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Nets of von Neumann Algebras





Chapter 6

Möbius covariant nets
of von Neumann algebras

We now introduce the main objects of our study, Möbius covariant local nets
of factors. We discuss here their main properties in the defining representation,
namely on the vacuum Hilbert space. The crucial representation theory will be
investigated in later chapters.

6.1 Definition
A net A of von Neumann algebras on S 1 is a map

I → A(I)

from I, the set of open, non-empty, non-dense intervals of S 1, to the set of von
Neumann algebras on a (fixed) Hilbert space H that verifies the following isotony
property:

1. I : If I1, I2 are intervals and I1 ⊂ I2, then

A(I1) ⊂ A(I2) .

For an arbitrary set E ⊂ S 1 we define A(E) as the von Neumann algebra generated
by all the A(I) with I ⊂ E, I ∈ I (setting A(E) ≡ C if E has empty interior).
The net A is said to be Möbius covariant if the following properties 2,3 and 4 are
satisfied:
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2. M̈ : There is a strongly continuous unitary representation U of
G on H such that

U(g)A(I)U(g)∗ = A(gI) , g ∈ G, I ∈ I.

3. P    : U is a positive energy representation.

4. E     : There exists a unique (up to a phase)
unit U-invariant vector Ω (vacuum vector) and Ω is cyclic for the von Neu-
mann algebra ∨I∈IA(I)

The net A is said to be local if the following property holds:

5. L : If I1 and I2 are disjoint intervals the von Neumann algebras A(I1)
and A(I2) commute:

A(I1) ⊂ A(I2)′

6.2 First consequences

If A is local, Möbius covariant net of von Neumann algebras, clearly

H(I) ≡ A(I)saΩ

is a local, Möbius covariant net of real Hilbert subspaces of H (see Sect. 2.5).
Moreover if A is local then H is local too.

Remark 6.2.1. Note that if A is defined by all the above properties 1 − 5 but with
Ḡ in place of G, then automatically U is indeed a representation of G due to the
one-particle spin-statistics relation, Cor. 3.4.2.

We now discuss a few other consequences of the axioms that follows from
Sect. 3.

6.2.1 Reeh-Schlieder theorem

Theorem 6.2.2. Let A be a local Möbius covariant net on S 1. For any given I ∈ I,
the vector Ω is cyclic and separating for the von Neumann algebra A(I), I ∈ I.
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Proof. Let H0 be the complex Hilbert subspace of H generated by all the H(I) ≡
A(I)saΩ. Clearly H is a local Möbius covariant net of real Hilbert subspaces of
H0. By the Reeh-Schlieder theorem for nets of real linear subspaces, we have
H(I) + iH(I) = H0 for every fixed interval I. The orthogonal projection E =

[A(I)Ω] ∈ A(I)′ from H onto H(I) + iH(I) is therefore independent of I, so E ∈
∩IA(I)′ =

(
∨I A(I)

)′. So E ≥ F where F is the smallest projection in
(
∨I A(I)

)′
containg Ω. By the assumed cyclicity of Ω for A we have F = 1, thus E = 1. So
H0 = H and H(I) is standard, namely, by the equivalence (2.5.2), Ω is cyclic and
separating for A(I) �

6.2.2 Bisognano-Wichmann property and Haag duality
Theorem 6.2.3. Let I ∈ I and ∆I , JI the modular operator and the modular
conjugation of (A(I),Ω). Then we have:
(i): Bisognano-Wichmann property:

∆it
I = U(δI(−2πt)), t ∈ R ; (6.2.1)

(i′): U extends to an (anti-)unitary representation of G2 determined by

U(rI) = JI , I ∈ I, (6.2.2)

acting covariantly on A, namely

U(g)A(I)U(g)∗ = A(gI) g ∈ G2, I ∈ I .

(ii): Haag duality: For every interval I

A(I′) = A(I)′ .

Proof. The results for nets of standard subspaces in Sect. 3 immediately imply (i)
and that U extends to an (anti-)unitary representation of G2 determined by (6.2.2).
Haag duality then follows by Prop. 2.5.1 because H(I′) is the symplectic comple-
ment of H(I). Then (i′) follows because AdJI = AdU(rI) acts geometrically and
G2 = G · rI . �

Remark 6.2.4. If in the real line picture I is the half-line (0,∞), then JI is an
anti-unitary involution corresponding to the symmetry t 7→ −t. This is the PCT
symmetry and the relation (6.2.2) is in particular a general, algebraic form of the
PCT theorem in the conformal setting.
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Remark 6.2.5. It follows easily by Möbius covariance (or by Haag duality) that
A(I0) = ∩I⊃Ī0A(I) where I0, I ∈ I. Therefore the net could be equivalently defined
on closed intervals, namely it would follow from any definition that A(I) = A(Ī)
for any open inetval I.

Corollary 6.2.6 (Additivity). Let I and Ii be intervals with I ⊂ ∪iIi. Then A(I) ⊂
∨iA(Ii).

Proof. Replacing I with I ∩ Ii we may assume that Ii ⊂ I. With M ≡ ∨iA(Ii) we
then have M ⊂ A(I). Moreover MsaΩ contains the closed real linear span of the
H(Ii)’s, which is equal to H(I) ≡ A(I)saΩ by Cor. 3.3.3. So M = A(I) by Prop.
2.5.1. �

Remark 6.2.7. As we have seen in Sect. 3, the representation U of G is unique,
due to formula (6.2.1).

We can then define an isomorphism of nets in different ways.

Proposition 6.2.8. Let Ak be local, Möbius covariant nets of von Neumann al-
gebras on the Hilbert space Hk, k = 1, 2, and Φ a family {ΦI}I∈I with ΦI an
isomorphism between A1(I) and A2(I) such that ΦĨ |I = ΦI if I ⊂ Ĩ. Then (with
obvoius notations) the following are equivalent:

(i): Φ preserves the vacuum state, namely (ΦI(x)Ω2,Ω2) = (xΩ1,Ω1), ∀x ∈
A1(I), ∀I ∈ I;

(i′): There exists a unitary V : H1 → H2 such that VΩ1 = Ω2 and ΦI =

AdV |A1(I), ∀I ∈ I;
(ii): Φ intertwines the Möbius group actions, namely ΦI ·AdU1(g) = AdU2(g)·

ΦI , ∀I ∈ I;
(ii′): There exists a unitary V : H1 → H2 such that ΦI = AdV |A(I), ∀I ∈ I,

and VU1(g) = U2(g)V, ∀g ∈ G.

Proof. (i) ⇒ (i′): Given I ∈ I, the unitary V : H1 → H2 determined by V xΩ1 ≡

ΦI(x)Ω2, x ∈ A(I), is independent of I by the Reeh-Schlieder theorem and satisfies
(i). The implication (ii)⇒ (i) is obvious.

(i′)⇒ (ii′): As V implements Φ and VΩ1 = Ω2 we have VU1(g) = U2(g)V by
the uniqueness of the unitary Möbius representation.

Clearly (ii′)⇒ (ii).
Finally, we show that (ii)⇒ (i). With x ∈ A1(I) we have

(ΦI(x)Ω2,Ω2) = (U2(δI(s))∗ΦI(x)U2(δI(s))Ω2,Ω2)
= (ΦI(U1(δI(s))∗xU1(δI(s)))Ω2,Ω2)→ (xΩ1,Ω1)
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because, as s→ ∞, U1(δI(s))∗xU1(δI(s)) weakly converges to (xΩ1,Ω1). �

If the conditions in the above Prop. 6.2.8 hold, we shall say that Φ is an isomor-
phism Φ between A1 and A2. Note that V is uniquely determined by Φ and we
can define Φ by giving V . An automorphism of A is, of course, an isomorphism
of A with itself.

6.2.3 Irreducibility
We shall say that A is irreducible if the von Neumann algebra ∨A(I) generated by
all local algebras A(I) coincides with B(H). The irreducibility property is indeed
equivalent to several other requirement.

Proposition 6.2.9. Assume all properies 1 − 5 for A except for the uniqueness of
the vacuum. The following are equivalent:

(i) CΩ are the only U(G) invariant vectors.

(ii) The algebras A(I), I ∈ I, are factors. In particular they are type III1 factors
(unless H is one-dimensional).

(iii) For any given two points p1, p2 the algebra A(S 1\{p1, p2}) is irreducible.

(iv) The net A is irreducible.

(v) The algebra ∩A(I) given by the intersection of all local algebras coincides
with C.

Proof. (i) ⇒ (ii): With H(I) ≡ A(I)saΩ, by Prop. 3.4.1 every H(I) 	 RΩ is a
factorial standard subspace of H	CΩ; as

(
A(I)∩A(I′)

)
saΩ ⊂ H(I)∩H(I′) = CΩ

and Ω is separating, we have A(I) ∩ A(I′) = C. Moreover the modular group of
A(I) is ergodic by the Thm. 1.7.2 on the vanishing of the matrix coefficients, so
A(I) is a factor of type III1 by Prop. 6.6.5 (ii) ⇒ (iii): If A(I) is a factor then by
Haag duality A(I) ∨ A(I′) = A(I) ∨ A(I)′ = B(H) and (iii) follows by taking I
with endpoints p1, p2.

(iii)⇒ (iv): Obvious.
(iv)⇔ (v): Immediate by Haag duality.
(v) ⇒ (i): Fix an interval I. By the vanishing of the matrix coefficients theo-

rem it is sufficient to show that Ω is the unique invariant vector for U(δI(−2πt)) =

∆it
I . By the ergodic theorem this is equivalent to the ergodicity of AdU(δI(·)) on

A(I).
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So let x ∈ A(I) be fixed AdU(δI(·)). Then U(δI(−2πt))xΩ = xΩ. By the
vanishing of the matrix coefficients theorem we have

U(g)xU(g)∗Ω = U(g)xΩ = xΩ

for all g ∈ G. Take g so that gI ∪ I is not dense in S 1; then U(g)xU(g)∗ = x by the
Reeh-Schlieder separating property of Ω. By the group property U(g)xU(g)∗ = x
for all g ∈ G. Thus x belongs to A(gI) for all g ∈ G, namely to all local algebras,
so x is a scalar as desired. �

Corollary 6.2.10. Assume all properies 1 − 5 for A except for the uniqueness of
the vacuum. Then the center Z of A(I) is independent of I and there is a unique
direct integral disintegration

A =

∫ ⊕

Aλdµ(λ)

with Aλ an irreducible, local Möbius covariant net for almost all λ.

