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Chapter 1

The Möbius group

In this chapter we describe the structure of our basic symmetry group, the Möbius
group, and of its positive energy representations.

1.1 Basic structure

The group SL(2,R) of 2 × 2 real matrices with determinant one acts on the com-

pactified real line R̄ ≡ R∪{∞} line by linear fractional transformations: g ≡
(
a b
c d

)
acts as

g : x 7→ gx ≡
ax + b
cx + d

(1.1.1)

The kernel of this action is {±1}. We identify R̄ with the circle S 1 ≡ {z ∈ C : |z| =
1} by the Cayley map

C : x ∈ R 7→ −
x − i
x + i

∈ S 1 ,

inverse of the stereographic map z → −i(z − 1)(z + 1)−1, (setting C(∞) = −1), so
PSL(2,R) ≡ SL(2,R)/{±1} is identified with a group of diffeomorphisms of S 1,
the Möbius group that is also denoted by G in these lectures.

Indeed, by the transformation C the group SL(2,R) can be identified with the
group S U(1, 1) of complex 2 × 2 matrices(

α β
β̄ ᾱ

)
, |α|2 − |β|2 = 1 ,



4 The Möbius group

acting on S 1 is as

z→
αz + β

β̄z + ᾱ

and so G ' PS U(1, 1) ≡ S U(1, 1)/{±1} (where ' means isomorphic).
We shall frequently change from the “circle picture” to the “real line picture”

as some structure is more manifest in one description rather than in the other.
It will be clear from the context whether we are considering elements of G as
elements of PS U(1, 1) (acting on S 1) or of PSL(2,R) (acting on R̄).

The following three one-parameter subgroups of G play an important rôle: the
rotation subgroup R(·), the dilation subgroup δ(·) and the translation subgroup
τ(·); they are defined as quotient of the corresponding subgroup in SL(2,R)

R(ϑ) =

(
cosϑ/2 sinϑ/2
− sinϑ/2 cosϑ/2

)
, δ(s) =

(
es/2 0
0 e−s/2

)
, τ(t) =

(
1 t
0 1

)
Note that R is periodic with period 2π in PSL(2,R) (and 4π in SL(2,R)). Geomet-
rically, the actions are the following:

R(ϑ)z = eiϑz on S 1

δ(s)x = esx on R
τ(t)x = x + t on R .

(1.1.2)

Denote by K (resp. A, N) the rotation (resp. dilation, translation) subgroup, i.e.
the range of R (resp. δ, τ).

The isotropy group of the point ∞ for the action (0.1.1) is the translation-
dilation subgroup P = AN (the “ax + b” group). The subgroup of elements fixing
both {0} and {∞} is the dilation subgroup A.

It follows from the spectral theorem that every one-parameter subgroup of G
is conjugate, up to rescaling, to one of the above three ones (consider the Lie
algebra generators, see below). Note that G acts transitively on the ordered triple
of points of S 1 and the stabilizer subgroup of a single point (resp. of two points)
of S 1 is conjugate to P (resp. to A).

By an interval I of S 1 we mean an open1, connected, non-empty, non-dense
subset of S 1. The set of all intervals of S 1 will be denoted by I. Note that G acts
transitively on I. If I ∈ I, we denote by I′ the interior of the complement of I in
S 1, which is an interval.

1As we shall see, there is no advantage to consider closed intervals at this point as Möbius
covariant nets will automatically extend to closed intervals
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Given any interval I, we now define two one-parameter subgroups of G, the
dilation δI and the translation group τI associated with I. Let I1 be the upper
semi-circle, i.e. the interval {eiϑ, ϑ ∈ (0, π)}, that corresponds to the positive real
line R+ in the real line picture. We set δI1 ≡ δ, and τI1 ≡ τ. Then, if I is any
interval, we chose g ∈ G such that I = gI1 and set

δI ≡ gδI1g
−1, τI ≡ gτI1g

−1.

The choice of g is unique modulo the subgroup that fixes the two endpoints of I,
namely by right multiplication by an element A. As A is abelian and δ(s) ∈ A, δI

is well defined; while the one parameter group τI is defined only up to a rescaling
of the parameter due to the commutation relation

δ(s)τ(t)δ(−s) = τ(est) . (1.1.3)

We note also that τI′(t) is a one-parameter subgroup of G mapping I into itself iff
t ≤ 0. We shall also set τ′I(t) = τI′(t) an τ′ ≡ τ(−∞,0).

If I is an open interval or half-line of R we write τI or δI to denote the transla-
tion or dilation group associated with C(I) thus, for example, τ(0,∞) = τI1 = τ.

1.2 KAN decomposition and the universal cover
We now describe the basic internal structure of G. The group P is the semi-direct
product of A and N (cf. eq. (0.1.3)) and in particular A and N intersect only at the
identity and every p ∈ P = AN is uniquely written as p = an with a ∈ A, n ∈ N.
More generally the following decomposition for elements of G holds.

Proposition 1.2.1 (Iwasawa decomposition). We may write G = KAN uniquely,
namely every element g ∈ G can be written uniquely as a product g = kan where
k belongs to the rotation group K (' T), a to the dilation group A (' R) and n to
the translation group N (' R). Similarly G = ANK.

Proof. As noted, every p ∈ P = AN is uniquely written as p = an with a ∈ A,
n ∈ N. Now G acts on S 1 and the stabilizer of the point −1 is P. Fix g ∈
G, then g maps −1 to a point g(−1) ∈ S 1; let k ∈ K be the rotation such that
k(−1) = g(−1). Then p ≡ k−1g preserves −1, so p ∈ P. Therefore g = kp as
above. The decomposition is unique, indeed any decomposition g = kp has to
satisfy the equality g(−1) = k(−1) that thus determines p. Therefore g = kan
uniquely. Starting with g−1 instead of g we get the decomposition G = ANK as
AN = NA. �
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Note now that G acts on the upper complex plane =z > 0 (let x be complex in
eq. (0.1.1)). The action is transitive. Indeed the A-orbits are the open half-lines
from the origin and the action is dilating, the N-orbits are the horizontal lines and
the action is translating. The stabilizer of the point i is K. So we can identify
the homogeneous space G/K with =z > 0 which has an invariant measure for the
G-action given by (=z)−1dz. By the Iwasawa decomposition we may also identify
G/K with P.

Corollary 1.2.2. The Haar measure of G = PK is the product dg = dpdk of the
Haar measures of P and K.

Proof. As we have seen, the action of G on P = G/K has an invariant measure dp.
Take a continuos function f with compact support on G. Then F(g) ≡

∫
K f (gk)dk

is a function on G/K thus
∫

P

∫
K f (pk)dkdp is a right invariant integration. �

Indeed it is not difficult to see that also the decomposition dg = dadndk holds true.

Notice now that the Iwasawa decomposition is also topological, namely the map

(k, a, n) ∈ K × A × N ' T × R × R 7→ kan ∈ G (1.2.1)

is a homeomorphism. This map is indeed clearly continuous and invertible and to
show that its inverse is continuous too we have to show that the projections of G
onto K, A and N given by the decompostion g = kan are continuous. Now the
equality g(−1) = k(−1) (proof of Lemma 0.2.1) shows that the projection onto
K is continuous so (multiplying on the left by k−1) also the projection of G onto

P is continuous. Now if g = an ∈ P then g =

(
x y
0 x−1

)
with a =

(
x 0
0 x−1

)
and

n =

(
1 y
0 1

)
so the projections of P onto A and N are continuous. By the same

argument the identification (0.2.1) is smooth.
As G is topologically isomorphic to T×R×R, G is not simply connected. The

universal cover Ḡ of G is thus a group homeomorphic to R3. The center of Ḡ is
isomorphic to Z and the central extension gives an exact sequence

ι→ Z→ Ḡ→ G→ ι

Of course G admits also finite covers G(n) corresponding to the n covers of K ' T,
with center Zn and Ḡ/Zn = G.
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1.3 The Lie algebra
The Lie algebra sl(2,R) of G consists of 2 × 2 real matrices with zero trace. A
basis is given by

T =

(
0 1
0 0

)
, S =

(
0 0
−1 0

)
, E =

1
2

(
1 0
0 −1

)
with commutation relations

[T, S ] = −2E, [E,T ] = T, [E, S ] = −S . (1.3.1)

A convenient basis for the complexification slC(2,R) = sl(2,R) + i sl(2,R) of
sl(2,R) is

L1 =

(
1 −i
−i −1

)
= E −

i
2

(T − S ),

L−1 =

(
1 i
i −1

)
= −E −

i
2

(T − S ),

L0 = −
i
2

(
0 1
−1 0

)
= −i

1
2

(T + S )

so that
[L1, L−1] = −2L0, [L0, L−1] = L−1, [L0, L1] = −L1 .

Note that T is the generator of the one-parameter group τ, S = −AdR(π)(T ) of
τ′, E = 1

2 (L1 + L−1) of δ and iL0 of R.
A direct calculation shows that the Casimir operator defined by

λ ≡ E(E − 1) − TS = L0(L0 − 1) −
1
4

L−1L1 (1.3.2)

is a central element of the universal enveloping Lie algebra, thus its value in an
irreducible unitary representation of Ḡ is a scalar, indeed λ ∈ R (λ is selfadjoint)
and λ ≥ −1/4 (λ + 1/4 is sum of squares of selfadjoint elements).

1.4 Positive energy condition
Let U be a unitary representation of G on a Hilbert space H. Then we have a
corresponding representation of the Lie algebra sl(2,R), thus of slC(2,R).
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To simplify notations we always denote the by the same symbols of the Lie
algebra elements and the corresponding operators on H. Thus, for example L0

also denote the infinitesimal generator of the rotation one-parameter group U(R(·))
on H, which is called the conformal Hamiltonian of U.

We shall be mainly interested in positive energy representation, namely any of
the two conditions in the following Prop. 0.4.1 holds.

We denote by D the Gärding domain for a unitary representation U, namely
the dense linear subspace of vectors of the form U( f )ξ with f a smooth function
with compact support on G where U( f ) ≡

∫
f (g)U(g)dg. Then D is an invariant

core for all Lie algebra generators.

Proposition 1.4.1. Let U be a unitary representation of G, The following are
equivalent:

(i) The conformal Hamiltonian L0 of U is positive;

(ii) The generator P (≡ −iT ) of the translation one parameter subgroup U(τ(·))
is positive.

If either the spectrum of P or of L0 is bounded below, then both P and L0 are
positive.

Proof. Note that P and P′ have the same spectrum, where P′ = U(R(π))PU(R(−π)) =

−iS is the generator of the translation unitary group U(τ′(·)) ≡ U(τ(−∞,0)(·)).
Moreover on D

L0 =
1
2

(
P + P′

)
(1.4.1)

because of the corresponding Lie algebra relation.
If P is positive, by (0.4.1) we then have 2(L0ξ, ξ) ≥ (Pξ, ξ), ξ ∈ D, so also L0

is positive as D is a core for L0. Thus (i)⇒ (ii).
To prove the converse implication note first that

U(δ(s))PU(δ(s))−1 = esP ; U(δ(s))P′U(δ(s))−1 = e−sP′ . (1.4.2)

Therefore, assuming L0 ≥ 0, by (0.4.1) we have the identity

U(δ(s))L0U(δ(s))−1 =
1
2

(
esP + e−sP′

)
on D that implies P ≥ 0 because

(ξ, Pξ) = lim
s→∞

e−s(U(δ(s))−1ξ, L0U(δ(s))−1ξ)/2 ≥ 0 (1.4.3)
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for all ξ in D, and D is a core for P. Thus (ii)⇒ (i).
Finally note that the spectrum of P is dilation invariant by the first equation in

(0.4.2) so it has to be non-negative if it is bounded below. Now if the spectrum of
L0 is bounded below also the spectrum of P is bounded below by (0.4.3). So the
last statement follows by the shown equivalence (i)⇔ (ii). �

1.5 Classification of positive energy representations
Let U be a unitary representation of G on a Hilbert space H. As above, let
L0, L1, L−1 be the operators on H corresponding corresponding to the elements
Lie algebra slC(2,R) with the same symbol. As U is unitary, L0 is selfadjoint and
L1, L−1 are one the adjoint of the other.

