
def
= A split & µA <∞

Thm. (Y. Kawahigashi, M. Müger, R.L.) A completely rational:
then

µA =
∑

i

d(ρi )
2

sum over all irreducible sectors. (F. Xu in SU(N) models);

• A(E ) ⊂ A(E ′)′ ∼ LR inclusion (quantum double);

• Representations form a modular tensor category (i.e.
non-degenerate braiding).



Boundary CFT
Stress-energy tensor left/right movers TL = 1

2 (T00 + T01) and
TR = 1

2 (T00 − T01) : TL = TL(t + x), TR = TR(t − x).

Boundary condition: no energy flow across the boundary:

T01(t, x = 0) = 0 ⇔ TL = TR ≡ T .

so T10 = T01, T11 = T00 are of the form

T00(t, x) = T (t+x)+T (t−x), T01(t, x) = T (t+x)−T (t−x),

i.e., bi-local expressions in terms of T

The half−plane M+

t

x

(t,x)

t+x

t−x

Figure: default

Fig. 1: A point in the half space M+. A canonical field localized at (t, x)
is a bi-local linear combination of chiral field localized at t + x and t − x .



The chiral fields of a boundary CFT generate a net

O 7→ A+(O).

A+(O) is generated by chiral fields smeared in the variable t + x
over the interval I and in the variable t − x over the interval J,
where O = I × J, I > J, is an open double-cone in M+. The
bi-localized structure translates into the form of the local algebras

A+(O) = A(I ) ∨ A(J) (O = I × J, I > J).

A double−cone

O = I x J

I

J

O



Definition of Boundary CFT

A boundary CFT (BCFT) associated with A is a local, isotonous
net O 7→ B+(O) over the double-cones within the half-space M+,
represented on a Hilbert space HB such that

(i) there is a unitary representation U of the covering of the
Möbius group PSL(2,R) with positive generator for the subgroup
of translations, such that

U(g)B+(O)U(g)∗ = B+(gO)

(ii) There is a representation π of A on HB such that B+(O)
contains π(A+(O)) and π is U-covariant.

(iii) “Joint irreducibility”: For each double-cone O,
B+(O) ∨ π(A+)′′ is irreducible on HB (almost automatic)



chiral extension → boundary condition
If I 7→ B(I ) is an irreducible chiral extension of I 7→ A(I ) (possibly
non-local, but relatively local with respect to A), then the induced
net is defined by

O 7→ B ind
+ (O) := B(L) ∩ B(K )′.

Intervals for 

"induction"

O
L

K

The observables of the induced BCFT localized in O belong to
B(L) and commute with B(K ).



BCFT → non-local chiral net
A boundary CFT O 7→ B+(O) generates a chiral net I 7→ Bgen(I )
(the associated boundary net) on HB , by

Bgen(I ) :=
∨

O⊂WL

B+(O) ≡ B+(WL)

where WL is the left wedge spanned by I

Double−cones for

"generation"

I

The observables of the associated chiral boundary net localized in I
are generated by BCFT observables localized in double cones
O ⊂WL.



(i) In the special case B = A, the induced net is the dual net Adual
+ :

Bdual(O) ≡ B(O ′)′

so A+(O) ⊂ Adual
+ (O) is the 2-interval inclusion.

(ii) If B is a chiral extension of A, then

(B ind
+ )gen = B

Conversely
(Bgen

+ )ind = Bdual
+

(iii) Every induced net B ind+ is self-dual (Haag dual).

conclusion:

non-local chiral extensions of A↔ local extensions of A+

Classification for c < 1: Kawahigashi, Pennig, Rehren, L.



Remarkable properties

Let B chiral extension of A, and B ind+ the induced BCFT net.

(i) The index of π(A+(O)) ⊂ B ind+(O) equals the µ-index µA of
A. This index is thus the same for each chiral extension

(ii) When B+ is Haag dual, then µB+ = 1, and B+ satisfies Haag
duality also for the disconnected regions of the form E = O1 ∪ O2

(iii) A Haag dual boundary CFT net B+ has the no nontrivial DHR
sectors.



The semigroup E(A)

Let A be a local Möbius covariant net of von Neumann algebras
on R

I ⊂ R interval→ A(I )

T one-parameter unitary translation group. Then
T (t)A(I )T (−t) = A(I + t), T has positive generator P and
T (t)Ω = Ω where Ω is the vacuum vactor.

Let V be a unitary on H commuting with T . The following are
equivalent:

(i) VA(I2)V ∗ commutes with A(I1) for all intervals I1, I2 of R
such that I2 > I1 (I2 is contained in the future of I1).

(ii) VA(a,∞)V ∗ ⊂ A(a,∞) for every a ∈ R.

(iii) VA(0,∞)V ∗ ⊂ A(0,∞).



The semigroup E(A)

E(A) ≡ semigroup of unitaries V as above

A conformal net & V ∈ E(A) −→ Boundary QFT AV

AV (O) ≡ A(I1) ∨ VA(I2)V ∗

where I1, I2 are intervals of time-axis such that I2 > I1 and
O = I1 × I2.



A with the split property, V ∈ E(A) then AV is locally isomorphic
to A+ = AI .

As an immediate consequence, if Vt is a one-parameter semigroup
of unitaries in E(A), the family AVt gives a deformation of the
conformal net A+ on M+ with translation covariant nets on M+

that are locally isomorphic to A+.



Constructing models

A free field on R acting on the Fock space F (H).

H standard subspace of H → von Neumann algebra on F (H)

A(H) = {W (h) : h ∈ H}′′

Take H = H(0,∞).

V ∈ E(H)→ Γ(V ) ∈ E(A)

therefore

symmetric inner function→ V ∈ E(A)→ Boundary QFT net AV on M+

In particular

ϕ scattering function→ Boundary QFT



More general BQFT’s

A = AN Buchholz-Mach-Tododorv extension of U(1)-current net:

symmetric inner function Hölder continuous at 0 & V ∈ E(A)

↓

Boundary QFT net AV on M+

Examples: A1 associated with level 1 ŝu(2)-Kac-Moody algebra
with c = 1, A2 Bose subnet of free complex Fermi field net, A3

appears in the Z4-parafermion current algebra analyzed by
Zamolodchikov and Fateev, and in general AN is a coset model
SO(4N)1/SO(2N)2.



Outlook and problems

I Models on the full Minkowski plane

I Which BQFT’s are associated with loop group models?

I Given a completely rational A CFT on the boundary, do all
BQFT’s AV have the same positive energy representations?

I Construct BQFT on different spacetimes
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