Proof. The argument in the proof (v)⇔ (i) of the above corollary shows that if x ∈
A(I) is fixed by the modular group of (A(I),Ω) then x belongs to all local algebras,
showing that Z is independent of the interval I. Then we may identify Z with some
L∞(X, µ) and consider the common factor disintegration of the A(I)’s. Then each
fiber is almost everywhere an irreducible net. By Prop. 6.6.3 the unitary U(g) of
the unitary representations of G belong to the von Neumann algebra generated by
all the A(I)’s so the commutes with Z (alternatively we can use the fact that the
modular group fixed the center and apply the vanishing of the matrix coefficients
theorem) and decompose to give the covariance unitary representation of G for
Aλ. �

6.3 Borchers theorem and half-sided modular inclu-
sions of von Neumann algebras

Having already described the one-particle versions of Borchers and Wiesbrock
theorems, the von Neumann algebra case is now almost immediate.
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Theorem 6.3.1 (Borchers). Let M be a von Neumann algebra a Hilbert space H

and Ω ∈ H a cyclic and separating vector for M. Let U be a one-parameter group
on H fixing Ω, with generator P, satisfying

U(s)MU(−s) ⊂ M , s ≥ 0.

If ±P > 0, the following commutation relations hold:∆itU(s)∆−it = U(e∓2πts),
JU(s)J = U(−s), t, s ∈ R.

Proof. The theorem is immediate by its one-particle version Thm. 2.2.1 by setting
H ≡ MsaΩ. �

The converse of Borchers theorem does not hold in the von Neumann algebra case
as in the standard subspace case. However the following weaker result holds true.

Proposition 6.3.2. Let M be a von Neumann algebra on a Hilbert space H and
Ω ∈ H a cyclic and separating vector for M. Let U be a one-parameter group on
H, with generator P ≥ 0, fixing Ω, satisfying

∆itU(s)∆−it = U(e−2πts) , t, s ∈ R ,

Suppose there exists s0 > 0 and such that Ω is cyclic for M ∩ U(s0)MU(−s0).
Then

U(s)MU(−s) ⊂ M , s ≥ 0.

Proof. First we show that U(s0)MU(−s0) ⊂ M. This is equivalent to say that
U(s0)M′U(−s0) ⊃ M′. Set H ≡ MsaΩ. From Thm. 2.2.4 we have U(s0)H ⊂ H,
so U(s0)H′ ⊃ H′.

So both U(s0)M′U(−s0) and M′ are von Neumann subalgebras of M′
s0

and(
U(s0)M′U(−s0)

)
saΩ ⊃ M′

saΩ. By Prop. 2.5.1 we conclude that U(s0)M′U(−s0) ⊃
M′, namely U(s0)MU(−s0) ⊂ M.

The proposition is then proved because with s = e−2πts0 we have

AdU(s)M = AdU(e−2πts0)M = Ad∆itU(s0)∆−itM

= Ad∆itU(s0)M ⊂ Ad∆itM = M.

�
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Let N ⊂ M be an inclusion of von Neumann algebras on a Hilbert space H and
Ω ∈ H a cyclic and separating vector for both M and N. We shall say that (N ⊂
M,Ω) (or simply N ⊂ M) is a half-sided modular inclusion of von Neumann
algebras if

∆−it
M N∆it

M ⊂ N , t ≥ 0 . (6.3.1)

We shall also abbreviate half-sided modular inclusion by hsm of +hsm. If the
above equation (6.3.1) holds for t ≤ 0 instead we shall say that (N ⊂ M,Ω) is a
-hsm inclusion of von Neumann algebras.

We now pass to the main theorem on hsm inclusions. This theorem was orig-
inally proved by Wiesbrock [175] but its proof contained a gap. Zsido then an-
nounced a different complete proof. A complete proof later appeared in papers by
Borchers [18] and by Araki and Zsido [6]. This last paper contained a generaliza-
tion to the weight case.

Having proved the real Hilbert subspace analog of this theorem, its von Neu-
mann algebra version is now almost immediate.

Theorem 6.3.3 (Wiesbrock, Borchers, Araki-Zsido). Let (N ⊂ M,Ω) be a hsm
inclusion of von Neumann algebras on a Hilbert space H and Ω ∈ H a cyclic and
separating vector for both M and N.

Then there exists a positive energy unitary representation of P on H deter-
mined by

V(δ(2πs)) = ∆−is
M , V(δ(1,∞)(2πs)) = ∆−is

N .

The generator P of the translation one-parameter group U ≡ V(τ(·)) is the closure
of 1

2π (log ∆N − log ∆M) and we have

U(t)MU(−t) ⊂ M , t ≥ 0, and U(1)MU(−1) = N .

In other words setting A(t,∞) ≡ U(1)MU(−1), A(∞, t) = A(t,∞)′ we get a local
net of von Neumann algebras on the half-lines of R which is P-covariant with
positive energy. We shall later discuss when we get a net on S 1.

Proof. Setting H ≡ MsaΩ, K ≡ NsaΩ, we may apply the standard subspace ver-
sion of Wiesbrock theorem 2.4.1 and define the representation V of P. The equal-
ity U(e2πt − 1) = ∆−it

M ∆it
N and the assumed half-side modular invariance imply

U(t)MU(−t) ⊂ M for t ≥ −1. Moreover U(1)NU(−1) = N as the corresponding
standard subspace coincide (see Prop. 2.5.1). So U(t)MU(−t) ⊂ M for t ≥ 0. �

Corollary 6.3.4. Let N ⊂ M be an inclusion of von Neumann algebras. Then
(N ⊂ M,Ω) is a hsm inclusion iff (M′ ⊂ N′,Ω) is a -hsm inclusion.
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6.4 Extending nets from R to S 1

We now pass to the characterization of Möbius covariant local nets in terms of a
factorization.

A hsm factorization (N0,N1,N2,Ω) of von Neumann algebras on a Hilbert
space H is a quadruple where Nk, k ∈ Z3, are mutually commuting von Neumann
algebras on H, Ω is a cyclic (thus separating) vector for each Nk such that (Nk ⊂

N′k+1,Ω), k ∈ Z3, is a hsm modular inclusion of von Neumann algebras.
Let A be a local Möbius covariant net of von Neumann algebras. Choose

three intervals I0, I1, I2 ∈ I forming a partition of S 1 in the counter-clockwise or-
der (up to the boundary points). Then (A(I0),A(I1),A(I2),Ω) is a hsm factoriza-
tion of von Neumann algebras. Indeed the A(Ik)’s mutually commute by locality
and A(Ik) ⊂ A(Ik+1)′ = A(I′k+1) is a hsm inclusion w.r.t. Ω by the Bisognano-
Wichmann property because δI′k+1

(t)Ik ⊂ Ik, t ≥ 0. As G acts transitively on
the set of three different points of S 1 the isomorphism class of the factorization
(A(I0),A(I1),A(I2),Ω) does not depend on the choice of I0, I1, I2 as above.

We shall now show that every hsm factorization of von Neumann algebras
arises from a local Möbius covariant net as above.

Theorem 6.4.1. Let (N0,N1,N2,Ω) be a hsm factorization of von Neumann alge-
bras and let I0, I1, I2 be intervals forming a partition of S 1, up to boundary points,
in counter-clockwise order. There exists a unique local Möbius covariant net A on
S 1 such that A(Ik) = Nk, k ∈ Z3, with Ω the vacuum vector. The (unique) positive
energy unitary representation Uof G is determined by U(δIk(2πt)) = ∆−it

k , where
∆k is the modular operator of (Nk,Ω).

Proof. Setting Hi ≡ Nk saΩ, we obtain a factorization of standard subspaspaces
(H0,H1,H2). Let U be the associated representation of G given by Thm. 3.6.2, in
particular U(δIk(2πt)) = ∆−it

k , and set

A(I) ≡ U(g)A(I0)U(g)∗

if gI0 = I. Then A(I) is well defined because if h ∈ G also satisfies hI0 = I then
h = gδI0(2πt) for some t and AdU(δI0(2πt))A(I0) = Ad∆−it

k A(I0) = A(I0). The
rest follows as in the proof of Thm. 3.6.2 for the standard subspace case. �

By a net of von Neumann algebras on R (or on the intervals of R) we shall mean
an isotonic map

I ∈ I0 7→ A(I)
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from I0, the set of intervals of R, i.e. bounded open connected subsets of R, to the
set of von Neumann algebras on a fixed Hilbert space H.

A is local means as usual that A(I1) and A(I2) commute if I1 and I2 are disjoint
intervals.

If A is a a net of von Neumann algebras on the intervals of R we define by
additivity the von Neumann algebra A(E) associated with any set E ⊂ R as the
von von Neumann algebra generated by all the A(I)’s with I ⊂ E, I ∈ I0. In
particular A is local iff A(−∞, a) and A(a,∞) commute for all a ∈ R.

We have the following version of Thm. 3.6.4.

Theorem 6.4.2. Let A be a local net of von Neumann algebras on the intervals of
R, Ω a cyclic and separating vector for the von Neumann algebra A(I) associated
with each interval I ⊂ R and U a Ω-fixing unitary representation of P acting
covariantly on A. The following are equivalent:

(i) A extends to a Möbius covariant net on S 1.

(ii) The Bisognano-Wichmann property holds for A, namely

∆it
R+ = U(δR+(−2πt)), (6.4.1)

where ∆R+ is the modular operator of (A(R+),Ω).

Proof. (i)⇒ (ii): Immediate.
(ii) ⇒ (i): The proof follows the same reasoning of that of Thm. 3.6.4. Note

first that, by translation covariance, ∆it
(a,∞) = U(δ(a,∞)(−2πt)) for all a ∈ R. Hence

A(−∞, a) is a von Neumann subalgebra of A(a,∞)′ that is cyclic on Ω and glob-
ally invariant under the modular group of A(a,∞)′ with respect to Ω, hence, by
the Tomita-Takesaki theory, duality for half-lines holds

A(a,∞)′ = A(−∞, a). (6.4.2)

Then it is immediate to check (A(−∞,−1),A(−1, 1),A(1,∞),Ω) to be a +hsm
factorization of von Neumann algebras, so we get a Möbius covariant net from
Theorem 6.4.1. Due to Bisognano-Wichmann property this is indeed an extension
to S 1 of the original net. �

Note that positivity of the energy is not an a priori requirement in (ii) of the above
theorem.