We denote Hn the n-eigenspace of L0, i.e. Hn ≡ {ξ ∈ D(L0) : L0ξ = nξ}
and by Hfin the finite-energy subspace, namely the linear span Hfin ≡

∑
n Hn. Let

U have positive energy, then there exists an integer m > 0 such that Hm , {0}
and Hn = {0}, n < m; this m is called the lowest weight of U. A positive energy
representation is also called lowest weight representation.

Lemma 1.5.1. Let U be an irreducible representation of G with lowest weight
m. Then Hfin is contained in the domain of L∓1 and L∓1 are raising/lowering
operators: L−1Hn ⊂ Hn+1, L1Hn ⊂ Hn−1. In particular Hfin is stable for the Lie
algebra representation. Moreover Hn is one-dimensional for all n ≥ m.

Proof. Let En be the orthogonal projection onto Hn for a given n:

En =
1

2π

∫ 2π

0
U(R(ϑ))e−inϑdϑ =

∫
K
χn(k)U(k)dk

where χn is the corresponding character of K.
We shall first show that D ∩Hn is dense in Hn for all n. Let f be a smooth

function on P with compact support that we extend to a function fn on G = PK
by fn(pk) ≡ f (p)χn(k). As dg = dpdk we have

U( fn) =

∫
G

fn(g)U(g)dg =

∫
K

∫
P

f (p)χn(k)U(k)U(p)dkdp = En

∫
P

f (p)U(p)dp

Thus if ξ ∈ H the vector U( fn)ξ ∈ D ∩ Hn. By considering an approximate
identity f (i) on P in place of f we see U( f (i)

n )ξ converges to Enξ, therefore D∩Hn

is dense in Hn.
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Let now ξ ∈ Hn be a vector in D. We have:

L0L−1ξ = [L0, L−1]ξ + L−1L0ξ = L−1ξ + nL−1ξ = (n + 1)L−1ξ.

and
L0L1ξ = [L0, L1]ξ + L1L0ξ = −L1ξ + nL1ξ = (n − 1)L1ξ

namely L−1ξ ∈ Hn+1 and L1ξ ∈ Hn−1.
We thus fix a unit vector ξm in D∩Hm and define ξn ∈ Hn, an ∈ R recursively

by
ξn+1 = L−1ξn an ≡ ‖ξn‖,

Note that an is positive because

a2
n+1 = (ξn+1, ξn+1) = (L−1ξn, L−1ξn) = (L1L−1ξn, ξn)

= ([L1, L−1]ξn, ξn) + (L−1L1ξn, ξn) = 2(L0ξn, ξn) + (L1ξn, L1ξn) ≥ 2na2
n .

{ξn} is an orthogonal family of vectors and its linear span is clearly stable for L0,
L−1; we now show it is also stable for L1. Indeed since L1ξm = 0 we have

L1ξm+1 = L1L−1ξm = (L1L−1 − L−1L1)ξm = 2L0ξm = 2mξm

so L1ξm+1 ∈ Cξm and

L1ξm+2 = L1L−1ξm+1 = (L1L−1 − L−1L1)ξm+1 + L−1L1ξm+1 ∈ Cξm+1 ;

by iterating the argument L1ξn ∈ Cξn−1 for all n ≥ 0.
We now show that the action of slC(2,R) on the space linearly generated by

the ξn is completely determined. Let cn ∈ C be defined by cm = 0 and

L1ξn = cnξn−1.

Then

2nξn = 2L0ξn = [L1, L−1]ξn = (L1L−1 − L−1L1)ξn = cn+1ξn − cnξn ,

therefore
cn+1 − cn = 2n ,

so cn is uniquely recursively determined. Indeed cm+k = 2km + k(k − 1).
On the other hand

a2
n+1 = (L−1ξn, ξn+1) = (ξn, L1ξn+1) = cn+1a2

n
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so also an is uniquely recursively determined as am = 1, indeed an =
√

cm+1cm+2 · · · cn.
We now show that Hm is one dimensional. Let a {ξk

m}k be an orthonormal basis
for Hm with ξk

m ∈ D; then L−1ξ
k
m and L−1ξ

k′
m are orthogonal if k , k′ because

(L−1ξ
k
m, L−1ξ

k′
m ) = (L1L−1ξ

k
m, ξ

k′
m ) = 2(L0ξ

k
m, ξ

k′
m ) = 2m(ξk

m, ξ
k′
m ) = 0 .

With Vk the linear span of {Ln
−1ξ

k
m, n ∈ N}, extending the above argument we see

that the Vk’s form an orthogonal family and each of them is stable for L0, L1, L−1.
With Kk ≡ V̄k, the operators L0|Kk and (L1 ± L−1)|Kk are essentially selfadjoint on
Vk

2. Thus each Kk is U-invariant, hence the family {Kk}k has only one element
because U is irreducible, which amounts to say that Hm is one-dimensional. Sim-
ilarly each Hn is one-dimensional, n ≥ m, and every Hn is contained in D. So
Hfin ⊂ D.

As U is irreducible then the linear span of {ξn}must be dense and we have thus
determined the irreducible representations as cm = 0. �

If U is a reducible positive energy representation, the above argument show that
the closed linear span of the {ξn} (with ξm ∈ D ∩Hm) carries an irreducible sub-
representation of U. Repeating the argument on the orthogonal complement we
see that U is direct sum of irreducibles.

Therefore, by the proof of the above lemma, we have shown:

Theorem 1.5.2. For each non negative integer m there exists a unique irreducible
representation of G with lowest weight m.

Proof. The uniqueness has been shown. Concerning the existence, we shall later
consider the irreducible lowest weight representation U of G in Sec. 0.21. Al-
ternatively one reverse the argument in the proof of Thm. 0.5.1, define the so
determined operators L1, L−1, L0, and exponentiate them to a representation of G
because of the dense analytic vector domain (see the remark at the end of this
section). �

Remark. The lowest weight unitary irreducible representations of G, and the cor-
responding conjugate highest weight representations, are said to form the discrete
series representations because they are contained in the regular representation of
G. It is easy to extend the arguments in the proof of Lemma 0.5.1 to list all unitary

2If K = ⊕kKk is a Hilbert space direct sum, A is a selfadjoint operator on K and D =
∑

k Dk

is a core for a A with ADk ⊂ Dk and Dk ⊂ Kk, then each Kk is an invariant subspace for the
exponential of A. Indeed (A ± i)Dk is contained in Kk so it is equal to Kk because (A ± i)D = K.
Thus A|Dk is essentially selfadjoint on Kk
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irreducible representations U of G. Let indeed U be irreducible, non-trivial, not
in the discrete series and, say, H0 , {0}. Choose a unit vector ξ0 ∈ H0 and define
again ξn ∈ Hn by L−1ξn = ξn+1. Then L1ξn = cnξn−1 (use the fact that λ is a scalar
in eq, (0.3.2)) and as above cn+1 − cn = 2n. So the U is determined by the choice
of c0 > 0. The case c0 ≥ 1 gives the principal series, the case c0 ∈ (0, 1) the
complementary series of representations, which is Bargamann classification.

Note now that essentially the same proof of Lemma 0.5.1 shows that a Theorem
0.5.2 holds true for an irreducible, positive energy unitary representation U of the
universal covering group Ḡ of G. Note that e2πiL0 is a multiple of the identity as
it commutes with U. Thus sp(L0) ⊂ {`, ` + 1, ` + 2, . . . } and the lowest weight is
defined as the lowest point in the spectrum. We thus have:

Theorem 1.5.3. For each ` > 0 there exists a unique irreducible representation
U` of the universal cover Ḡ with lowest weight `.

Note however that a positive energy representation U of Ḡ is not, in general,
a direct sum of irreducibles (it could be a direct integral over `). However, if
e2πiL0 ∈ C, then U is indeed a direct sum of irreducibles (this is the case of a
factorial representation).
Remark. The value of the Casimir operator in the irreducible representation U` is

λ = `(` − 1) . (1.5.1)

Indeed, if ξ is the lowest weight vector, we have

λξ =
(
L0(L0 − 1) −

1
4

L−1L1

)
ξ = L0(L0 − 1)ξ = `(` − 1)ξ .

Another immediate corollary is the following:

Corollary 1.5.4.

U` ⊗ U`′ =

∞⊕
k=0

U`+`′+k

Proof. Let L`0 be the unique (modulo unitary equivalence) selfadjoint operator
with simple spectrum equal to {`, ` + 1, ` + 2, . . . }. So L`0 is the conformal Hamil-
tonian of U`. The thesis follows from the equality

L`0 ⊗ 1 + 1 ⊗ L`
′

0 =

∞⊕
k=0

L`+`
′+k

0 .

�
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Remark. Let H be a Hilbert space with an orthonormal basis em, em+1, em+2, . . . .
On the linear span of the ek’s define the linear operators L0, L1, L−1 by

L0en = nen, L−1en =
√

cn+1en+1, L1en =
√

cnen−1,

and L1em = 0, where cm+k = 2km+k(k−1). As shown in Lemma 0.5.1 (en = a−1
n ξn),

the above operators define a representation of sl(2,R) that exponentiates to the
irreducible unitary representation of G with lowest weight m.

Now the above expression shows that the ek’s are analytic vectors for L0, L1, L−1,
in fact for L2

0 + L2
1 + L2

−1. By Nelson theorem, the Lie algebra representation expo-
nentiates, without the a priori knowledge of the irreducible unitary representation
of G with lowest weight m, that can be defined in this way.

1.6 Representations of related groups
We begin to recall von Neumann theorem on the uniqueness of the representation
of the Weyl commutation relations. Let U and V be two one-parameter groups on
a Hilbert space H. We shall say that they obey the Weyl commutation relations if

U(t)V(s) = eitsV(s)U(t) , t, s ∈ R .

Von Neumann theorem states that there is only one representation of the Weyl
commutation relations which is irreducible, that is no proper closed invariant sub-
space. In other words if U,V and U′,V ′ obeys the Weyl commutation relations
on the Hilbert spaces H,H′, both irreducibly and not zero, there exists a unitary
W : H → H′ such that WUW∗ = U′, WVW∗ = V ′. Every non-zero representa-
tion of the Weyl commutation relations is then a multiple of the unique irreducible
one.

A realization of the irreducible representation is the Schrödinger representa-
tion: H = L2(R, dx), U is the translation group, i.e. (U(t) f )(x) = f (x − t), and
V(s) is the multiplication by eisx, i.e. (V(s) f )(x) = eisx f (x).

1.6.1 Representations of the “ax + b” group

Let U be a unitary representation of P on a Hilbert space H. Setting

u(t) ≡ U(τ(t)), v(s) ≡ U(δ(s)), t, s ∈ R
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we get two one-parameter unitary groups u and v on H satisfying the commutation
relations

v(s)u(t)v(−s) = u(est) . (1.6.1)

Conversely, given two one-parameter unitary groups u and v on H satisfying
the above commutation relations, we get a unitary representation of P setting
U(τ(t)δ(s)) ≡ u(t)v(s).

We shall say that U has positive (resp. negative) energy if the generator P
of u is positive (resp. negative). If furthermore P is non-singular, namely u has
no non-zero fixed vector, we shall say that u has strictly positive (resp. negative)
energy.

Theorem 1.6.1. There exists exactly one irreducible unitary representation of P
with strictly positive energy, up to unitary equivalence. Every unitary represen-
tation of P with strictly positive energy is a multiple of the irreducible one. The
analogous statement holds for strictly negative energy.

Let U be any unitary representation of P. Then U decomposes uniquely in a
direct sum U = U+ ⊕ U− ⊕ U0 where U± has strictly positive/negative energy and
U0(τ(t)) = 1.

Proof. Let u and v be a s above and P the selfadjoint generator of u, thus

v(s)Pv(s)∗ = esP . (1.6.2)

Assume now that P is strictly positive, thus log P is defined. We then have
v(s) log Pv(−s) = log P + s, thus

v(s)eit log P = eitseit log Pv(s) , (1.6.3)

namely the two above unitary one-parameter groups satisfy Weyl commutation
relations. By von Neumann uniqueness theorem we have the first part of the state-
ment for strictly positive P. The case P strictly negative is obtained by considering
u(−t) instead of u(t).

Concerning the second part of the statement, note that by (0.6.2) the spec-
tral subspace H−,H+,H0 of P corresponding to (−∞, 0), (0,∞) and {0} are U-
invariant; in other words U is the direct sum of a representations with P > 0,
P < 0 (P non-singular) and P = 0. �

The above proof also shows the follwing:
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Corollary 1.6.2. Let U be an irreducible, positive energy unitary representation
of G. Then the restriction of U to P is also irreducible. If U is non-trivial, U |P is
the unique representation with P positive and non-singular.

Proof. If U is a unitary irreducible non-trivial lowest weight representation of G,
then the selfadjoint generator P of the translation unitary group is positive and
non-singular, see Cor. 0.7.3.

Then we have a representation of the Weyl commutation relations (0.6.3). The
restriction of U to P has to be irreducible because any bounded operator commut-
ing with E and T also commutes with S due to the formula (0.3.2).

�

The above corollary is not true if the positive energy condition is dropped.

1.6.2 Representations of G2 and of P2

Let I1 be the upper semicircle and consider the reflection rI1 : z → z̄ of S 1 where
z̄ is the complex conjugate of z.

For a general I ∈ I we choose g ∈ G such that I = gI0, set

rI = grI1g
−1

and call rI the reflection associated with I (it is well defined because rI1 commute
with dilations c.f. Section 0.1).

Let r be an orientation reversing isometry of S 1 with r2 = 1 (e.g. rI1). Let σr

be the action of r on G by conjugation and denote by G2 the semidirect product of
G with Z2 via σr. Note that G2 is a group of diffeomorphisms of S 1 that contains
also elements that do not preserve the orientation.

We call (anti-)unitary a representation U of G with operators on H such that
U(g) is unitary, resp. anti-unitary, when g is orientation preserving, resp. orienta-
tion reversing.

Theorem 1.6.3. Every unitary, positive energy representation U of G on a Hilbert
space H extends to a (anti-)unitary representation Ũ of G2 on the same Hilbert
space H. Every (anti-)unitary, positive energy representation of G2 arises in this
way. U1 is equivalent to U2 iff Ũ1 is equivalent to Ũ2. U is irreducible iff Ũ is
irreducible and in this case the choice J ≡ Ũ(r) is unique modulo replacing J
with zJ for some z ∈ T.
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Proof. Given unitary, positive energy representation U of G, to find an extension
Ũ to G2 it is sufficient to assume that U is irreducible, otherwise decomposing U
into irreducibles and extending each direct summand. Then, if U is irreducible, U
has the form given in Lemma 0.5.1. Now the anti-unitary involution Cdetermined
by Cλξn = λ̄ξn commutes with L0, L1, L−1, so with CEC = E, CTC = −T , CS C =

−S . Therefore CU(g)C = U(rgr) as desires (see also Cor. 0.20.3.
We now show the uniqueness of the extension, up to unitary equivalence.

Suppose Ũ′ be a second extension and set J ≡ Ũ(rI0), J′ ≡ Ũ′(rI0). Then the
unitary J′J commutes with U(G), thus with the center of U(G)′′; in particular
J′J commutes with the projection onto the lowest weight n representation sum-
mand (n = 0, 1, . . . ). We may thus assume that U = U (n) ⊗ 1K, where U (n) is
the irreducible unitary representation of G with lowest weigh n and K is a Hilbert
space. We may further assume that in this decomposition J = J0 ⊗ J1 with anti-
unitary involutions J0, J1. As J′J = 1 ⊗ u with u a unitary in B(K), we also have
J′ = J0 ⊗ J′1 where J′1 ≡ uJ1. Now we are looking for a unitary V ∈ U(G)′ such
that J′ = V JV∗, thus for a unitary v ∈ B(K) such that J′1 = vJ1v∗. But such a v
exists because any two anti-unitary involutions on a Hilbert space K are unitary
equivalent (choose real orthonormal bases).

The above argument also shows that if U1 and U2 are equivalent, also their
extension Ũ1 and Ũ2 are equivalent. Conversely, if Ũ1 and Ũ2 are equivalent, their
restrictions U1 and U2 are clearly equivalent. The rest is clear and our proof is
complete. �

By the same proof, Thm. 0.6.3 holds true replacing G with Ḡ and G2 with Ḡ2,
the semi-direct product of Ḡ with Z2 by the involutive automorphism of Ḡ that
correspons to σr.

Let now P2 be the subgroup of G2 generated by P and the involution r. Thus P2

is the a semi-direct product of P by Z2 and is generated by P and an involution r
such that rτ(t)r = τ(−t), rδ(s)r = δ(s). The (anti-)representations of P2 are thus
given by pairs (U, J) where U is a unitary representation of P on a Hilbert space
H and J is a anti-unitary involution on H such that

JU(τ(t))J = U(τ(−t)), JU(δ(s))J = U(δ(s)) .

We have seen that P has only one unitary representation with strictly positive
energy. By an argument analogous to the one in above proof we then have the
following.
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Proposition 1.6.4. Let U be a unitary positive energy representation of P on a
Hilbert space H. Then U extends to a (anti-)unitary representation Ũ of P2. The
extension is unique up to unitary equivalence. U is irreducible iff Ũ is irreducible
and in this case J ≡ Ũ(r) is unique modulo a phase.

1.7 Vanishing of the matrix coefficients
In this section we prove the vanishing of the matrix coefficient theorem for unitary
representations of G, Thm. 0.7.2 below. We begin with the following proposition.

Proposition 1.7.1. Let U be a unitary representation of P on a Hilbert space H.
(a) If F ⊂ H is a finite-dimensional subspace which is globally U(δ(·))-

invariant, then F is left pointwise fixed by U(τ(·)).
(b) If U has no non-zero fixed vector for translations then

lim
p→∞,p∈P

(U(p)ξ, ξ) = 0, ∀ξ ∈ H .

Proof. (a): Setting u(t) ≡ U(τ(t)) and v(s) ≡ U(δ(s)) we have two one-parameter
unitary groups on H satisfying the commutation relations (0.6.1).

Since F is finite dimensional, we need to show that u(t)ξ = ξ if ξ is a v-
eigenvector, i.e. if there exists a character χ of R such that

v(s)ξ = χ(s)ξ , s ∈ R .

Indeed in this case by the formula (0.6.1) implies

u(est)ξ = v(s)u(t)v(−s)ξ = χ(s)v(s)u(t)ξ ,

hence
(u(est)ξ, ξ) = (u(t)ξ, ξ), t, s ∈ R.

As s→ −∞ we thus have
(ξ, ξ) = (u(t)ξ, ξ)

that implies u(t)ξ = ξ by the limit case of the Schwarz inequality.
(b): As by assumptions u has no non-zero fixed vector, by Theorem 0.6.1 U is

the direct sum of a strictly positive and a strictly negative energy representations.
By the uniqueness in Theorem 0.6.1 it is sufficient to verify that

U(p)→ 0 weakly as p→ ∞ (g ∈ P)
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for the irreducible strictly positive (negative) energy representation of P, namely
in the Schrödinger representation, where we now check its validity.

Indeed, in the Schrödinger representation on L2(R, dx), u is the translation on
parameter group on and v(s) is the multiplication by eisex

. It is sufficient to show
that

(u(tn)v(sn) f1, f2)→ 0

for f1, f2 with compact support if (tn, sn) → ∞ in R2. If tn → ∞ then, for large n,
(u(tn)v(sn) f1, f2) = 0; so we may assume that {tn} is bounded. By compactness we
may assume that tn is convergent so, by a 3ε argument, it will be enough to show
that (v(sn) f1, f2) → 0 if sn → ∞. Now v(s) = eisA where the selfadjoint generator
A, the multiplication by ex, has Lebesgue absolutely continuous spectrum, so v(s)
converges weakly to zero as s→ ∞ by the Riemann-Lebesgue theorem. �

Theorem 1.7.2. Let U be a unitary representation of G on a Hilbert space H. If
U does not contain the identity representation, then

lim
g→∞

(U(g)ξ, η) = 0, ∀ξ, η ∈ H .

Proof. First we observe that it is sufficient to show that

lim
p→∞,p∈P

(U(p)ξ, η) = 0, ∀ξ, η ∈ H. (1.7.1)

Indeed assume that equation (0.7.1) holds true and let gn ∈ G be a sequence
gn → ∞. We want to show that

(U(gn)ξ, η)→ 0, ∀ξ, η ∈ H .

Write gn = pnkn by the Iwasawa decomposition. Then pn → ∞. As kn belongs to
the compact group K, we may assume that kn → k. Then

|(U(pn)ξ1, η) − (U(gn)ξ, η)| = |(U(pn)U(k)ξ, η) − (U(pn)U(kn)ξ, η)|
≤ ||U(k)ξ − U(kn)ξ|| ||η|| → 0

where ξ1 ≡ U(k)ξ. As (U(pn)ξ1, ξ)→ 0, then also (U(gn)ξ, η)→ 0.
Therefore, by Prop. 0.7.1, the theorem is proved once we show that there is

no non-zero vector that is fixed by U(P).
Assume on the contrary that there exists a non-zero ξ ∈ H such that U(g)ξ = ξ

for all g ∈ P and set
f (g) ≡ (U(g)ξ, ξ), g ∈ G .
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Then f is a bi-P-invariant function, namely f (pgq) = f (g) ∀p, q ∈ P and g ∈ G.
Thus f defines a continuous function f1 on the coset space G/P, invariant for the
left action of P on G/P.

Now G acts on R̄ as in (0.1.1) and the stabilizer of the point ∞ is P. So
G/P ' R̄ and the left action of G on R̄ is given by eq. (0.1.1). In particular R is
a dense orbit for the action of P on R̄. So f is constant, namely ξ is a G-invariant
vector. �

Corollary 1.7.3. Let U be a unitary representation of G on a Hilbert space H.
Given ξ ∈ H, the subgroup {g ∈ G : U(g)ξ = ξ} is either compact or equal to G.

Corollary 1.7.4. Let U be a unitary representation of Ḡ that has no fixed vector.
If gn ∈ Ḡ is a sequence such that q(gn) → ∞, where q : Ḡ → G is the quotient
map, then U(gn) weakly converges to 0.

Proof. Let Ū the conjugate representation of U. Then U ⊗ Ū is a representation
of G, thus

|(U(gn)ξ1, ξ2)|2 = (U(gn)ξ1, ξ2)(Ū(gn)ξ1, ξ2) = (U(gn)⊗ Ū(gn)ξ1⊗ ξ1, ξ2⊗ ξ2)→ 0 .

�

If in the above corollary U were a representation of a finite cover G(n) then we
could have just assumed gn → ∞ as this is equivalent to q(gn) → ∞ (in the case
of Ḡ we may take gn central, gn → ∞ but q(gn) is fixed).
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Chapter 2

Standard subspaces of a Hilbert
space

We shall now consider certain real closed linear subspaces of a complex Hilbert
space. The emerging structure is definitely richer than what one would expect.