Although a Möbius covariant net satisfies Haag duality on S 1, duality on R
does not necessarily hold.
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Lemma 6.4.3. Let A be a local Möbius covariant net of von Neumann algebras
on S 1. The following are equivalent:

(i) The restriction of A to R satisfies Haag duality:

A(I) = A(R\I)′

(ii) A is strongly additive: If I1, I2 are the connected components of the interval
I with one internal point removed, then

A(I) = A(I1) ∨A(I2)

(iii) if I, I1, I2 are intervals as above

A(I1)′ ∩A(I) = A(I2)

Proof. As in the standard subspace case. �

Let A be a net on R; we define the dual net Ad by

Ad(I) ≡ A(−∞, b) ∩A(a,∞)

for every interval I ≡ (a, b).
Clearly Ad is a net on the intervals, namely it is isotonic, and Ad is larger than

A:
A(I) ⊂ Ad(I), I ∈ I0 ,

however the two nets coincide on half-lines:

A(I1) = Ad(I1), if I1 is a half line.

Indeed if I1 is a half-line, I ∈ I0 and I ⊂ I1, then directly by the definition of Ad

we have Ad(I) ⊂ A(I1) and so Ad(I1) ⊂ A(I1). It thus follows that Ad is local if A

is local.
Duality for half-lines (6.4.2) is also called essential duality because of the

following lemma.

Lemma 6.4.4. Let A be a net on the intervals of R satisfying essential duality.
The dual net Ad is satisfies duality on R:

Ad(I) ≡ A(R\I)′, I ∈ I0.



98 Möbius covariant nets of von Neumann algebras

Proof. With I ≡ (a, b) ∈ I0 we have

Ad(a, b) = A(−∞, b) ∩A(a,∞) = A(b,∞)′ ∩A(−∞, a)′

=
(
A(b,∞) ∪A(−∞, a)

)′
=

(
Ad(b,∞) ∪Ad(−∞, a)

)′
= Ad(R \ I)′ .

�

Note that, if essential duality holds for A, the dual net is also given as in the
above proof by

Ad(I) = A(R \ I)′, I ∈ I0 .

because A(R \ I) = Ad(R \ I) for any interval I.
Let now A be a local Möbius covariant net on S 1. Haag duality on S 1 entails

essential duality for the restriction A0 to R. Hence Ad
0 obeys Haag duality on R.

Now Ad
0 is a net on R that does not in general transform covariantly under the

covariance unitary representation U of G of A, however Ad
0 is clearly P-covariant

with respect to the restriction of U to P. By Thm. 6.4.2 Ad
0 extends to a local,

Möbius covariant net on S 1 that we still call the dual net of A and denote by Ad.

Corollary 6.4.5. The dual net Ad of a local, Möbius covariant net A on S 1 is a
strongly additive local Möbius covariant net on S 1.

Proof. By construction, the Ad satisfies Haag duality onR, hence strong additivity
by Lemma 6.4.3. �

Clearly the unitary representation of G associated with Ad differs from the one
associated with A although both of them have the same restriction to P. Moreover
A(I) is in general not contained in Ad(I) if I is not contained in R ' S 1 \ {−1};
indeed Ad(I) ⊂ A(I) if the point at infinity −1 ∈ I.

We shall now discuss some consequence of the above results.
An inclusion N ⊂ M of von Neumann algebras is said to be normal if N =

Ncc, where Rc = R′ ∩ M denotes the relative commutant of R in M, and conormal
if M is generated by N and its relative commutant w.r.t. M, i.e., M = N ∨Nc (i.e.
M′ ⊂ N′ is normal).

We shall then say that a local Möbius covariant net A is (co-)normal if the
inclusion A(I1) ⊂ A(I2) is (co-)normal for any pair I1 ⊂ I2 of proper intervals
of S 1. By Haag duality, normality and conormality are equivalent properties of
conformal nets.
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Theorem 6.4.6. Let A be a local Möbius covariant net on S 1. For any pair I1 ⊂ I2

of intervals of S 1 the inclusion of von Neumann algebras A(I1) ⊂ A(I2) is normal
and conormal. In particular the relative commutant A(I1)′ ∩A(I2) is a factor.

Proof. Let us consider first an inclusion of two intervals I1 ⊂ I2 with a common
boundary point.

Assume first that A is strongly additive, then the inclusion of von Neumann
algebras A(I1) ⊂ A(I2) is conormal as in this case A(I1)′ ∩ A(I2) = A(I2\I1).
In the general case, by conformal invariance we may assume that I1 and I2 are
respectively the intervals of the real line (1,+∞) and (0,+∞). By definition then
A(I1) = Ad(I1), A(I2) = Ad(I2), with Ad the dual net, hence the inclusion A(I1) ⊂
A(I2) is conormal by Corollary 3.6.5 and the above argument. As A(I2)′ ⊂ A(I1)′

is conormal, A(I1) ⊂ A(I2) is also normal.
It remains to show the normality of A(I1) ⊂ A(I2) when I1 ⊂ I2 are intervals

with no common boundary point, e.g. I1 = (b, c) and I2 = (a, d), with a < b < c <
d. Then we set I3 = (a, c) and I4 = (b, d), therefore I1 = I3 ∩ I4 and both I3 and
I4 are subintervals of I2 with a common boundary point. Then the double relative
commutant of A(I1) in A(I2) is given by

A(I1)cc ⊂ A(I3)cc ∩A(I4)cc = A(I3) ∩A(I4) = A(I1) (6.4.3)

where the last equality is a consequence of duality and additivity and implies the
first inclusion; the opposite inclusion is elementary.

The factoriality of A(I1)c follows because the center of A(I1)c is contained in
the center of A(I1)cc = A(I1) and A(I1) is a factor by Prop. 6.2.9. �

Corollary 6.4.7. Let (N ⊂ M,Ω) be a hsm standard inclusion of von Neumann
algebras. Then:

• The inclusion N ⊂ M is normal and conormal.

• There exists a unique strongly additive local Möbius covariant net A of von
Neumann algebras on S 1 with M = A(0,+∞), N = A(1,+∞), and Ω the
vacuum vector.

• There exists a bijection between local Möbius covariant nets A of von Neu-
mann algebras on S 1 with M = A(0,+∞), N = A(1,+∞), Ω the vacuum
vector, and von Neumann subalgebras N0 of N′ ∩ M cyclic on Ω such that
(N0 ⊂ M,Ω) is a −hsm inclusion and (N0 ⊂ N′,Ω) is a +hsm inclusion.
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Proof. Starting with the last point, notice that (M′,N0,N,Ω) is a hsm factorization
of von Neumann algebras, and clearly any hsm factorization arises in this way,
therefore the thesis is a consequence of Theorem 6.4.1.

In the special case N0 = N′ ∩ M we then obtain the second statement by
Lemma 6.4.3 (ii)⇔ (iii).

The first point is then a consequence of Theorem 6.4.6. �

We end this section by introducing the n-regularity notion.
Let A be a local, Möbius covariant net of von Neumann algebras on S 1. We

shall say that A is n-regular if A(S 1 \ {p1, . . . pn} = B(H) for any choice of n
distinct points {p1, . . . pn} ∈ S 1.

Clearly n-regularity implies n−1-regularity and 2-regularity always holds due
to Prop. 6.2.9 (iii). We shall see in Sect. 6.5 examples with A n-regular but not
n + 1-regular, n ≥ 3.

6.5 Second quantization nets
Let H be a complex Hilbert space and let Γ(H) be the exponential of H, i.e. the
Bosonic Fock space over H (also denoted by eH). Thus

Γ(H) ≡
∞⊕

n=0

H⊗n

s ,

H0 ≡ CΩ is the one-dimensional Hilbert space a unit vector Ω calle the vacuum,
and H⊗n

s is the symmetric Hilbert n-fold tensor product, namely H⊗n

s = Symn
(
H⊗

· · · ⊗H
)
, where Symn is the orthogonal projection onto the fixed point vectors for

the natural unitary representation on H ⊗ · · · ⊗ H of the n-element permutation
group Pn, so Symnξ1 ⊗ · · · ⊗ ξn = 1

n!

∑
π∈Pn

ξπ(1) ⊗ · · · ⊗ ξπ(n).
If ξ ∈ H, we denote by eξ the coherent vector of eH:

eξ ≡
∞⊕

n=0

1
√

n!
ξ ⊗ · · · ⊗ ξ n-times

It is immediate to see that
(eξ, eη) = e(ξ,η) ,

so ||eξ − eη||2 = e||ξ||
2
+ e||η||

2
− 2<e(ξ,η) and the map ξ 7→ eξ is norm continuous.

Lemma 6.5.1. {eξ, ξ ∈ H} is a total family of independent vectors of Γ(H).
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Proof. Let K be the closed linear span of {eξ, ξ ∈ H}, so the family to be total
means that K = H. Now K contains

dn

dtn etξ |t=0 =
√

n! ξ ⊗ · · · ⊗ ξ ∈ H⊗n

s (6.5.1)

so, in order to show that K = H, is sufficient to show that H⊗n

s is the closed linear
span of vectors of the form ξ⊗· · ·⊗ξ. With ξi ∈ H, i = 1, . . . n, let ξ = ξ(λ1, · · · λn)
be the vector ξ ≡

∑
i λiξi where λi ∈ C. Then

1
n!

∂n

∂λ1 · · · ∂λn
ξ ⊗ · · · ⊗ ξ|λ1=λ2···=λn=1 = Symnξ1 ⊗ · · · ⊗ ξn (6.5.2)

which prove our statement.
Concerning the independence of the coherent vectors, let ξi ∈ H, i = 1, . . . n,

be mutually different vectors. Assume
∑

i cieξi = 0 with non-zero ci ∈ C. With
η ∈ H, for all t ∈ R we then have (

∑
i cieξi , etη) =

∑
i ciet(ξi,η) = 0. This implies that

the numbers {(ξi, η), i = 1 . . . n} are not mutually different. As this is true for all
η, the vectors ξi are all equal, which is a contradiction showing that the vectors eξi

are indeed independent. �

If A ∈ B(H) and ||A|| ≤ 1, the norm one operator Γ(A) (or eA) on B(Γ(H))

Γ(A) = 1 ⊕ A ⊕ (A ⊗ A) ⊕ (A ⊗ A ⊗ A) ⊕ · · ·

is called the second quantization of A. Note that eAeξ = eAξ.
Setting

W(ξ)eη ≡ e−
1
2 (ξ,ξ)e−(ξ,η)eξ+η

we get an isometry on {eξ, ξ ∈ H}, that extends to a unitary operator W(ξ) on
eH. The W(ξ)’s are called Weyl unitaries as the map ξ 7→ W(ξ) is norm - strong
operator continuous and gives a representation of the Weyl commutation relations

W(ξ + η) = ei=(ξ,η)W(ξ)W(η) .