2.1 Basic properties, modular theory
Let H be a complex Hilbert space and H ⊂ H a real linear subspace. The sym-
plectic complement H′ of H is the real Hilbert subspace

H′ ≡ {ξ ∈ H : =(ξ, η) = 0 ∀η ∈ H}.

Clearly
H′ = (iH)⊥ (2.1.1)

where the ⊥ denotes the real orthogonal complement in H, namely the orthogonal
complement with respect to the real scalar product <(· , ·). Therefore H ⊂ H′′

and H̄ = H′′. Moreover
H1 ⊂ H2 ⇒ H′1 ⊃ H′2 .

A closed real subspace H is called cyclic if H + iH is dense in H and separating
if H ∩ iH = {0}. Because of eq. (0.8.1) we have

(H + iH)′ = H′ ∩ iH′ ,

so H is cyclic if and only if H′ is separating. A standard subspace H of H is
a closed, real linear subspace of H which is both cyclic and separating. Thus a
closed subspace H is standard iff H′ is standard.
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Let H be a standard subspace of H. Define the anti-linear operator S ≡ S H :
D(S ) ⊂ H → H, where D(S ) ≡ H + iH,

S : ξ + iη 7→ ξ − iη , ξ, η ∈ H .

As H is standard, S is well-defined and densely defined. Clearly S 2 = 1|D(S ).
We shall soon see in Prop 0.8.4 that S H is a closed operator.

Lemma 2.1.1. Let S be a closed, densely defined, anti-linear involution on H.
Then H ≡ ker(1 − S ) is a standard subspace of H.

Proof. First
H ≡ ker(1 − S ) = {ξ ∈ D(S ) : S ξ = ξ}

is a closed real linear subspace of H, because S is a closed operator. To check
that H is standard, note that any ξ ∈ D(S ) can be written as

ξ =
1
2

(ξ + S ξ) + i
1
2i

(ξ − S ξ) ≡ ξ1 + iξ2 (2.1.2)

with ξ1, ξ2 ∈ H, thus H is cyclic. Moreover H is separating because if ξ, η ∈ H
and ξ = iη, then applying S to both vectors in this equality we also have ξ = −iη,
thus ξ = η = 0. �

Proposition 2.1.2. The map
H 7→ S H (2.1.3)

is a bijection between the set of standard subspaces of H and the set of closed,
densely defined, anti-linear involutions on H. The inverse of the map (0.8.3) is

S 7→ ker(1 − S ) .

Moreover this map is order-preserving, namely

H1 ⊂ H2 ⇔ S H1 ⊂ S H2 , (2.1.4)

and we have
S ∗H = S H′ . (2.1.5)
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Proof. First we show that every densely defined, closed, anti-linear involution S
on H is in the range of the map (0.8.3). To this end note that H = {ξ ∈ D(S ) :
S ξ = ξ} is a standard subspace by Lemma 0.8.1. Clearly S ⊃ S H. By eq. (0.8.2)
D(S ) = H + iH = D(S H), so S = S H.

We now prove eq. (0.8.5). With ξ1, ξ2 ∈ H, ξ′1, ξ
′
2 ∈ H′ we have

(S H(ξ1 + iξ2), ξ′1 + iξ′2) = (ξ1− iξ2, ξ
′
1 + iξ′2) = (ξ1, ξ

′
1)−(ξ2, ξ

′
1)+ i

(
(ξ1, ξ

′
2)+(ξ2, ξ

′
1)
)

= (ξ′1 − iξ′2, ξ1 + iξ2) = (S H′(ξ′1 + iξ′2), ξ1 + iξ2)

showing that S ∗H ⊃ S H′ .
To get the reverse inclusion, notice that S ∗H is a closed anti-linear involution.

Setting K ≡ {ξ ∈ D(S ∗H) : S ∗Hξ = ξ}, then K is a standard subspace, K ⊃ H′ and
S ∗H = S K . With ξ ∈ H, η ∈ K we have

(ξ, η) = (ξ, S Kη) = (ξ, S ∗Hη) = (η, S Hξ) = (η, ξ)

that is =(ξ, η) = 0, so K ⊂ H′, thus H = K′.
We have thus proved eq. (0.8.5) so, in particular, S H is a closed operator.

Therefore the range of the map (0.8.3) consists of all densely defined, closed,
anti-linear involution on H.

Concerning the injectivity of the map (0.8.3), this follows by the obvious
equality H = {ξ ∈ D(S H) : S Hξ = ξ}.

Last, equation (0.8.4) is immediate. �

Proposition 2.1.3. Let
S H = JH∆

1/2
H

be the polar decomposition of S = S H. Also set J = JH, ∆ = ∆H. Then:
(a) J is an anti-unitary involution

J = J∗ = J−1

(b) ∆ ≡ S ∗S is a positive, non-singular selfadjoint linear operator, and

J∆J = ∆−1

therefore
J f (∆)J = f̄ (∆−1)

for every complex Borel function f on R with complex conjugate f̄ . In particular
J commutes with ∆it.
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(c) JH′ = JH and ∆H′ = ∆−1
H .

(d) If U is a unitary operator on H, then UH = H iff U∆HU∗ = ∆H and
UJHU∗ = JH.

Proof. The identity S 2 = 1 on D(S ) shows the S , hence ∆ is non-singular. More-
over it gives J∆1/2J∆1/2 = 1 on D(∆1/2), so J∆1/2J = ∆−1/2. This implies (b) and
in particular J2 = 1.

The identity S ∗H = S H′ gives S ∗H = JH′∆
1/2
H′ = ∆

1/2
H JH = JH∆

−1/2
H so JH = JH′

and ∆
1/2
H′ = ∆

−1/2
H by the uniqueness of the polar decomposition. So we have (a)

and (c).
Finally, to check (d), note that if U is a unitary we have S UH = US HU∗. So

UH = H iff US HU∗ = S H which is equivalent to UJHU∗ = JH and U∆
1/2
H U∗ =

∆
1/2
H again by the uniqueness of the polar decomposition. �

The operator ∆H is called the modular operator and JH is called the modular
conjugation of H.

The following theorem is the real Hilbert subspace (easier) version of the fun-
damental Tomita-Takesaki theorem for von Neumann algebras.

Theorem 2.1.4. With ∆ = ∆H and J = JH as above, we have for all t ∈ R:

∆itH = H , JH = H′ .

Proof. ∆it commutes with ∆1/2 and J, thus with S . The first relation thus follows
because if ξ ∈ H

S ∆itξ = ∆itS ξ = ∆itξ

namely ∆itH ⊂ H for any t ∈ R, thus ∆itH = H.
Concerning the second relation, notice that if ξ ∈ H then

(Jξ, ξ) = (JS ξ, ξ) = (∆1/2ξ, ξ) ∈ R

thus for all ξ, η ∈ H

(J(ξ + η), ξ + η) = (Jξ, ξ) + (Jη, η) + (Jξ, η) + (Jη, ξ)

is real, so =(Jξ, η) = 0, namely JH ⊂ H′.
As JH = JH′ we also have JH′ ⊂ H′′ = H, namely H′ ⊂ JH. �

Corollary 2.1.5. Let H be an Hilbert space. There is a bijective correspondence
between
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• Standard subspaces H of H;

• Pairs (A, J) where A is a selfadjoint linear operators on H, J is a anti-
unitary involution on H and JAJ = −A.

Up to unitary equivalence, there is a bijective correspondence between

• Standard subspaces H of some Hilbert space;

• Selfadjoint linear operators B ≥ 0 on some Hilbert space K.

Proof. For the first equivalence: Given H, the pair (log ∆H, JH) is the correspond-
ing pair. Conversely, given (A, J), then S ≡ Je

1
2 A is a anti-linear closed involution

and one gets a standard subspace by Prop. 0.8.2. Clearly these constructions are
one the inverse of the other.

For the second equivalence: Given a Hilbert space H and a standard subspace
H of H, we define B as the restriction of log ∆H to its spectral subspace corre-
sponding to [0,∞). Conversely, given B let K0 and K+ its spectral subspaces cor-
responding to {0} and (0,∞), so we have a decomposition B = 1⊕B+ on K0⊕K+.
Choose anti-unitary involutions J0 and J+ on K0, K+ and set B ≡ J+B+J+⊕1⊕B+

on K ≡ K+⊕K0⊕K+. Then J ≡ V(J+⊕ J0⊕ J+) is a anti-unitary involution on K

and JBJ, where V is the unitary involution on K that interchanges the two copies
of K+ and is the identity on K0. As the choice of J0, J+ is unique up to unitary
equivalence, this construction is unique up to unitary equivalence too. The rest is
clear. �

Corollary 2.1.6. Let Eλ be the spectral projection of ∆H relative to the interval
(λ−1, λ), λ > 0. Then EλH ⊂ H. Therefore

⋃
λ>0 EλH is a dense subspace of H

and any of its elements ξ has ∆-exponential growth, namely ||∆z
Hξ|| ≤ ec|=z| for

some constant c > 0 and all z ∈ C.

Proof. The characteristic function f of the interval (λ−1, λ) is real and f (t) =

f (t−1), thus EλH ⊂ H. Clearly all vectors in EλH have exponential growth. The
rest is clear because Eλ → 1 strongly, as λ→ +∞ because ∆ is non-singular. �

Let H be a real linear subspace of H and V a one-parameter unitary group of H

leaving H globally invariant. We now consider the following (one particle) KMS
condition at inverse temperature β > 0: for every ξ, η ∈ H there exists a function
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F (depending on ξ, η), bounded and continuous on Sβ = {z ∈ C : 0 6 =z 6 β},
analytic in the interior of Sβ of Sβ, such that

F(t) = (V(t)ξ, η), F(t + iβ) = (η,V(t)ξ) .

As the uniform limit of holomorphic functions is holomorphic, it follows easily
that if the KMS condition holds for H, then it holds for H.

If H is closed, the entire vectors of exponential type are dense (see the proof
of Cor. 0.8.6) and it follows that the above KMS condition is equivalent to

(ξ, η) = (η, Aβξ)

for a dense set of analytic vectors of exponential type ξ, η ∈ H, where V(t) = A−it

with A is a non-singular, positive selfadjoint operator.

Proposition 2.1.7. Let H be a cyclic closed real Hilbert subspace of H.
If H is standard, then ∆−it

H ,H satisfy the KMS condition at inverse tempera-
ture 1.

Conversely, if V(t),H as above satisfy the KMS condition at inverse tempera-
ture 1, then H a standard subspace of H and V(t) = ∆−it

H .

Proof. Concerning the first assertion, let ξ, η ∈ H be an entire vector as in Cor.
0.8.6. Then, omitting the suffix H, we have in particular ξ, η ∈ D(∆1/2)

(η,∆ξ) = (∆1/2η,∆1/2ξ) = (J∆1/2ξ, J∆1/2η) = (S ξ, S η) = (ξ, η) (2.1.6)

so the KMS condition holds.
For the converse, let V(t) = A−it where A is a non-singular, positive selfadjoint

operator. Then by the KMS condition we have

(η, Aξ) = (ξ, η) (2.1.7)

in particular for any η and V-entire vectors ξ in H. Now if η ∈ H ∩ iH we have

(ξ, η) = i(iη, Aξ) = i(ξ, iη) = −(ξ, η)

for all ξ ∈ H, thus η is in the orthogonal complement of H + iH, which is zero as
H is cyclic. So H is standard.

As V(t)H = H, A commutes with ∆, there is a common set of entire vectors
for V and ∆it which is dense in H (extend the argument in the proof of Cor. 0.8.6).
On this set we then have by comparing eq. (0.8.6) and (0.8.7) we have

(η,∆ξ) = (η, Aξ) ,

so A = ∆. �
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Corollary 2.1.8. Let H be standard subspaces of H and K ⊂ H real Hilbert
subspace with ∆it

HK = K, t ∈ R. Then ∆it
K = ∆it

H |K where K ≡ K + iK.

Proof. Immediate by the KMS condition. �

We now characterize the modular conjugation.

Proposition 2.1.9. Let H be standard. Then JH is the unique anti-unitary involu-
tion J of H such that JH ⊃ H′ and

(Jξ, ξ) ≥ 0, ∀ξ ∈ H .

Proof. The positivity property holds for JH because (JHξ, ξ) = (∆1/2
H ξ, ξ) ≥ 0 for

all ξ ∈ H.
On the other hand, let J be a anti-unitary involution that satisfies the positivity

condition then
(Jξ, ξ) ≥ 0

for all ξ ∈ H. Then for all ξ, η ∈ H

(J(ξ + η), ξ + η) = (Jξ, ξ) + (Jη, η) + (Jξ, η) + (Jη, ξ) = (Jξ, ξ) + (Jη, η) + 2(Jξ, η)

is real, so (Jξ, η) is real. It follows that JH ⊂ H′. Assuming JH ⊃ H′ we then
have JH = H′.

Moreover for all ξ + iη ∈ H + iH we have

(JS H(ξ + iη), ξ + iη) = (Jξ + iJη, ξ + iη)
= (Jξ, ξ) + (Jη, η) + i(Jη, ξ) − i(Jξ, η) = (Jξ, ξ) + (Jη, η) ≥ 0 .

So there is a canonical, positive selfadjoint operator ∆ on H, with D(∆1/2) ⊃
D(S H) (use the Friederich extension) such that

(JS Hξ, ξ) = (∆1/2ξ, ξ), ξ ∈ D(∆1/2
H ) = D(S H) .

Now ∆it
H commutes with S H and with J (because JH = H′) so with JS H. There-

fore ∆it
H commutes with ∆1/2. It follows that ∆

1/2
H commutes with ∆1/2, thus they

have a common core, so ∆1/2 is selfadjoint on D(S H). We then have the equality
JS H = ∆1/2 or S H = J∆1/2 and, by the uniqueness of the polar decomposition, we
get ∆ = ∆H and J = JH. �
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Proposition 2.1.10. Let K ⊂ H be standard subspaces of H. If ∆it
HK = K for all

t ∈ R, then K = H.

Proof. By assumption, D(S K) = K + iK is a dense complex subspace of H which
is globally invariant for ∆it

H for all t ∈ R. As D(S K) ⊂ D(S H) = D(∆1/2
H ), it follows

by Prop. 0.8.11 below that D(S K) is a core for S H, thus S K = S H and K = H. �

Proposition 2.1.11. Let U(t) = eitA be a one-parameter unitary group on a Hilbert
space H and f : R → C a locally bounded Borel function. If D ⊂ D( f (A)) is a
dense, U-invariant linear space, then D is a core for f (A).

Proof. By replacing f with | f |, we may assume that f is non-negative. Let ξ ∈ H

be a vector orthogonal to ( f (A) + 1)D. We have to show that ξ = 0. If g is a
function in the Schwartz space S (R), we have

(
( f (A) + 1)g(A)η, ξ

)
=

∫
g̃(t)

(
( f (A) + 1)e−itAη, ξ

)
dt = 0 , (2.1.8)

for all η ∈ D, where g̃ the Fourier anti-transform of f .
If now g is a bounded Borel function with compact support, we may choose

a sequence of smooth functions gn with compact support such that gn(A) → g(A)
weakly, thus eq. (0.8.8) holds for such a g.

Let then g be a bounded Borel function with compact support; we may write
g(λ) = ( f (λ)+1)( f (λ)+1)−1g(λ), therefore (0.8.8) with g(λ) replaced with ( f (λ)+

1)−1g(λ) gives
(g(A)η, ξ) = 0 .

As we can choose a sequence gn of bounded Borel function with compact support
such that gn(A) → 1 strongly, it follows that (η, ξ) = 0 for all η ∈ D, hence ξ = 0
because D is dense. �

Expectations and abelian subspaces
Let H be a separating real subspace of H and K ⊂ H a closed real linear subspace.
Then K is separating, so K is standard subspace of K ≡ H + iH.

Let E be the orthogonal projection of H onto K. We shall say that E is an
expectation of H onto K if EH ⊂ K. Then EH = K and E|H is the real orthogonal
projection from H onto K. In this case we shall also say that there exists an
expectation from H onto K, although the expectation is unique by definition.
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Theorem 2.1.12. With the above notations, the following are equivalent:

(i) There exists an expectation from H onto K;

(ii) ∆it
HK = K for all t ∈ R. In this case ∆it

H |K = ∆it
K .

(iii) JHE = EJH. In this case JH |K = JK .

Proof. Assume (i); then for ξ, η ∈ H, so Eξ, Eη ∈ K ⊂ H, we have

S HE(ξ + iη) = S H(Eξ + iEη) = Eξ − iEη = ES H(ξ + iη)

thus S HE ⊂ ES H, namely E commutes with JH and ∆
1/2
H , and thus with ∆it

H. As
JH∆

1/2
H |K = S H |K = S K we then have ∆it

H |K = ∆it
K and JH |K = JK . So we have

shown (ii) and (iii).
Now notice that E, as an operator H → K, is the adjoint of the inclusion map

of K into H. As this is K − H-real (see below), it follows that JKEJH is H − K-
real. Assuming (iii), we then have that E = JKEJH is H − K-real, namely E is an
expectation.

Finally, assuming (ii), we have ∆it
H |K = ∆it

K by the KMS condition. If ξ ∈
D(S K) we have S Hξ = S Kξ, therefore JH∆

1/2
K ξ = JH∆

1/2
H ξ = JK∆

1/2
K ξ, so JH |K =

JK . Thus S H |K = S K , so ED(S H) = D(S K) and so if ξ ∈ H we have

Eξ ∈ D(S K) and S KEξ = ES Hξ = Eξ

namely Eξ ∈ K as desired. �

Note that, by replacing H with H + iH we may assume that H is standard in
the definition of the expectation, namely we may replace E with the orthogonal
projection from H + iH to K.

Proposition 2.1.13. Let H be a closed real subspace of H. If H is abelian (i.e.
H ⊂ H′) then H is separating. Moreover the following are equivalent:

(i) H is maximal abelian,
(ii) H = H′ (i.e. both H and H′ are abelian),
(iii) H is abelian and cyclic,
(iv) H is standard and ∆it

H = 1.
As a consequence, if H1 ⊂ H2 are closed abelian subspaces of H, there exists an
expectation from H2 onto H1.

All maximal abelian real subspaces of H are unitarily equivalent.
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Proof. Concerning the first assertion, let H be abelian, we want to show that H is
separating. Set K ≡ H + iH. As H′ = (H′ ∩ K) ⊕ (H 	 K), it follows that H is
separating in H iff it is separating in K, so we may assume that K is cyclic in H.
Now H cyclic implies H′ separating, but then also H ⊂ H′ is separating.

Concerning the equivalence of the four assertions, (i)⇔ (ii) is straightforward.
(ii)⇒ (iii): (H + iH)⊥ ⊂ H′ = H, thus H = H′′ is cyclic.
(iii) ⇒ (iv): H is separating because H′ ⊃ H, thus H (so H′) is standard. As

∆it
H′H = H, we then have H = H′ by Prop. 0.8.10. As ∆it

H′ = ∆−it
H , it follows that

∆it
H is trivial.

(iv) ⇒ (ii): H is abelian because if ξ, η ∈ H then (ξ, η) = (S Hξ, S Hη) =

(JHξ, JHη) = (η, ξ) is real. By the same argument H′ is abelian too.
It remains to prove the uniqueness. If H is maximal abelian then the scalar

product of H is real valued on H. By (iv) H + iH = D(S H) = H, so H is the
complexification of the real Hilbert space H, which is unique. �

We shall say that a real subspace H of H is abelian if H ⊂ H′, namely =(ξ1, ξ2) =

0 for all ξ1, ξ2 ∈ H. If H is a standard subspace of H, its center Z ≡ H ∩ H′ is
clearly abelian as (H∩H′)′ is the closed linear span of H and H′. Clearly ∆it

HZ = Z
so by Thm. 0.8.12 and Prop.0.8.13 ∆it

H is the identity on Z. Indeed we have

Proposition 2.1.14. Z = {ξ ∈ H : ∆it
Hξ = ξ}.

Proof. With ξ ∈ H a fixed vector for ∆it
H we have to show that ξ ∈ H′. For any

vector η ∈ H ∩ D(∆H) we have indeed

(ξ, η) = (S Hξ, S Hη) = (JH∆
1/2
H ξ, JH∆

1/2
H η) = (∆1/2

H η,∆1/2
H ξ) = (∆Hη, ξ) = (η, ξ) ,

so =(ξ, η) = 0 that entails ξ ∈ H′ because H ∩ D(∆H) is dense in H by Cor.
0.8.6. �

2.2 Borchers theorem (one-particle)
We now discuss the standard subspace version of a theorem of Borchers. The
original version in the setting of von Neumann algebras will be discussed later.
The following proof is adapted from Florig’s proof of Borchers original theorem.

Theorem 2.2.1. Let H be a standard subspace of a Hilbert space H. Let U be a
one-parameter group on H, with generator P, satisfying

U(s)H ⊂ H , s ≥ 0.
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If ±P > 0, the following commutation relations hold:∆itU(s)∆−it = U(e∓2πts),
JU(s)J = U(−s), t, s ∈ R ,

where ∆ ≡ ∆H, J ≡ JH.

Proof. Replacing H with H′ we may assume P ≥ 0. We obtain the adjoint equa-
tions of the assumed commutation relations if we replace s by −s. Hence, we can
assume s ≥ 0. Let ξ ∈ H, ξ′ ∈ H′. We define a bounded and continuous function
on S1/2 (as P ≥ 0 and =e2πzs > 0 for z ∈ S1/2)

f (z) = (∆iz̄ξ′,U(e2πzs)∆−izξ)

which is analytic in S1/2. Note that f (t) is real if t ∈ R because U(e2πts)∆−itξ ∈ H
and ∆iz̄ξ′ ∈ H′.

Set V(t) = JU(−t)J, t ∈ R. Then V(t)H ⊂ H if t ≥ 0 because of JH = H′ and

U(t)H ⊂ H ⇒ U(t)H′ ⊃ H′ ⇒ U(−t)H′ ⊂ H′ , t ≥ 0 .

Now we have

f
(
t +

i
2

)
= (∆−1/2∆−itξ′,U(e2πt+iπs)∆−it∆1/2ξ)

= (∆−1/2∆−itξ′, JV(e2πts)∆−itξ)

= (∆−itξ′, (J∆1/2)V(e2πts)∆−itξ)

= (∆−itξ′,V(e2πts)∆−itξ)

(2.2.1)

for t ∈ R. Therefore f (t + i/2) is real if t ∈ R because V(e2πts)∆−itξ ∈ H and
∆−itξ′ ∈ H′.

Therefore f (t) is bounded continuous on S1/2, analytic on S1/2 and real valued
on the boundary lines =z = 0 and =z = 1/2. By the Schwarz reflection principle
f can then be extended to a bounded entire function which has to constant by
Liouville theorem. As H and H′ are total in H we then have

∆itU(e2πts)∆−it = ∆i0U(e2π0s)∆−i0 = U(s) .

Moreover f (0) = f (i/2) gives U(s) = V(s) = JU(−s)J. �
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Remark. Let H be a standard subspace of a Hilbert space H and K ⊂ H a standard
subspace. We then have

JK JHH = JKH′ ⊂ JKK = K ,

so Γ ≡ JK JH is a canonical unitary on H (corresponding to the canonical endo-
morphism in the von Neumann algebra setting). In particular we have the tunnel

H ⊃ K ⊃ ΓH ⊃ ΓK ⊃ Γ2H ⊃ Γ2K ⊃ . . . . (2.2.2)

If in Borchers theorem one set K ≡ U(1)H , then

Γ = U(2) .