Note that
W(ξ)Ω = W(ξ)e0 = e−

1
2 (ξ,ξ)eξ (6.5.3)

therefore
ω(W(ξ)) = e−

1
2 ||ξ||

2

where ω ≡ (Ω, ·Ω) is the vacuum state.
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By the uniqueness of the GNS representation, the above Fock representation
is (up to unitary equivalence) the unique representation of the Weyl commutation
relations (on a Hilbert space H) with a cyclic vector Ω such that (Ω,W(ξ)Ω) =

e−
1
2 ||ξ||

2).
Let H ⊂ H be a real subspace. We put

R(H) ≡ {W(ξ) : ξ ∈ H}′′ ,

namely R(H) is the von Neumann algebra on eH given by the weak closure of the
linear span of the W(ξ)’s as ξ varies in H.

Note that if U is a unitary operator on H then Γ(U)W(ξ)Γ(U)∗ = W(Uξ). In
particular, if UH = H, then Γ(U) implements an automorphism of R(H),

Proposition 6.5.2. (a) : If K, H are real linear subspaces then R(K) = R(H) iff
K and H have the same closure: K̄ = H̄.

(b) : Let H be closed. H is a cyclic (resp. separating) real subspace of H iff Ω is
a cyclic (resp. separating) vector for R(H).

(c) : Let H be standard. Then the modular unitaries and conjugation associated
with (R(H),Ω) are given by

∆it
R(H) = Γ(∆it

H), JR(H) = Γ(JH) .

(c) : R(H′) = R(H)′ .

Proof. (a): R(H) = R(H̄) follows immediately by the continuity of the Weyl rep-
resentation ξ 7→ W(ξ). To prove the second assertion we may assume that Kand
H are closed and K ⊂ H, otherwise replacing K with K̄ and H with K + H. We
shall show this at the end of this proof.

(b): By the Weyl commtation relation R(H) and R(H′) commute, so it is suf-
ficient to show that Ω is cyclic for R(H) if H is cyclic. As W(ξ)Ω = e−

1
2 (ξ,ξ)eξ,

it follows that R(H)Ω contains all coherent vector associated with ξ ∈ H. By
(6.5.1) R(H)Ω contains all vectors ξ ⊗ · · · ⊗ ξ ∈ H⊗n

s with ξ ∈ H, thus all vectors
Symnξ1 ⊗ · · · ⊗ ξn ∈ H⊗n

s with ξk ∈ H by (6.5.2). As H is cyclic, we then have
R(H)Ω = H.

(c): As Γ(∆it
H)W(ξ)Γ(∆it

H)∗ = W(∆it
Hξ), we see that Γ(∆it

H) implements automor-
phisms of R(H) and we check the KMS condition. With σt ≡ AdΓ(∆it

H) we have



6.5 Second quantization nets 103

by (6.5.3) and the one-particle KMS condtion (2.1.6)

(σt(W(ξ))W(η)Ω,Ω)|t=−i = e−
1
2 (ξ,ξ)e−

1
2 (η,η)(eη, e−∆it

Hξ)|t=−i

= e−
1
2 (ξ,ξ)e−

1
2 (η,η)e−(η,∆it

Hξ)|t=−i = e−
1
2 (ξ,ξ)e−

1
2 (η,η)e−(η,∆ξ)

= e−
1
2 (ξ,ξ)e−

1
2 (η,η)e−(ξ,η) = (W(η)W(ξ)Ω,Ω)

that is a form of the KMS condition.
(d): This follows at once because R(H′) = R(JHH) = JR(H)R(H)JR(H) = R(H)′.
It remain to complete the proof of (a). Let K ⊂ H be closed real linear sub-

spaces and suppose that R(K) = R(H). We first assume that H (resp. K) is stan-
dard; then also K (resp. H) is standard and by (b) and by (c) we have

Γ(∆it
K) = ∆it

R(K) = ∆it
R(H) = Γ(∆it

H)

so ∆it
K = ∆it

H and K = H by Prop. 2.1.10. Now we only assume that K is separating,
then also H is separating by (b); replacing H with H + iH we may again in the
case H standard. Now we only assume that H is cyclic; by considering H′ ⊂ K′

we are back in the previous case. Finally, in the general case, replacing H with
H + iH we may assume that H is cyclic, so our proof is complete. �

Proposition 6.5.3. let Hk be a family of Hilbert spaces. Then Γ(
⊕

k Hk) can
be identified wirh

⊗Ωk

k Γ(Hk), where Ωk is the vacuum vector of Γ(Hk). In this
identification, W(

⊕
ξk) =

⊗Ωk

k Wk(ξk), where Wk and W are the Weyl operators
associated with Hk and

⊕
k Hk. Also Γ(A1 ⊕ A2 ⊕ · · · ) = Γ(A1) ⊗ Γ(A2) ⊗ · · · for

contractions Ak on Hk.

Proof. For simplicity we assume k = 1, 2. We show that the vacuum state ω
associated with H is the tensor product of the vacuum states ω1, ω2 associated
with H1,H2. The rest follows at once.

Indeed we have ξk ∈ Hk we have

ω(W(ξ1 ⊕ ξ2)) = e−
1
2 ||ξ1⊕ξ2 ||

2
= e−

1
2 ||ξ1 ||

2
e−

1
2 ||ξ2 ||

2
= ω(W(ξ1))ω(W(ξ2)) .

�

Let now H be a local, Möbius covariant net of standard subspaces of H, U the
corresponding unitary representation of G. Assume that H is non-degenerate,
namely U does not contain the identity representation. Then, setting

A(I) ≡ R(H(I)), I ∈ I,
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we obtain a local Möbius covariant net of von Neumann algebras on Γ(H) where
the unitary covariance action of G is Γ(U). Note that H non-degenerate ensures
the uniqueness of the vacuum vector Ω.

Lemma 6.5.4. The above net A = R(H(·)) is strongly additive (resp. n-regular)
iff H is strongly additive (resp. n-regular) .

Proof. Let I, I1, I2 ∈ I be disjoint intervals with Ī = I1 ∪ I2. If H is strongly addi-
tive then H(I1) + H(I2) = H(I) so A(I) is the von Nemann algebra B generated by
A(I1) and A(I2) by the continuity of the Weyl representation. If H is not strongly
additive then H(I1) + H(I2) , H(I) so by Prop. 6.5.2 we have B , A(I) because
B = R(H(I1) + H(I2)).

The n-regular case is proved similarly. �

Because of the correspondence between positive energy representations of G and
local, Möbius covariant nets of standard subspaces given by Theorem 3.6.7, we
then have an arrow

U −→ AU

that associates a local Möbius covariant net of von Neumann algebras AU with
any unitary positive energy representation of G, provided U has no non-zero fixed
vector. These are the second quantization nets.

If U (1) is the irreducible representation of G with lowest weight 1, then AU is
called the U(1) current algebra net.

If U (n) is the irreducible representation of G with lowest weight n, then AU(n+1)

is called the net associated with the n-derivative of U(1)-current.
Note that

AU1⊕U2 = AU1 ⊗AU2

therefore any second quantization net AU is given by

AU =

∞⊗
n=1

A⊗
mn

U(n)

where U =
⊕

n mnU (n) and A⊗
mn

U(n) is the tensor product of mn copies of AU(n) . So
every second quantization net is determined by the multiplicity coefficients mn.

Proposition 6.5.5. AU(n) is strongly additive if and only if n = 1, hence AU(1)

n-regular for any n.
AU(2) is 3-regular but not 4-regular. AU(n) is not 3-regular if n ≥ 3.
AU(1) is the dual net of AU(n) for every n.
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Proof. Immediate by Cor. 4.2.4 and Lemma 6.5.4. �

6.6 Appendix

6.6.1 Innerness of the Möbius action

We first recall without proof the following theorem by Borchers.

Theorem 6.6.1. Let M be a von Neumann algebra and α a one-parameter group
of automorphisms of M. If αt = AdU(t), where the unitary one-parameter group
has semi-bounded generator, shows that α is inner, namely αt = Adv(t) here v is
a one-parameter unitary group and v(t) ∈ M.

The above theorem generalizes the Kadison-Sakai derivation theorem, which is
equivalent to Thm. 6.6.1 in the case the generator is bounded. We treat here a
variation of the above theorem.

Lemma 6.6.2. Let M be a von Neumann algebra on a Hilbert space H and U(t) ≡
eitP a one-parameter unitary group on H such that AdU(t)M = M, t ∈ R. Suppose
sp(P) ⊂ [a,∞) and let Ha the space of a-eigenvectors for P. If Ha is cyclic for M,
then U(t) ∈ M.

Proof. Replacing P with P− a we may assume that a = 0, so P ≥ 0. By consider-
ing the adjoint action of U on M′, we may equivalently prove the dual statement,
namely that if Ha is separating then AdU is trivial. To this end we first assume
that Ha is both cyclic and separating. Choose selfadjoint x ∈ M, x′ ∈ M′ and
ξ ∈ Ha. The funtion f (t) ≡ (U(t)xξ, x′ξ) is real and, since P ≥ 0, f extends to a
bounded continuous function on the upper plan=z ≥ 0, analytic in=z > 0. So f is
constant, namely U(t) = 1, by the cyclic and separating assumption for Ha. Now
assume that Ha is only separating for Ha and let E ∈ M′ be the projection onto
MHa. Then U commutes with E, by considering the action of U(t)E on ME, we
see that U(t)E = E as Ha is cyclic and separating for ME. Then for every x ∈ M
the operators x and AdU(t)x have the same restriction to Ha, hence x = AdU(t)x
because Ha is separating. �

Proposition 6.6.3. Let M be a von Neumann algebra on a Hilbert space H and
α : g ∈ G 7→ αg ∈ Aut(M) an automorphism action. If U a positive energy
unitary representation of Ḡ on H such that αg = AdU(g), g ∈ Ḡ. Then α is inner
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and there exists a positive energy unitary representation V of Ḡ on H such that
αg = AdV(g) and V(g) ∈ M.

Moreover, if the lowest eigenvector space Ha for the conformal Hamiltonian
L0 is cyclic for M, then U(g) ∈ M.

Proof. We first prove the last statement. By the above lemma U(R(t)) ∈ M so
U(gR(t)g−1) = U(g)U(R(t))U(g)∗ ∈ M, namely U(h) ∈ M for every h ∈ Ḡ con-
jugate to rotation, thus for all g ∈ Ḡ because these elements generate Ḡ (G is a
simple group).