Indeed Γ = JK JH = U(1)JHU(−1)JH = U(1)U(1) = U(2).

Corollary 2.2.2. Let H be a closed cyclic subspace of a Hilbert space H and U
a one-parameter group on H, with generator P with ±P > 0 (or P < 0), such that
U(t)H = H for all t ∈ R. If U has non non-zero fixed vector then H = H.

Proof. First assume that H is standard. Then JU(t)J = U(t) by Prop. 0.8.3 (d),
while JU(t)J = U(−t) by Borchers theorem, so U is the identity and H = {0}
because U has no non-zero fixed vectors.

Now in the general let H be cyclic. Then H′ is separating, thus H′ is stan-
dard in H′ + iH′ and U-invariant; so H′ = {0} as already seen. Therefore H, the
symplectic complement of H′, must be equal to H. �

Converse of Borchers theorem
Lemma 2.2.3. Let H1, H2 be standard subspaces of the Hilbert space H, and
assume that UH1 = H2, with U a unitary on H. Then H2 ⊂ H1 iff ∆

1/2
H1

U∗ ⊂
JH1U

∗JH1∆
1/2
H1

.

Proof. We have H2 ⊂ H1 if and only if S H2 ⊂ S H1 . Setting Ji ≡ JHi , ∆i ≡ ∆Hi , the
following equivalencies hold:

H2 ⊂ H1 ⇔ S 2 ⊂ S 1 ⇔ UJ1∆
1/2
1 U∗ ⊂ J1∆

1/2
1 ⇔ ∆

1/2
1 U∗ ⊂ J1U∗J1∆

1/2
1 .

�
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Theorem 2.2.4. Let H be a standard space in the Hilbert space H and U(s) = eisP

a one-parameter group of unitaries on H satisfying

∆itU(s)∆−it = U(e∓2πts) (2.2.3)

where ∆ = ∆H. The following are equivalent:

(i) U(s)H ⊂ H for s ≥ 0;

(ii) ±P is positive.

Proof. We prove the theorem choosing the minus sign in (0.9.3) and the plus
sign in (ii). The statement with the opposite choice of the signs then follows by
considering H′ instead of H.

(ii)⇒ (i): First we show that the relation

JU(s)J = U(−s)

is valid. Let ξ ∈ H, ξ′ ∈ H′ and s > 0. As P ≥ 0 and =e2πzs > 0 for z ∈ S1/2, the
function

f (z) = (∆iz̄ξ′,U(e2πzs)∆−izξ)

is bounded continuous on S1/2 and analytic in S1/2. Set V(t) = JU(−t)J, t ∈ R.
Then we compute as in (0.9.1) that

f (t + i/2) = (∆−itξ′,V(e2πts)∆−itξ)

for t ∈ R. As by assumption (0.9.3) f is constant on the real axis, then f is
constant on S1/2 and in particular f (0) = f (i/2), namely

(ξ′,U(s)ξ) = (ξ′,V(s)ξ) .

As both H and H′ are cyclic, we then have U(s) = V(s) = JU(−s)J for s ≥ 0,
hence for all real s (taking adjoints).

In order to prove (i), note now that by Thm. 0.6.1 we may assume that P > 0
or P = 0. When P = 0 isotony trivially holds, so we assume that P is positive and
non-singular.

By Lemma 0.9.3, we get

U(s)H ⊂ H ⇔ ∆1/2U(s)∗ ⊂ U(s)∆1/2. (2.2.4)



34 Standard subspaces of a Hilbert space

By the uniqueness, up to multiplicity, of the positive energy representation of P,
the relation on the right hand side of (0.9.4) can be checked in just one non trivial
representation, e.g. in the Schrodinger representation, where it holds true (see
Sect. 0.21). So the left hand side of (0.9.4) also holds true.

(i)⇒ (ii): The unitary representation of P generated by U and ∆it decompose
in a direct sum of representations with P < 0 and P = 0 and P > 0. We have to
show that the P < 0 component does not occur. In other words P < 0 and the
isotony (i) imply that the underlying Hilbert space is {0}. Indeed, by what above
proved, P < 0 implies U(−s)H ⊂ H for s ≥ 0, so U(s)H ⊃ H, for s ≥ 0, and so H
is globally U-invariant. Then U(s) commutes with ∆it and eq. (0.9.3) implies that
U(s) = 1. �

2.3 Real maps

Let K and H be (complex) Hilbert spaces and K ⊂ K, H ⊂ H standard subspaces.
A bounded linear map T ∈ B(K,H) is said to be K − H- real if T K ⊂ H.

Theorem 2.3.1. Let H ⊂ H, K ⊂ K be standard subspaces. Then for T ∈
B(K,H) the following conditions (a) − (g) are equivalent :

(a) T is K − H-real;

(b) T ∗ is H′ − K′-real;

(c) JKT ∗JH is H − K-real;

(d) (Tη, ξ′) ∈ R for all η ∈ K and ξ′ ∈ H′;

(e) TS K ⊂ S HT;

(f) ∆
1/2
H T∆

−1/2
K is defined on D(∆−1/2

K ) and coincides there with JHT JK;

(g) The map T (s) ≡ ∆−is
H T∆is

K ∈ B(K,H), s ∈ R, extends to a bounded strongly
continuous map on S1/2, analytic in S1/2 and satisfying

T
( i
2

)
= JHT JK . (2.3.1)
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Moreover, if the above equivalent conditions are satisfied, then we have

‖T (z)‖ ≤ ‖T‖ , z ∈ S1/2 , (2.3.2)

T (z + t) = ∆−it
H T (z) ∆it

K , z ∈ S1/2 , t ∈ R , (2.3.3)

T
(
s +

i
2

)
= JHT (s)JK , s ∈ R (2.3.4)

and T (s) is K − H-real and T (s + i
2 ) is K′ − H′-real for all s ∈ R .

Proof. T K ⊂ H iff =(Tη, ξ′) = 0 for all η ∈ K, ξ′ ∈ H′, thus iff =(η,T ∗ξ′) = 0.
Therefore (a)⇔ (b).

Let us assume that (a) holds. Every ξ ∈ D(S K) is of the form ξ = ξ1 + iξ2 with
ξ1, ξ2 ∈ K. Hence we get

Tξ = Tξ1 + iTξ2 ∈ H + iH ⊂ D(S H),
S HTξ = Tξ1 − iTξ2 = TS Kξ ,

proving (e). Conversely, if (e) holds, then we have for every ξ ∈ K ⊂ D(S K)

Tξ ∈ D(S H) and S HTξ = TS Kξ = Tξ ,

so Tξ ∈ H. Therefore (a)⇔ (e).
Since JK is involutive and S K = ∆

−1/2
K JK , S H = ∆

−1/2
H JH, (e) is equivalent to

T∆
−1/2
K ⊂ ∆

−1/2
H JHT JK .

This equation is equivalent to the validity of

∆
1/2
K T∆

−1/2
H ξ = JHT JKξ , ξ ∈ D(∆−1/2

K ) ,

and thus (d)⇔ ( f ).
(d)⇔ (b) follows immediately from JHH = H′, JKK = K′.
( f ) ⇔ (g): let ξ ∈ H and η ∈ K be entire vectors of exponential growth (Cor.

0.8.6) respectively for ∆H and ∆K . Then fξ,η(z) ≡ (∆−iz
H T∆iz

Kη, ξ) = (T∆iz
Kη,∆

−iz
H ξ)

is an entire function whose value at z = t + i/2 is

fξ,η(t + i/2) = (T∆
−1/2
K ∆it

Kη,∆
1/2
H ∆it

Hξ) (2.3.5)

(t ∈ R). If ( f ) holds, then

fξ,η(t + i/2) = (JHT JK∆it
Kη,∆

−it
H ξ)
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so, by the Three Line Theorem, || fξ,η(z)|| ≤ ||T || ||ξ|| ||η||. By the density of the ξ’s
in H and the η’s in K we get (g).

Conversely, if (g) holds, then by (0.10.5) we get

(T∆
−1/2
K η,∆1/2

H ξ) = (JHT JKη, ξ)

As the η’s for a core for ∆
−1/2
K and the ξ’s a core for ∆

−1/2
H , it follows that the above

equation holds true foll ξ ∈ D(S H) and η ∈ D(S K). This implies ∆
1/2
H T∆

−1/2
K η =

JHT JKη for all η ∈ D(S K), namely ( f ) holds.
Now let us assume that the equivalent conditions (a)−(g) are satisfied. Clearly

we have T (s+ t) = ∆−it
H T (s)∆it

K for t, s ∈ R, so by (g) we have T (z+ t) = ∆−it
H T (z)∆it

K

for t ∈ R and z ∈ S1/2, namely eq. (0.10.3) holds. Setting z = −i/2 we get (0.10.4)
by (0.10.1).

So the map T ( · ) is bounded and for all s ∈ R

‖T (s)‖ = ‖∆is
HT∆−is

K ‖ = ‖T‖,
∥∥∥∥T

(
s +

i
2

)∥∥∥∥ = ‖JHT (s)JK‖ = ‖T‖,

we get also (0.10.2) by the Three Line Theorem. Finally, since K and H are
invariant under ∆is

K and ∆is
H, respectively, for every s ∈ R, T (s) is K − H-real and

T (s + i
2 ) = JHT (s)JK is K′ − H′-real. �

Corollary 2.3.2. Let K ⊂ H be standard subspaces of H. The map W(s) =

∆−is
H ∆is

K , s ∈ R, extends to a strongly continuous map on S1/2, analytic in S1/2, such
that W

(
s + i

2

)
= JHW(s)JK . Moreover W

(
s + i

2

)
is K′ − H′-real.

Proof. Immediate setting T = 1 in the above theorem. �

We now give a converse of Th. 0.10.1, namely we characterise the map T . Be-
cause of a subsequent application we treat the case with an a priori singularity
at z = i/2, that will turn out to be a removable singularity. This can be general-
ized to the case with an a priori set of singular values on the strip boundary with
one-dimensional Lebesgue measure zero [?].

Theorem 2.3.3. Let H ⊂ H and K ⊂ K be standard subspaces. Let

z ∈ S1/2\{i/2} 7−→ T (z) ∈ B(K,H)

be a bounded, weakly continuous map on S1/2\{i/2} which is analytic in S1/2 and
satisfies:
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• T (s) is K − H-real for all s ∈ R,

• JKT (s + i/2)JH is H − K-real for all s ∈ R\{0} .

Then there exists a K − H-real operator T ∈ B(K,H) such that

T (s) = ∆−is
H T∆is

K , s ∈ R . (2.3.6)

Hence T ( · ) extends to a strongly continuous map on S1/2 and satisfies

T (z + t) = ∆−it
H T (z)∆it

K , z ∈ S1/2 , t ∈ R , (2.3.7)

T (s + i/2) = JHT (s)JK , s ∈ R . (2.3.8)

Proof. Fix ξ′ ∈ H′, η ∈ K and t ∈ R and consider the two functions of s ∈ R

F(s) = (ξ′,∆is
HT (s + t)∆−is

K η) .

As T ( · ) has a bounded continuos extension in the strip S1/2\{i/2}, analytic in S1/2,
it follows that F has a bounded continuos extension in the strip S1/2\{i/2 − t},
analytic in S1/2. Note that, by the assumed reality properties, we have F(s) is real
for s ∈ R.