In general, by the lemma and the argument here above, αg is inner for all
g ∈ G. So there exists unitaries V(g) ∈ M such that αg = AdV(g). Then V(gh) =

Z(g, h)V(g)V(h) with Z(g, h) in the center of M. Since the cohomology of Ḡ is
trivial, by replacing V(g) with c(g)V(g) for a suitable central unitary c(g), we have
the group property V(gh) = V(g)V(h). �

6.6.2 On the fixed point algebra under a group action

Proposition 6.6.4. Let M be a von Neumann algebra on a Hilbert space H, Ω

a cyclic and separating vector for M, U a Ω-fixing unitary representation of a
semigroup G on H such that αg(M) ⊂ M, g ∈ G, where αg ≡ AdU(g). Then there
exists a ω-invariant normal faithful conditional expectation ε of M onto the fixed
point algebra Mα, where ω ≡ (·Ω,Ω). Moreover MαΩ = EH, where E is the
projection onto the space of U-invariant vectors, and ε(x)E = ExE, x ∈ M.

Proof. Suppose first that G = N. Then by the mean ergodic theorem 1
n

∑n
k=1 Ukξ

weakly converges to Eξ for every ξ ∈ H. Let x ∈ M and consider the bounded
sequence xn ≡

1
n

∑n
k=1 α

n(x). Clearly xnΩ = 1
n

∑n
k=1 UkxΩ, so every xn-weak limit

point x̄ satisfies x̄Ω = ExΩ. So x̄ is unique, α(x̄) = x̄, and we may define ε
by ε(x) ≡ x̄. Clearly ε(x)E = ExE and the rest is clear. The case of a general
G can be proved by replacing 1

n

∑n
k=1 Uk with a net in the convex hull of U(G)

weakly converging to E (consider sub-semigroups generated by single elements
g ∈ G). �

Proposition 6.6.5. Let M be a von Neumann algebra on a Hilbert space H. If
there exists a faithful normal stateωwith trivial centralizer, i.e. the modular group
σω is ergodic. Then M is a type III1 factor in Connes classification, or M = C.
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Proof. As the center is contained in the centralizer, M is a factor. If M is semifinite
then σω = Adut for some one-parameter unitary group in M, thus σω(us) = us; as
σω is ergodic us ∈ C so σω is trivial so M is equal to its centralizer C.

If M , C then M is of type III. To infer that M is actually a type III1 factor
we shall rely on the fact that sp∆ω \ {0} is minimal, i.e. equal to Connes invariant
S (M), if the centralizer is a factor. Thus S (M) , {1} namely M is not of type III0.
Moreove M cannot be of type IIIλ with λ ∈ (0, 1) as otherwise the centralizer
would be a factor of type II1. So M has to be of type III1. �

Corollary 6.6.6. Let M be a von Neumann algebra a Hilbert space H and Ω ∈ H

a cyclic vector for M. Let U be a one-parameter group on H with generator P
satisfying U(s)MU(−s) ⊂ M, s ≥ 0. Suppose that P > 0 and Ω is a simple
eigenvector of P.

Then either

(a) M = B(H): this is the case iff U(s)MU(−s) = M ,∀s ∈ R; or

(b) M is a factor of type III1: this is the case iff U(s)MU(−s) , M for some
s ∈ R.

Case (a) holds if sp(P) , [0,∞). Case (b) holds if Ω is separating.
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Chapter 7

The split property

This chapter deals with a fundamental property for local Möbius covariant nets of
von Neumann algebras, the split property. It is an algebraic property of the net
that is closely related to more analytical properties of nuclearity type, as the trace
class property for the semigroup generated by the conformal Hamiltonian. The
split property selects physically, and mathematically, interesting models leaving
outside models with too many degrees of freedom.

We begin with a discussion of the split propery in the abstract setting of inclu-
sions of von Neumann algebras.

7.1 Standard and split inclusions of von Neumann
algebras

7.1.1 Split inclusions

Let M1,M2 be a commuting pair of von Neumann algebras on a Hilbert space H.
We shall say that the pair (M1,M2) is split if there exists a von Neumann algebra
isomorphism

Φ : M1 ∨ M2 → M1 ⊗ M2

such that
Φ(m1m2) = m1 ⊗ m2 , mi ∈ Mi ,

in other words a natural von Neumann algebra isomorphism between M1 ∨ M2

and M1 ⊗ M2.
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Note that if one of the Mi is a factor, by Murray-von Neumann lemma there
is a natural isomorphism between the algebraic tensor product M1 � M2 and the
∗-algebra generated by M1 and M2. By definition, the pair is split if it extends to
an isomorphism of the weak closures.

Lemma 7.1.1. Let M1,M2 be a commuting pair of von Neumann algebras with
M ≡ M1 ∨ M2 σ-finite1. The following are equivalent:

(i) : (M1,M2) is split ;

(ii) : For any given normal states ϕ1 on M1 and ϕ2 on M2 there exists a normal
state ϕ on M such that

ϕ(m1m2) = ϕ1(m1)ϕ2(m2) , mi ∈ Mi .

and ϕ is faithful if both ϕ1 and ϕ2 are faithful.

(iii) : There exists a faithful normal state ϕ on M such that

ϕ(m1m2) = ϕ(m1)ϕ(m2) , mi ∈ Mi .

Proof. Clearly (i) ⇒ (ii) by the tensor product identification and (ii) ⇒ (iii) is
obvious.

Assuming (iii) we have to show that (i) holds. Let ϕi ≡ ϕ|Mi . With πi, π the
GNS representations of (Mi, ϕi) and (M, ϕ), π is normal and faithful. Now the
restriction of π to the ∗-algebra generated by M1 and M2 is π1 � π2 (by uniqueness
of the GNS representation), so π provides a natural identification of M1∨M2 with
M1 ⊗ M2. �

Let now N ⊂ M be an inclusion of von Neumann algebras on a Hilbert space H.
We shall say that N ⊂ M is a split inclusion (of von Neumann algebras) if the
commuting pair (N,M′) is split. We shall frequently pass from an inclusion to a
commuting pair and back.

Next lemma provides a Hilbert space free equivalent definition of split inclu-
sion. Note that the trivial inclusion with N = M is split iff M is a type I factor.

1A von Neumann algebra is σ-finite if every family of mutually orthogonal projections of
M is countable; equivalently if there exists a faithful normal state on M. This automatic if the
underlying Hilbert space is separable.
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Lemma 7.1.2. Let N ⊂ M be an inclusion of von Neumann algebras on a Hilbert
space H. Assume that either a): N′ ∩M has a cyclic and separating vector or b):
H is separable and N′∩M is properly infinite. Then N ⊂ M is split iff there exists
an intermediate type I factor F, N ⊂ F ⊂ M.

Proof. Suppose there exists an intermediate type I factor F. The pair (F, F′) is
split and so is (M,N′) because N ⊂ F and M′ ⊂ F′.

Conversely assume the pair (M1,M2) ≡ (N,M′) to be split and let Φ : M1 ∨

M2 → M1 ⊗ M2 be the natural isomorphism. Suppose that Φ is spatial, namely
Φ(x) = UxU∗ for some unitary U from H to H ⊗H. Then F ≡ U∗

(
B(H) ⊗ 1

)
U

is an intermediate type I factor. So any condition that ensures Φ to be spatial
also gives an intermediate type I factor for N ⊂ M. For the case b) note that the
commutant of M1 ∨ M2 is properly infinite (by assumptions) and the commutant
of M1 ⊗ M2 is properly infinite (because M′

i ⊃ (M1 ∨ M2)′). Thus Φ is spatial,
i.e. implementented by a unitary U from H to H ⊗H. The case assuming a) is
similar, cf. also the following Sect. 7.1.2. �

Let M1 and M2 be commuting factors on a Hilbert space H. By Murray-von
Neumann lemma the ∗-algebra A0 generated by M1 and M2 is naturally isomorphic
to the algebraic tensor product M1 � M2, so the norm closure A0 of A is a the C∗

tensor product of M1 and M2 w.r.t. some C∗ tensor product norm. Then we may
consider the linear functionals on A of the form

n∑
k=1

ϕk ⊗ ψk (7.1.1)

with ϕk ∈ M1∗, ψk ∈ M2∗.

Lemma 7.1.3. In the above situation, suppose there is a normal state ϕ on M such
that ϕ|A is norm limit of sums of product functionals of the form (7.1.1) and that ϕ
has central cover 1 in M (the last condition is satisfied if either ϕ is faithful or M
is a factor). Then the pair (M1,M2) is split.

Proof. Let π0 be the defining representation of A on H and πp the representation
of A on H⊗H determined by πp(m1m2) = m1⊗m2, mi ∈ Mi (this is first defined on
A0 and then it extends to A because the spatial tensor product norm is minimal).

We have to show that π0 and πp are quasi-equivalent. By assumption ϕ|A is
norm limit of functionals that are normal w.r.t. πp. So the GNS representation of
ϕ|A is contained in πp, thus it is quasi-equivalent to πp because πp is factorial. But
the GNS representation of ϕ|A is quasi-equivalent to π0 if ϕ has central cover 1 on
M. �
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7.1.2 Standard inclusions
Let N ⊂ M be an inclusion of von Neumann algebras on a Hilbert space H. A
semi-standard vector (resp. standard vector) for N ⊂ M is a vector Ω ∈ H which
is cyclic and separating for N′ ∩ M (resp. N′ ∩ M, N and M).

A (semi)-standard inclusion of von Neumann algebra is a triple Λ ≡ (N ⊂
M,Ω), where N ⊂ M be an inclusion of von Neumann algebras and Ω is a (semi)-
standard vector for N ⊂ M. We shall say that Λ is split if N ⊂ M is split.

Proposition 7.1.4. Let Λ = (N ⊂ M,Ω) be a standard split inclusion on H. Then

(a) H is separable;

(b) N, M and N′ ∩ M are properly infinite (unless M = C).

Proof. (a): The state (Ω, ·Ω) is normal faithful on M, hence on any intermediate
type I factor F. But a type I factor admits a normal faithful state iff it is separable
in the strong topology. Thus FΩ is a separable Hilbert space. As Ω is cyclic for
N, it is also cyclic for F, so FΩ = H.

(b): Suppose that an intermediate type I factor F is finite-dimensional. Then
M = F = N and M = N′ ∩ N because Ω is separating, so M is abelian. F is thus
one-dimensional and so is H. So, if Λ is non-trivial, F is infinite-dimensional. As
the von Neumann algebras are in a standard form, N′ (⊃ F′) and N, (N′ ∩ M)′ (⊃
N) and N′ ∩ M are properly infinite too. �

Lemma 7.1.5. Let Ni ⊂ Mi be an inclusion of von Neumann algebra on a Hilbert
space Hi and Ωi ∈ Hi a cyclic vector for Ni, thus for Mi, i = 1, 2. Let Φ be an
isomorphism of M1 onto M2 such that (Ω2,Φ( · )Ω2)|M1 = (Ω1, ·Ω1)|M1 . Then the
unitary from H1 onto H2 determined by

UnΩ1 = Φ(n)Ω2 , n ∈ N1 , (7.1.2)

implements Φ on M1.
In particular if Ωi is also separating for Mi, thus for Ni, and Φ(N1) = N2, then

the unitary standard implementations of Φ and of Φ|N1 w.r.t. Ω1,Ω2 coincide.

Proof. The first part follows because the unitary U : H1 → H2 determined by

UmΩ1 = Φ(m)Ω2 , m ∈ M1 , (7.1.3)

implements Φ and U is determined by its restriction to N1Ω1 as N1Ω1 = H1.
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Now, if Ωi is separating for Mi, then the standard unitary implementation U of
Φ is given by (7.1.3). Also, if Φ(N1) = N2, the standard unitary implementation
of Φ|N1 is given by (7.1.2), so it is equal to U by the above argument. �

Let Λi = (Ni ⊂ Mi,Ωi) be a (semi)-standard inclusion, i = 1, 2 on the Hilbert
space Hi. An isomorphism Φ : Λ1 → Λ2 is an isomorphism of Φ : M1 → M2

such that Φ(N1) = N2 and (Ω2,Φ(·)Ω2) = (Ω1, ·Ω1). Note that Φ is spatial, indeed
Φ = AdVΦ where VΦ : H1 → H2 the unitary defined by

VΦxΩ1 = Φ(x)Ω2, x ∈ M1 .

As Ωi is cyclic for N′i ∩ Mi, the unitary VΦ is determined by taking x ∈ N′1 ∩ M1

or, if Ωi is cyclic for Ni, by taking x ∈ N1. So, if the Λi are standard, VΦ is the
standard unitary implementation of Φ, of Φ|N1∩M1 , or of Φ|N1 as in Lemma 7.1.5.

Let now Λ = (N ⊂ M,Ω) be a standard split inclusion of von Neumann
algebras Since Λ is split, there exists an isomorphism ΦΛ : N ∨ M′ → N ⊗
M′, ΦΛ(nm′) = n ⊗ m′, n ∈ N,m′ ∈ M′. Since Ω and Ω ⊗ Ω are cyclic and
separating repectively for N ∨ M′ and N ⊗ M′, we may consider the standard
unitary implementation of ΦΛ with respect to Ω and Ω ⊗ Ω; namely the unique
unitary UΛ : H → H ⊗ H such that UΛnm′U∗

Λ
= n ⊗ m′, n ∈ N,m′ ∈ M′, and

UΛP
\

Ω
(N ∨ M′) = P

\

Ω⊗Ω
(N ⊗ M′). Note that

UΛNU∗Λ = N ⊗ 1, UΛM′U∗Λ = 1 ⊗ M′, UΛMU∗Λ = B(H) ⊗ M,

where the third equality follows by the second one by taking commutants.
We call ΦΛ = AdUΛ the canonical tensorial representation of Λ. Note that

the canonical tensorial representation is an isomorphism of Λ with (N ⊗ 1 ⊂
M ⊗ B(H), ξΛ), hence a spatial identification, where ξΛ ≡ UΛΩ. In the canon-
ical tensorial representation many things become visible and trivialize.

The canonical tensorial representation is functorial, namely if Λ1,Λ2 are stan-
dard split inclusions and Φ : Λ1 → Λ2 is an isomorphism of standard inclusion
then the following diagram commute

Λ1 = (N1 ⊂ M1,Ω1)
ΦΛ1 =AdUΛ1 //

Φ=AdVΦ

��

(N1 ⊗ 1 ⊂ M1 ⊗ B(H),Ω)

Φ⊗Φ=AdVΦ⊗VΦ

��
Λ2 = (N2 ⊂ M2,Ω2)

ΦΛ2 =AdUΛ2 // (N2 ⊗ 1 ⊂ M2 ⊗ B(H),Ω)

(7.1.4)
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and (VΦ ⊗ VΦ) · UΛ1 = UΛ2 · VΦ. This follows immediately by the uniqueness of
the standard implementation and the commutativity of the diagram

N1 ∨ M′
1

ΦΛ1 //

Φ

��

N1 ⊗ M′
1

Φ⊗Φ

��
N2 ∨ M′

2
ΦΛ2 // N2 ⊗ M′

2

7.1.3 The canonical intermediate type I factor
If an inclusion of von Neumann algebras has an intermediate type I factor F, then
in general it has infinitely many intermediate type I factors, for example factors of
the form uFu∗ with u a unitary in N′ ∩ M. Remarkably, a standard split inclusion
has a canonical intermediate type I factor.

Theorem 7.1.6. Let Λ = (N ⊂ M,Ω) be a semi-standard split inclusion on a
Hilbert space H. There exists a canonical intermediate type I factor FΛ between
N and M. If Φ : Λ1 → Λ2 is an isomorphism of standard split inclusions Λ1,Λ2,
then Φ(FΛ1) = FΛ2 .

Proof. For simplicity we assume Λ to be standard. In the canonical tensorial
representation ΦΛ = AdUΛ the canonical intermediate type I factor is simply
B(H) ⊗ 1. Namely we set

FΛ ≡ U∗Λ(B(H) ⊗ 1)UΛ .

Clearly FΛ is a type I factor such that N ⊂ FΛ ⊂ M. The last part of the statement
(functoriality character of FΛ) follows immediately by the commutativity of the
diagram (7.1.4). �

We shall call FΛ the canonical intermediate type I factor for Λ.
Denote Aut(Λ) the automorphism group of Λ, i.e. the group of all isomor-

phisms of Λ with itself.

Corollary 7.1.7. If Λ = (N ⊂ M,Ω) is a standard split inclusion, then

(a) FΛ is globally stable under Aut(Λ),

(b) F′
Λ

= FΛ′ , where Λ′ ≡ (M′ ⊂ N′,Ω).



7.1 Standard and split inclusions of von Neumann algebras 115

Proof. (a) follows by previous Thm. 7.1.6.
(b): in the canonical tensorial representation of Λ we have:

Λ ≡ (N ⊗ 1 ⊂ B(H) ⊗ M, ξΛ), Λ′ ≡ (1 ⊗ M′ ⊂ N′ ⊗ B(H), ξΛ) .

We apply the characterization in the following Prop. 7.1.8. Then FΛ′ is generated
in the above canonical tensorial representation by 1⊗N′ and 1⊗ PΩ, so it is equal
to 1 ⊗ B(H), the commutant of UΛFΛU∗

Λ
. �

We now give another description of FΛ. Let Λ = (N ⊂ M,Ω) be a standard split
inclusion, then there exists a faithful normal product state ϕ on N ∨ M′ given by
ϕ(nm′) = (Ω, nΩ)(Ω,m′Ω), namely ϕ = ω ⊗ ω · ΦΛ where ω ≡ (Ω, ·Ω). Let ηΛ be
the a unique vector representative of ϕ in P

\

Ω
(N ∨ M′), namely ηΛ ∈ P

\

Ω
(N ∨ M′)

and ϕ = (ηΛ, ·ηΛ). As ϕ is faithful, then ηΛ is separating, thus cyclic, for N ∨ M′.

Proposition 7.1.8. FΛ is generated by N and the projection pΛ ≡ [M′ηΛ] ∈ M.

Proof. Note that
UΛηΛ = Ω ⊗Ω

by the uniqueness of the vector representative of a normal state in a natural cone.
Therefore, in the canonical tensorial representation M′ goes to 1 ⊗ M′ and ηΛ

to Ω ⊗ Ω, thus pΛ to PΩ ⊗ 1, where PΩ is the orthogonal projection onto CΩ. So
we conclude by the following lemma.

Lemma 7.1.9. Let N be a von Neumann algebra on a Hilbert space H and Ω a
cyclic vector for N. The von Neumann algebra generated by N and the rank one
projection PΩ onto CΩ is B(H).

Proof. Indeed if x ∈ B(H) commutes with N and PΩ then xΩ = λΩ and thus
x = λ because x ∈ N′ and Ω is separating for N′. �

7.1.4 Compactness of Aut(Λ)

By Cor. 7.1.7, Aut(Λ) leaves FΛ globally stable. We now show that Aut(Λ) is
compact and metrizable in the topology of pointwise norm convergence on the
predual M∗ of M.

Lemma 7.1.10. Let F be a type I factor and ω a faithful normal state of F. The
group Autω(F) of all automorphisms of F leavingω invariant is a compact metriz-
able subgroup of Aut(F).
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Proof. As F is a type I factor we can assume that F = B(H) with H a Hilbert
space. Since ω is faithful, F is σ-finite and hence H is separable. Let hω ∈ F be
the non-singular trace class Radon-Nikodym derivative of ω with respect to the
trace on F, ω(·) = Tr(hω·). Also consider the group Uω of all unitaries of F com-
muting with hω. Uω is compact metrizable in the strong operator topology, since
it is (isomorphic to) the direct product of a countable family of metrizable com-
pact groups, namely the groups of all unitaries acting on the finite-dimensional
eigenspaces of hω. The map u ∈ Uω → Adu ∈ Autω(F) is continuous and surjec-
tive, and therefore Autω(F) is compact and metrizable. �

Theorem 7.1.11. If Λ = (N ⊂ M,Ω) is a standard split inclusion acting on the
Hilbert space H, then Aut(Λ) is compact and metrizable.

Proof. Ω is cyclic and separating for FΛ, so ωΛ ≡ (Ω, ·Ω)|FΛ
is a faithful and

normal state of FΛ. For any α ∈ AutωΛ
(FΛ) let Uα be the standard implementation

of α with respect to Ω. The map

f : α ∈ AutωΛ
(FΛ)→ AdUα ∈ Aut(B(H))

is continuous, thus range( f ) is compact and metrizable. Let Aut(N,M, B(H)) be
the closed subgroup of Aut(B(H)) of all automorphisms of B(H) leaving N and
M globally stable. Then

G ≡ range( f ) ∩ Aut(N,M, B(H))

is a compact metrizable subgroup of Aut(B(H)). But Aut(Λ) is the range of the
continuous restriction map α ∈ G → α|M ∈ Aut(Λ), and thus the statement of the
theorem follows. �

7.1.5 Characterizations of FΛ

The following theorem gives an important description of the canonical intermedi-
ate type I factor.