The upper boundary values are given by

F(s + i/2) = (∆−1/2
H ξ′,∆is

HT (s + t + i/2)∆−is
K ∆

1/2
K η)

= (JHξ
′,∆is

HT (s + t + i/2)∆−is
K JKη) = (∆−is

H JHT (s + t + i/2)JK∆is
Kη, ξ

′) ,

s ∈ R, s + t , 0. Therefore, again by the assumed reality properties, we have that
F(s + i/2) is real for all s ∈ R, s + t , 0.

So, by the Schwarz reflection principle, we can extend F to a bounded function
analytic on the complex plane except for z ∈ −t + i

2 + iZ. As F is bounded, these
singularities are removable and so F has to be constant by Liouville theorem. In
particular if t, s ∈ R we have

(ξ′,∆is
HT (s + t)∆−is

K η) = (ξ′,T (t)η)

and, by the cyclicity of H′ and K, we conclude that

T (s + t) = ∆−is
H T (t)∆is

K ;

so we get eq. (0.10.6) with T = T (0).
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2.4 Half-sided modular inclusions of standard sub-
spaces

Let K ⊂ H be standard subspaces of a Hilbert space H. If

∆−it
H K ⊂ K, for ± t > 0,

the inclusion K ⊂ H is called a ±half-sided modular inclusion of standard sub-
spaces (if the the ±sign is not specified we shall assume it to be +.

Given the situation described by the statement of Borchers Thm. 0.9.1, the
theorem entails that K ≡ U(1)H ⊂ H, t > 0 is a half-sided modular inclusion:

∆−it
H K = ∆−it

H U(1)H = U(e2πt)∆−it
H H =

U(e2πt)H = U(1)U(e2πt − 1)H ⊂ U(1)H = K.

Moreover

∆−it
H ∆it

K = ∆−it
H U(1)∆it

HU(−1) = U(e2πt)U(−1) = U(e2πt − 1) ,

In particular
K = U(1)H = ∆−it

H ∆it
K |t= 1

2π log 2H . (2.4.1)

On the other hand, given a half-sided modular inclusion K ⊂ H we can define
unitaries U(t), t ∈ R, by

U(e2πt − 1) = ∆−it
H ∆it

K .

Thm 0.11.1 shows that U is one-parameter unitary group with positive generator
and H, K, U satisfy the conditions of Borchers theorem, thus providing a converse
to it.

Wiesbrock theorem (one-particle)
The following theorem is the standard subspace version of a theorem for hsm
inclusion of von Neumann algebras that was first point out by Wiesbrock and we
shall discuss in a later chapter. The original proof had a serious gap in the proof.
A different and complete proof was later given by Araki-Zsido and Borchers.

Theorem 2.4.1. Let K ⊂ H be a half-sided modular inclusion of standard sub-
spaces of the Hilbert space H, namely ∆−it

H K ⊂ K, t ≥ 0.
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There exists a positive energy unitary representation V of P on H determined
by

V(δ(2πs)) = ∆−is
H , V(δ1(2πs)) = ∆−is

K .

Here δ1 is the one-parameter subgroup of P of dilations of (1,∞) (i.e. δ1(s) =

τ(−1)δ(s)τ(1)).
The translation unitaries U(t) ≡ V(τ(t)) are defined by U

(
e2πt − 1

)
= ∆−it

H ∆it
K

and satisfy U(s)H ⊂ H, s ≥ 0, and K = U(1)H.

Proof. By Cor. 0.10.2 we have a strongly continuous map W on S1/2, analytic in
S1/2, such that ‖W(z)‖ ≤ 1, z ∈ S1/2 and

W(s) = ∆−is
H ∆is

K and W
(
s +

i
2

)
= JHW(s)JK , s ∈ R . (2.4.2)

Now the map W has the following reality properties:

(a1): W(z) is K − K-real for z ∈ (0,∞) ,

(a2): W(z) is K′ − K′-real for z ∈ (−∞, 0) ,

(a3): W(z) is K′ − K′-real for z ∈ R + i
2 .

Indeed, (a1) follows by assumed half-sided modular invariance as if s ≥ 0 we have

W(s)K = ∆−is
H ∆is

KK ⊂ ∆−is
H K = K .

Since for s ∈ R we have

∆is
HK′ ⊂ K′ ⇔ ∆−is

H K′ ⊃ K′ ⇔ ∆−is
H K ⊂ K ,

we can see that (a2) follows from (a1) because if s ≤ 0

W(s)K′ = ∆−is
H ∆is

KK′ = ∆−is
H K′ ⊂ K′ .

Concerning (a3), this holds true because by Cor. 0.10.2 because W(s+i/2)K′ ⊂ H′

and H′ ⊂ K′.
Now we make a change of variable. We consider the logarithm in the complex

cut plane −π < Argz ≤ π, set

h(z) ≡
1

2π
log(1 + e2πz), z ∈ S1/2 ,
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and note that h is maps conformally S1/2 onto S1/2 and sets bijections on the bound-
ary as follows

(−∞,∞)↔ (0,∞) ,

(−∞, 0) +
i
2
↔ (−∞, 0) ,

(0,∞) +
i
2
↔ (−∞,∞) +

i
2
,

thus
S1/2\{i/2}

h
←→ S1/2\{0} .

Set

T (z) ≡ W(h(z)) = W
( 1
2π

log(1 + e2πz)
)
, z ∈ S1/2\{i/2} .

Then T is a bounded, strongly continuous map on S1/2\{i/2}, analytic in S1/2. By
Cor. 0.10.2 we have

‖T (z)‖ ≤ 1 , z ∈ S1/2 \ {i/2} ,
T (s) is K − K-real , s ∈ R ,

JKT (s + i/2)JK is K − K-real, s ∈ R .

(2.4.3)

By Th. 0.10.3 T extends to a strongly continuous map on S1/2 and we have the
relation ∆is

KT (z)∆−is
K = T (z − s), thus

∆is
KW

( 1
2π

log(1 + e2πt)
)
∆−is

K = W
( 1
2π

log(1 + e2π(t−s))
)
. (2.4.4)

Multiplying the above equation from the left by ∆−is
H and from the right by ∆is

K we
get with e2πa = e2πs + 1

∆−is
H ∆is

K∆−ia
H ∆ia

K = W
( 1
2π

log((1 + e2π(t−s)) + t
)

= W
( 1
2π

log(e2πs + e2πt)
)

= W
( 1
2π

log(e2πa + e2πt − 1)
)

Since the above expression is symmetric in a and t, the W(t)’s form a commutative
family. We set

U(e2πt − 1) ≡ W(t) ,
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then the above equation reads

U(e2πt − 1)U(e2πa − 1) = U(e2π(t+a) − 2)

showing that U is additive for positive arguments hence, by analytic continuation,
for any real arguments. Thus U is an continuous one-parameter group of unitaries,
which allows a strongly continuous extension in the upper half plane =z ≥ 0,
analytic in =z > 0 and norm bounded by 1. Consequently

U(s) = eisP , s ∈ R , (2.4.5)

for some positive selfadjoint operator P in H.
Note that, by eq. (0.11.4), we obtain ∆−it

K U(s)∆it
K = U(e2πts) for all s, t ∈ R,

hence

∆−it
H U(s) ∆it

H =
(
∆−it

H ∆it
K
)
∆−it

K U(s) ∆it
K
(
∆−it

K ∆it
H
)

=

= U
(
1 − e2πt) U

(
e2πts

)
U

(
1 − e2πt)∗ = U

(
e2πts

)
,

(2.4.6)

By (0.11.6) the map
V : P 3 τ(s)δ(t) 7→ U(s)∆−it/2π

H

is a unitary representation on H of P.
It remains to prove property that K = U(1) and U(s)H ⊂ H for s ≥ 0. Since

∆−it
H ∆it

KK = ∆−it
H K ⊂ ∆−it

H H = H , t ≥ 0,

we have from the definition of U that

U(s)K ⊂ H , s ≥ −1, (2.4.7)

and in particular U(1)H ⊃ K. Now

∆it
U(1)H = U(1)∆it

HU(−1) = ∆it
HU(1 − e2πt) = ∆it

H∆−it
H ∆it

K = ∆it
K

so by Prop. 0.8.10
K = U(1)H , (2.4.8)

hence

U(s)H = U(−1)U(s)U(1)H = U(−1)U(s)K ⊂ U(−1)K = H

as desired. �
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We give two immediate corollaries.

Corollary 2.4.2. Let K ⊂ H be a hsm standard inclusion of standard subspaces
of H. Then K and H have the same center Z and we have the direct sum decom-
position H = H1 ⊕H0, where H0 = Z + iZ, with K = K1 ⊕ Z, H = H1 ⊕ Z.

Then K1 ⊂ H1 is a hsm inclusion of standard subspaces and both ∆it
H1

and ∆it
K1

weaky tend to zero as t → ±∞.

Proof. By Prop. 0.7.1 a vector ξ ∈ H is fixed by ∆it
H iff it is fixed by ∆it

K . By Cor.
0.8.14 the center Z of H and of K then coincide. Denoting by E the expectation
onto Z we have the decomposition as stated with H1 ≡ (1 − E)H, K1 ≡ (1 − E)K.
The rest is clear by Prop. 0.7.1. �

Corollary 2.4.3. Let K ⊂ H be an inclusion of standard subspaces of H. Then
K ⊂ H is positive half-sided modular iff H′ ⊂ K′ is negative half-sided modular.

Proof. K ⊂ H is ±half-sided modular iff K = U(1)H with U a one-parameter
group with positive generator such that U(±t)H ⊂ H for t ≥ 0. Then H′ =

U(∓1)K′ ⊂ K′ is ∓half-sided modular. �

2.5 Appendix. von Neumann algebras and real Hilbert
subspaces

We give here a flash forward by mentioning the relation with the von Neumann
algebra context, which is our motivational setting.

Let M be a von Neumann algebra on a Hilbert space H and Ω ∈ H a vector.
Clearly

HM ≡ MsaΩ (2.5.1)

is a real Hilbert subspace of H, where Msa denotes the selfadjoint part of M. It
follows immediately from the definitions that

Ω is cyclic⇔ HM is cyclic (2.5.2)
Ω is separating⇔ HM is separating (2.5.3)

With a fixed vector Ω, the map M 7→ HM is non injective. Indeed HM contains
only a part of the information on M (further order structure on HM recovers the
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full algebraic structure of M by a theorem of Connes). However HM gives the full
knowledge of the modular operator and modular conjugation of M

∆M = ∆HM , JM = JHM

because the KMS property and Prop. 0.8.10. In particular

H′M = HM′

because H′M = JHM HM = JM MsaΩ = JM MsaJMΩ = M′
saΩ = HM′ .

Proposition 2.5.1. Let M be a von Neumann algebra with cyclic and separating
vector Ω.

(a) If N1,N2 ⊂ M are a von Neumann subalgebras with HN1 ⊂ HN2 , then
N1 ⊂ N2.

(b) If N is a von Neumann algebra commuting with M and HN = H′M, then
N = M′.

Proof. (a): Let x be a selfadjoint element of N1. As N1saΩ ⊂ N2saΩ, there exists
a sequence of of elements xn ∈ N2sa such that xnΩ → xΩ. Then xnx′Ω → xx′Ω
for all x′ ∈ M′. Now xn and x are all bounded and selfadjoint and xn tends to x
strongly on a dense set (common core), thus in the strong resolvent sense. We
conclude that x is affiliated to N2 and indeed x ∈ N2 as x is bounded.

(b) We have N ⊂ M′ and HN = H′M = HM′ , so N = M′ by (a). �
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Chapter 3

Möbius covariant nets of standard
subspaces

We now begin the study of the nets of standard subspaces that are covariant with
respect to a positive energy representation of G. All the information on the one-
particle Hilbert space is contained in this structure.

3.1 Definition
Let H be a complex Hilbert space. A local Möbius covariant net H of real linear
subspaces of H on the intervals of S 1 is a map

I → H(I)

that associates to each interval I ∈ I a closed, real linear subspace of a H, that
verifies the following properties 1,2,3,4,5:

1. I : If I1, I2 are intervals and I1 ⊂ I2, then

H(I1) ⊂ H(I2) .