Theorem 7.1.12. Let Λ = (N ⊂ M,Ω) be a standard split inclusion and J = JN′∩M

the modular conjugation of N′ ∩ M with respect to Ω. If both N, M are factors,

FΛ = N ∨ JNJ = M ∩ JMJ.

So FΛ is the unique von Neumann algebra F with N ⊂ F ⊂ M such that JFJ = F.
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Proof. In the canonical tensorial representation ξΛ and Ω ⊗ Ω belong to the same
natural cone P

\

Ω⊗Ω
(N′ ⊗M), hence they give rise to the same modular conjugation

for N′ ⊗ M (the relative commutant in the canonical tensorial representation).
Since the modular conjugation of the tensor product is the tensor product of the
modular conjugations, we have

UΛJU∗Λ = JN ⊗ JM .

Since AdUΛ maps N onto N ⊗ 1 we then have

AdUΛ : JNJ −→ JN ⊗ JM(N ⊗ 1)JN ⊗ JM = N′ ⊗ 1
AdUΛ : N ∨ JNJ −→ (N ∨ N′) ⊗ 1 = B(H) ⊗ 1 = AdUΛ(FΛ)

thus FΛ = N ∨ JNJ. The equality FΛ = M ∩ JMJ is similarly obtained.
Clearly any von Neumann algebra F intermediate between N and M such that

JFJ = F must be also intermediate between N ∨ JNJ and M ∩ JMJ, hence it has
to coincide with FΛ. �

7.1.6 Local implementation

Given a standard split inclusion Λ = (N ⊂ M,Ω) we now construct a canonical
unitary representation of Aut(Λ) in M implementing the natural action of Aut(Λ)
on N with a natural covariance property.

Given a standard split inclusion Λ, the (normal, unital) endomorphism ψΛ of
B(H) defined by

ψΛ : X ∈ B(H) 7→ U∗Λ(X ⊗ 1)UΛ

is called the universal localizing map associated to Λ. Note that

ψΛ(B(H)) = FΛ

and that ψΛ(n) = n for every n ∈ N.
Being an endomorphism of B(H), ψΛ is inner, i.e. implemented by a (canoni-

cal) Hilbert space of isometries.

Remark. With Λ = (N ⊂ M,Ω) a standard split inclusion, we note that

ψΛ|N′ = γ
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where γ : N′ → N′∩M is the canonical endomorphism w.r.t. Ω, namely γ = AdΓ

where Γ ≡ JJN . Indeed if n′ ∈ N′, thus n = JNn′JN ∈ N, we have

ψΛ(n′) = UΛ(n′ ⊗ 1)U∗Λ = UΛ(JNnJN ⊗ 1)U∗Λ
= UΛ(JN ⊗ JM)(n ⊗ 1)(JN ⊗ JM)U∗Λ = JUΛ(n ⊗ 1)U∗ΛJ = JnJ = JJNn′JN J ,

where we have used the relation JN ⊗ JM ·UΛ = UΛJ that holds because JN ⊗ JM is
the modular conjugation of N ⊗ M′ with respect to Ω ⊗ Ω and UΛ is the standard
implementation of the tensorial representation.

Theorem 7.1.13. Let Λ = (N ⊂ M,Ω) be a standard split inclusion on H. There
exists a continuous unitary representation v : α ∈ Aut(Λ)→ v(α) ∈ M such that

(a) v(α)nv(α)∗ = α(n), α ∈ Aut(Λ), n ∈ N ,

(b) α(v(β)) = v(αβα−1) , α, β ∈ Aut(Λ) ,

(c) v(α)P\

Ω
(N′ ∩ M) = P

\

Ω
(N′ ∩ M), α ∈ Aut(Λ) ,

(d) v(α) ∈ FΛ ,

(e) Jv(α)J = v(α) ,

( f ) v(g)ηΛ = ηΛ .

Furthermore if v′ : α ∈ Aut(Λ)→ v′(α) ∈ M is a unitary representation satisfying
(a) and (c), or (a) and ( f ), then v′ = v.

Proof. Let α ∈ Aut(Λ) and Uα be the standard implementation of α as an auto-
morphism of M. Then UαΩ = Ω and we still denote by α = AdUα the adjoint
action on B(H). Then Uα is also the standard implementation of α|N∨M′ , of α|N and
of α|M′ by Lemma 7.1.5. Then UΛUU∗

Λ
is the unitary standard implementation of

α|N ⊗ α|M′ with respect to Ω ⊗Ω, thus UΛUαU∗
Λ

= Uα ⊗ Uα Define

v(α) ≡ ψΛ(Uα) = U∗Λ(Uα ⊗ 1)UΛ

All the properties follow easily from the definition. Concerning the uniqueness,
if v satisfies (a) and (c) then v(α) ∈ M is the standard implementation of the
automorphism AdU∗

Λ
· (α|N ⊗ ι) · AdUΛ : nm′ → α(n)m′ of N ∨ M′ with respect

to Ω, hence it is uniquely determined. ( f ) It follows from the definition that
UΛv(g)U∗

Λ
Ω ⊗Ω = Ω ⊗Ω and UΛηΛ = Ω ⊗Ω.

The rest follows easily. �
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We include the following table that illustrates how various objects look in the
original representation and in the canonical tensorial representation:

Object Original rep. Canonical tensorial rep.
standard split inclusion Λ (N ⊂ M,Ω) (N ⊗ 1 ⊂ B(H) ⊗ M, ξΛ)
von Neumann algebra N N ⊗ 1
von Neumann algebra M′ 1 ⊗ M′

von Neumann algebra M B(H) ⊗ M
von Neumann algebra FΛ B(H) ⊗ 1
von Neumann algebra N ∨ M′ N ⊗ M′

von Neumann algebra N′ ∩ M N′ ⊗ M
vector Ω ξΛ

vector ηΛ Ω ⊗Ω

modular conjugation J ≡ JN′∩M JN ⊗ JM

natural cone P
\

Ω
(N′ ∩ M) P

\

Ω⊗Ω
(N′ ⊗ M) ⊃ P

\

Ω
(N) ⊗ P

\

Ω
(M)

unitary implem. α ∈ Aut(Λ) Uα Uα ⊗ Uα

local unitary v(α) Uα ⊗ 1

7.2 Modular nuclearity and the split property
We now introduce the concept of modular nuclearity for inclusions of von Neu-
mann algebras with a distinguished cyclic and separating vector.

Let M be a von Neumann algebra on a Hilbert space H and cyclic and sepa-
rating unit vector Ω. We set

L∞(M) = M, L2(M) = H, L1(M) = M∗ .

Then we have the linear embeddings

L∞(M)
x→(xΩ,J ·Ω)

ΦM
∞,1

//

ΦM
∞,2

x→∆1/4 xΩ

��;;;;;;;;;;;;;;; L1(M)

L2(M)

ξ→(ξ,J ·Ω)

ΦM
2,1

BB���������������

All embeddings are bounded with norm one.
Let now N be a von Neumann subalgebras of M . We shall say that Lp,q-

nuclearity holds for N ⊂ M, with respect to Ω, if ΦM
p,q|N is a nuclear operator
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(p, q = 1, 2,∞, p ≥ q) . L∞,2 nuclearity is also called modular nuclearity (for
(N ⊂ M,Ω)).

Denote by H ≡ MsaΩ, K ≡ NsaΩ the associated closed real linear subspaces of
H. Recall that in Sect. 5.3 we have introduced the notion of modular nuclearity
for a real linear subspace of a standard subspace and we now provide a link to this
notion.

Proposition 7.2.1. If modular nuclearity holds for K ⊂ H, then modular nuclear-
ity holds for (N ⊂ M,Ω),

Proof. ΦM
∞,2|N is nuclear iff its restriction ΦM

∞,2|Nsa is nuclear (as real linear map).
As ΦM

∞,2|Nsa is equal to ∆
1/4
H EK multiplied on the right with the norm one map

n ∈ Nsa 7→ nΩ ∈ H, the statement follows. �

Proposition 7.2.2. Modular nuclearity implies L∞,1 nuclearity and ||ΦM
∞,1|N ||1 ≤

||ΦM
∞,2|N ||1.

Proof. The statement is immediate by the above diagram: indeed ΦM
∞,1|N = ΦN

2,1 ·

ΦM
∞,2|N and ||ΦN

2,1|| ≤ 1. �

Proposition 7.2.3. If N or M is a factor and L∞,1 holds (in particular if modular
nuclearity holds) then N ⊂ M is a split inclusion.

Proof. By assumption ΦM
∞,1|N is nuclear. It follows that the map Φ : M1 → M∗

2
given by

Φ : m1 ∈ M1 7→ ω(m1 ·)|M2 ∈ M2∗ (7.2.1)

is nuclear, where ω ≡ ( ·Ω,Ω). This means that there exist sequences of elements
ϕk ∈ M∗

1 and ψk ∈ M2∗ such that∑
k

||ϕk|| ||ψk|| < ∞ (7.2.2)

and
ω(m1m2) =

∑
k

ϕk(m1)ψk(m2) , m1 ∈ M, m2 ∈ M2 . (7.2.3)

We first show that we may choose the ϕk to be normal. Let ϕ(n)
k and ϕ(s)

k the normal
and the singular part of ϕk ∈ M∗

1, thus ϕk = ϕ(n)
k + ϕ(s)

k and ||ϕ(n)
k ||, ||ϕ

(s)
k || ≤ ||ϕk||.
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Consider the maps from M1 to M∗
2

Φ(n) ≡

∞∑
k=1

ϕ(n)
k ⊗ ψk , Φ(s) ≡

∞∑
k=1

ϕ(s)
k ⊗ ψk , (7.2.4)

in the sense that foe every m1 ∈ M1 we have

Φ(n)(m1) =

∞∑
k=1

ϕ(n)
k (m1)ψk , Φ(s)(m1) =

∞∑
k=1

ϕ(s)
k (m1)ψk . (7.2.5)

Clearly
Φ = Φ(n) + Φ(s)

so for any fixed m1 ∈ M1 we have the equality among elements of M∗
1

Φ(m1) = Φ(n)(m1) + Φ(s)(m1) .

Clearly Φ(m1) ∈ M∗
2 as is given by m2 7→ ω(m1m2).

Now Φ(n)(m1) and Φ(s)(m1) are respectively normal and singular elements of
M∗

2 because the truncated sums

Φ(n)(m1) =

N∑
k=1

ϕ(n)
k (m1)ψk , Φ(s)(m1) =

N∑
k=1

ϕ(s)
k (m1)ψk (7.2.6)

are respectively normal and singular functionals and the series (7.2.5) are ab-
solutely convergent as the series (7.2.4) are absolutely convergent. Therefore
Φ(m1) = Φ(n)(m1) for all m1 showing that the ϕk can be taken normal.

The proposition now follows by Lemma 7.1.3 �

Consider now the commutative diagram

L∞(N)
ΦM
∞,1 |N

−−−−−−−−−−−−→ L1(M)

ΦN
∞,2

y xΦM
2,1

L2(N)
TM,N≡∆

1/4
M ∆

−1/4
N

−−−−−−−−−−−−−−→ L2(M)

Recall that the operator ∆
1/4
M ∆

−1/4
N is densely defined with norm one; its closure

TM,N here above is the canonical embedding of L2(N) into L2(M).
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Note that the map TM,N is associated only with the standard subspaces H ≡
Msa, K ≡ Nsa.

We shall now consider the condition that TM,N be a nuclear operator that we
call the L2-nuclearity condition. Obvoiusly, this is nothing else than the L2-
nuclearity condition for K ⊂ H.

Proposition 7.2.4. L2-nuclearity implies modular nuclearity and ||ΦM
∞,2|N ||1 ≤

||TM,N ||1.

Proof. Immediate by Prop. 5.3.1, 7.2.2 and 7.2.3. �

Combining Propositions 7.2.2 and 7.2.3 we then have:

Modular nuclearity⇒ L∞,2-nuclearity⇒ L∞,1-nuclearity⇒ Split . (7.2.7)

We make now a few comments about generalizing the above notions with more
general exponents. Consider the map ΞM

λ : M → H

ΞM
λ : x ∈ M 7→ ∆λ

M xΩ ∈ H

thus ΞM
1/4 = ΦM

∞,2. We have ||ΞM
λ || ≤ 1 if 0 ≤ λ ≤ 1/2.

With S = S M, ∆M = ∆ and J = JM the Tomita operators, we shall say that
L2-modular nuclearity holds for (N ⊂ M,Ω), with exponent λ ∈ (0, 1/2), if ΞM

λ |N

is nuclear.
As

J∆λnΩ = J∆λS n∗Ω = J∆λJ∆1/2n∗Ω = ∆−λ∆1/2n∗Ω = ∆1/2−λn∗Ω ,

L2-modular nuclearity for (N ⊂ M,Ω) holds with exponent λ iff it holds with
exponent 1/2 − λ. As ∆1/4 = B(∆λ + ∆1/2−λ) with B a bounded operator, if L2-
modular nuclearity holds with exponent λ then it holds with exponent 1/4. If no
exponent is specified for L2-modular nuclearity, we shall implicitly assume it to
be 1/4.

Consider now the condition

‖TM,N(iλ)‖1 < ∞

with TM,N(λ) ≡ ∆λ
M∆−λN = ∆λ

H∆−λK for general exponents 0 < λ < 1/2. Note that
‖TM,N(λ)‖ ≤ 1 by (7) of Th. 2.3.1.

Since
ΞM
λ |N = TM,N(iλ) · ΞN

λ

we have
||ΞM

λ |N ||1 ≤ ||TM,N(iλ)||1 .
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7.3 Split property and trace class condition for nets
of factors

A net A of von Neumann algebras on S 1 is said to satisfy the split property if
there exists an intermediate type I factor A(I1) ⊂ F ⊂ A(I2) for any inclusion of
intervals I1 b I2.

Proposition 7.3.1. If the split property holds, then the local algebras A(I) are
approximately finite-dimensional.

Proof. By continuity we may suppose that I is open. Let I1 ⊂ I2 ⊂ · · · I be an
increasing sequence of open intervals with Īk ⊂ Ik+1 and ∪Ik = I and choose type I
factors A(Ik) ⊂ Fk ⊂ A(Ik+1). Then A(I) is generated by the increasing sequence
of type I factors Fk, hence it is approximately finite-dimensional. �

Corollary 7.3.2. If A is non-trivial and the split property holds, A(I) is isomor-
phic to the unique Connes-Haagerup injective III1-factor.

Proof. By Prop. 6.2.9 A(I) is a type III1-factor. The result is then immediate by
the above proposition and the uniqueness of the injective type III1-factor. �

Let A be a Möbius covariant net and L be its conformal Hamiltonian. We shall
say that A satisfies the trace class condition, at inverse temperature β > 0, if

Tr(e−βL) < ∞ .

We now define the inner distance `(Ĩ, I) for an inclusion of intervals I b Ĩ. First
suppose that in the real line picture Ĩ = (−1, 1) and I = (−e−s, e−s), then we set
`(Ĩ, I) ≡ s. Now an arbitrary inclusion I b Ĩ of intervals of S 1 is conjugate by a
Möbius tranformation to a an inclusion (−e−s, e−s) ⊂ (−1, 1) as above for a unique
s > 0 and we thus set `(Ĩ, I) = s.

Theorem 7.3.3. If A satisfies the trace class condition at inverse temperature β,
then A(I) ⊂ A(Ĩ) is a split inclusion if `(Ĩ, I) > β. Therefore

Tr(e−βL) < ∞ ∀β > 0 =⇒ split property

Proof. With H(I) ≡ A(I)saΩ the associated net of standard subspaces, we know
from Chapter 5 that

Tr(e−sL) < ∞ =⇒ ||T Ĩ,I || < ∞ , Ĩ ⊃ I, `(Ĩ, I) > s ,

namely L2 nuclearity holds for H(I) ⊂ H(Ĩ). By the implications (7.2.7) we then
have the split property for A(I) ⊂ A(Ĩ). �
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We note that if I ⊂ Ĩ are intervals with one common boundary point, then the split
property for A(I) ⊂ A(Ĩ) does not hold. Otherwise there would exists a product
state ϕ on A(I) ∨ A(Ĩ′), namely ϕ(xx′) = ω(x)ω(x′), x ∈ A(I), x′ ∈ A(Ĩ′). Now
δĨ(s) maps A(I) ∨A(Ĩ′) into itself, s ≥ 0, and for x ∈ A(I), x′ ∈ A(Ĩ′), we have

ϕ(δĨ(s)(xx′)) = ϕ(δĨ(s)(x)δĨ(s)(x′)) = ω(δĨ(s)(x))ω(δĨ(s)(x′)) = ω(x)ω(x′) = ϕ(xx′).

As s → +∞, δĨ(s)(X) → ω(X) weakly for all X ∈ A(I) ∨ A(Ĩ′), so the above
equation shows that ϕ = ω on A(I)∨A(Ĩ′) which is a contradiction by the cyclicity
of Ω. �

7.4 Split and nuclarity for second quantization nets

7.4.1 Trace and determinants
With a H be a Hilbert space and a positive contraction A ∈ B(H), we now give a
formula for calculating the trace of the exponential Γ(A) of A in terms of A. If B is
an operaror with discrete spectrum with eigenvalue list si (with multiplicity), the
determinant of B id defined by det(B) =

∏
i si provided the product is absolutely

convergent.

Lemma 7.4.1. If A ∈ B(H) is selfadjoint, 0 ≤ A < 1, then

Tr Γ(A) = det(1 − A)−1, (7.4.1)
log Tr Γ(A) = Tr log(1 − A) (7.4.2)

Proof. Assume first that H is one-dimensional, thus A = λ is a scalar 0 ≤ λ < 1.
Then H⊗n

is also one-dimensional for all n, thus we have Γ(A) = ⊕∞n=0λ
n, so

Tr Γ(A) =
∑∞

n=0 λ
n = (1 − λ)−1.

For a general A (with discrete spectrum) we may decompose H = ⊕iHi so
that dimHi = 1 and A = ⊕iλi. Then Γ(H) = ⊗

{Ωi}

i Γ(Hi), where Ωi is the vacuum
vector of Γ(Hi), and A = ⊗iAi. It follows that

Tr Γ(A) =
∏

i

Tr Γ(Ai) =
∏

i

(1 − λi)−1 = det(1 − A)−1.

Concerning the second formula, notice that

det B = eTr log B,
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hence
log Tr Γ(A) = − log det(1 − A) = −Tr log(1 − A).

�

Corollary 7.4.2. With A as above we have Tr Γ(A) < ∞ iff Tr A < ∞.

Proof. We have Tr A =
∑

i λi and Tr Γ(A) = −
∑

i log(1 − λi). As − log(1 − t) = t
as t → 0+, the two series have the same character and the corollary follows. �

7.4.2 The trace class condition for AU

We now show the trace class property, hence the split property, for second quanti-
zation nets where the multiplicity of the irreducible components in the one-particle
space increases sub-exponentially, in particular for the nets associated with the
U(1) current or its n-derivative. We shall denote by U (n) be the irreducible unitary
representation of G with lowest weight n and by L(n)

0 the associated conformal
Hamiltonian.

Proposition 7.4.3. Let U =
⊕

n mnU (n) be a positive energy unitary representa-
tion of G and denote by L0 the conformal Hamiltonian of U. Then

Tr(e−βL0) < ∞ , ∀β > β0 , (7.4.3)

Tr(e−βL0) = ∞ , ∀β < β0 , (7.4.4)

where β0 ≡ log lim supn
n
√

mn.

Proof. The eigenvalues of L(n)
0 are {n, n + 1, n + 2, . . . }, with multiplicity one, so

Tr(e−βL(n)
0 ) =

∑∞
k=n e−βk = e−βn

1−e−βn < ∞.
We then have

Tr(e−βL0) =
∑

n

mn Tr(e−βL(n)
0 ) = (1 − e−β)−1

∑
n

mne−βn

that converges if lim supn
n
√

mne−β < 1 and diverges if lim supn
n
√

mne−β > 1. �

Corollary 7.4.4. The net generated by U(1) current, or by any derivative of the
U(1) current, satisfies the trace class condition, hence the split property.

More generally, let U =
⊕

n mnU (n) be a positive energy unitary representa-
tion of G. The second quantization net AU satisfies the trace class condition if
β > β0 where β0 is given in Prop. 7.4.3. So the split property holds if β0 = 0.
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Proof. The semigroup generated by the conformal Hamiltonian of AU(n) is Γ(e−βL(n)
0 ),

so by Lemma 7.4.1 we have Tr(Γ(e−βL(n)
0 )) < ∞ if and only is Tr(e−βL(n)

0 ) < ∞, which
holds for all β > 0. The split property now follows by Thm. 7.3.3. The case of a
general second quantization net AU is treated similarly. �
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