2. M̈ : There is a unitary representation U of G on H such that

U(g)H(I) = H(gI) , g ∈ G, I ∈ I.

3. P    : U is a positive energy representation.
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4. C : The complex linear span of all the H(I)’s is dense in H.

5. L : If I1 and I2 are disjoint intervals then

H(I1) ⊂ H(I2)′

3.2 Reeh-Schlieder theorem (one-particle)

Theorem 3.2.1. Let H be a local Möbius covariant net of real linear subspaces
of H on S 1. Then H(I) is a standard subspace of H for each I ∈ I.

Proof. Fix then an interval I and let η ∈ H be orthogonal to H(I). We want to
show that η = 0.

Choose an interval I0 with Ī0 contained in I. Then for all real t in a neighbour-
hood of 0 such that τI(t)I0 ⊂ I we have

f (t) ≡ (η,U(τI(t))ξ) = (η,U(τI(t))ξ) = 0 ,

for all ξ ∈ H(I0). As the generator of the translation unitary group is positive, f
extends to a continuos function on the upper half-plane=z ≥ 0, analytic in=z > 0,
thus f = 0 identically. Thus η is orthogonal to H(τI(t)I0) = U(τI(t))H(I0) for all
t ∈ R.

By the same argument, with τI replaced by τI′ , we see that η is orthogonal to
H(τ′I(t)I0)for all t ∈ R. We may now repeat the argument replacing I0 ⊂ I with
τI(s)I0 ⊂ τI(s)I and see that η is orthogonal to H(τI′(t)τI(s)I0) for all t, s ∈ R.

As the subgroup of G generated by τI(t) and τI′(s), t, s ∈ R, is equal to G,
iterating the above argument we get that η is orthogonal to U(g)H(I0) = H(gI0)
for all g ∈ G. As G acts transitively on I, η = 0 by the assumed cyclicity of H.

So H(I) is cyclic. As by locality H(I)′ ⊃ H(I′) and H(I′) is also cyclic, it
follows that H(I) is separating too. �

Because of the Reeh-Schlieder theorem we shall refer to a local Möbius covari-
ant net of real linear subspaces also as a local Möbius covariant net of standard
subspaces.
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3.3 Bisognano-Wichmann property and Haag dual-
ity (one-particle)

Theorem 3.3.1. Let I ∈ I and ∆I , JI be the modular operator and the modular
conjugation of H(I). Then we have:

• Bisognano-Wichmann property:

∆it
I = U(δI(−2πt)), t ∈ R ; (3.3.1)

• U extends to an (anti-)unitary representation of G2 determined by

U(rI) = JI , I ∈ I ,

acting covariantly on A, namely

U(g)H(I) = H(gI) g ∈ G2, I ∈ I ;

• Haag duality: For every interval I

H(I′) = H(I)′ .

Proof. As U(δI(−2πt)) leaves H(I) globally invariant, U(δI(−2πt)) and ∆is
I com-

mute. Thus zI(t) ≡ ∆it
I U(δI(2πt)) is a one-parameter unitary group.

By Borchers theorem U(δI(−2πt)) and ∆it
I have the same commutation rela-

tions with the translation unitaries U(τI(s)), namely U(τI(s)) commutes with zI(t).
By the same reason U(τI′(·)) commutes with zI . Now τI and τI′ generate G, thus
zI commutes with U(G). Since U(g)zI(t)U(g)∗ = zgI(t), it follows that zI is inde-
pendent of I. But zI′(t) = zI(−t), thus zI is trivial being a one-parameter group and
we have shown (0.15.1).

Now ∆−1
I is the modular operator of H(I)′. By the above geometric action the

modular group ∆−it
I of H(I)′ leaves globally invariant the standard subspace H(I′).

By Prop. 0.8.10 we then have H(I′) = H(I)′, namely Haag duality holds.
It remains to show the G2-covariance. Again by applying Borchers theorem

to the commutation relations between U(τI(·)), or U(τI′(·)), and JI we see that

JIU(g)JI = U(rIgrI)

for all g ∈ G. We can thus extend U from G to G2 by setting U(grI) ≡ U(g)JI for
all g ∈ G.
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Now any interval I0 is of the form I0 = gI for some g ∈ G, thus

JIH(I0) = JIH(gI) = JIU(g)H(I) = U(rIgrI)JIH(I)
= U(rIgrI)H(rI I) = H(rIgI) = H(rI I0) , (3.3.2)

that completes the proof. �

Corollary 3.3.2. The representation U of G is unique.

Proof. Immediate by the equation (0.15.1). �

It follows that if H1,H2 are two local Möbius covariant nets and V is a unitary
between the underlying Hilbert spaces such that VH1(I) = H2(I), then V automat-
ically intertwines the unitary Möbius group actions.

Note also that the continuity property holds true: if I ∈ I and In is an increasing
sequence of intervals such that ∪nIn = I, then H(I) is equal to ∪nH(In). Indeed let
g ∈ G be such that gI ⊂ I. Then H(In) ⊃ H(gI) for some n. As g converges to the
identity in G any vector ξ ∈ H(I) is the limit of vectors U(g)ξ ∈ ∪nH(In).

Corollary 3.3.3 (Additivity). Let I and Ii be intervals with I ⊂ ∪iIi. Then H(I) is
contained in the closed linear span of the H(Ii)’s.

Proof. First we prove the statement in the case ∪iIi ⊃ Ī. As Ī is compact, there
exists a finite subfamily of {Ii} that covers I, so we may assume that {Ii} is itself
a finite family. We can then choose a non-empty, open interval L ⊂ I such that,
for any fixed s ∈ R, δI(s)L is contained in a least one of the Ii’s. Let K be the
real Hilbert space linearly spanned by the H(δI(s)L) = ∆−2iπs

I H(L) as s varies in
R. Clearly K ⊂ H(I) is cyclic and K is globally invariant under the modular group
of H(I). So K = H(I). As the closed linear span of the H(Ii)’s contains K, it also
contains H(I).

It remains to remove the assumption ∪iIi ⊃ Ī. But for every interval I0 with
Ī0 ⊂ I the closed linear span of the H(Ii)’s contains H(I0), so it contains H(I) by
the above continuity property. �



3.4 Non-degenerate nets 49

3.4 Non-degenerate nets
We shall say that the net H is non-degenerate if the real linear span generated by
all the H(I)’s is dense in H.

The property of being non-degenerate is indeed equivalent to several other
requirements.

Proposition 3.4.1. Assume all properties 1 − 5 for H. The following are equiva-
lent:

(i) U does not contain the identity representation.

(ii) H(I) ∩ H(I)′ = {0} (factoriality).

(iii) For any given two points p1, p2 the real linear span generated by the H(I),
p1, p2 < I, is dense in H.

(iv) H is non-degenerate.

(v)
⋂

I∈I H(I) = {0}.

Proof. (i) ⇒ (ii): Let I be in an interval and ξ ∈ H(I) ∩ H(I)′. By Cor 0.8.8
and Prop. 0.8.13 ∆it

I |H(I)∩H(I)′ is the identity on H(I) ∩ H(I)′. So ξ is fixed by
U(δI(−2πt)) = ∆it

I . By the vanishing of the matrix coefficient theorem U(g)ξ = ξ,
thus ξ = 0 by assumption.

(ii) ⇒ (iii): By Haag duality H(I) + iH(I′) = H(I) + iH(I)′ is dense and (iii)
follows by taking I with endpoints p1, p2.

(iii)⇒ (iv): Obvious.
(iv)⇔ (v): Immediate by Haag duality.
(v) ⇒ (i): Let ξ be U-invariant vector. Then ∆it

I ξ = U(δI(−2πt))ξ = ξ for any
interval I. Then η ≡ ξ ± JIξ are vectors fixed by the extension of U to G2, thus
S I0η = η for all I0 ∈ I, namely η ∈ ∩I∈IH(I) = {0}. So ξ = 0. �

Corollary 3.4.2 (One-particle spin-statistics relation). If H is defined by all the
above properties 1 − 5 but with Ḡ in place of G, then automatically U is indeed a
representation of G.

Proof. Note that in all the above discussion we may have used Ḡ in place of G, in
particular it follows by the Bisognano-Wichmann property that U(R(π)) = JI1 JI2

with I1, I2 the right and the upper semicircle. As JI1 H(I2) = H(I2), JI1 and JI2

commute, so U(R(2π)) = U(R(π))2 = 1. �
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Corollary 3.4.3 (Equivalence between positive energy and KMS for dilation). Let
H be defined by all the above properties 1−5 except positivity of the energy. Then
positivity of the energy follows by the equality ∆it

I = U(δI(−2πt)).

Proof. Immediate by the converse of Borchers theorem (Thm. 0.9.4). �

3.5 Modular construction of nets on S 1

Let’s fix a (anti)-unitary, positive energy representation U of G2 on a Hilbert space
H. Namely U |G is a unitary, positive energy representation U of G on H and a
there is a anti-unitary involution J on H such that

JU(g)J = U(rgr) , g ∈ G ,

where r : z 7→ z̄ is the reflection on S 1 associated with the upper semicircle. Then
the involution JI associated with any interval I ∈ I is given by the formula

JI ≡ U(g)JU(g)∗ ,

where g ∈ G is any element of G mapping the upper semicircle onto I. In other
words

JI ≡ U(rI) ,

where rI is the reflection of S 1 associated with I.
With I any interval, define ∆I to be the positive, non-singular selfadjoint oper-

taor on H such that
∆it

I ≡ U(δI(−2πt)), t ∈ R ,

namely− 1
2π log ∆I is the infinitesimal generator of the one-parameter unitary group

U(δI(·)) of dilations associated with I.
Note that

JI∆I JI = ∆−1
I (3.5.1)

because rIδI(t)rI = δI(−t).
Finally, define the anti-linear operator on H

S I ≡ JI∆
1/2
I : H → H .

Proposition 3.5.1. S I is a densely defined, antilinear, closed operator on H with
S 2

I = 1 on D(S I).
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Proof. Density and closeness follow from the corresponding property of ∆I , anti-
linearity from the anti-linearity of JI . Now, R(S I) ⊂ D(S I) ≡ D(∆1/2

I ), where
R denotes the range; indeed by eq. (0.17.1) we have that JI∆

1/2
I ξ = ∆

−1/2
I JIξ ∈

D(∆1/2
I ). But we get immediately that S 2

I = JI∆
1/2
I JI∆

1/2
I = ∆

−1/2
I ∆

1/2
I ⊂ 1 and

therefore if ξ ∈ D(S I) then ξ = S I(S Iξ) ∈ R(S I), so we can conclude. �

Let us now define real subspaces of H associated with any I ∈ I as the one
associated with S I:

H(I) = {ξ ∈ D(S I) : S Iξ = ξ}.

By the Section 0.8, each H(I) is a standard subspace in H, and JI , ∆I are the
modular operator and conjugation of H(I). In particular we have JIH(I) = H(I)′.

Theorem 3.5.2. Let U be a (anti-)unitary, positive energy representation of G2

on H and define H(I), I ∈ I, as above.
Then H is a local Möbius covariant local net of real Hilbert spaces of H.

Proof. First we show that the representation U acts covariantly on the family
{H(I) : I ∈ I}, namely,

U(g)H(I) = H(gI) , g ∈ G . (3.5.2)

As we have U(g)∆it
I U(g)∗ = ∆it

gI and U(g)JIU(g)∗ = JgI it follows that that

U(g)S IU(g)∗ = S gI

so eq. (0.17.2) holds.
Locality, indeed Haag duality, will follow from the identity S I′ = S ∗I . Indeed,

since rI′ = rI we have JI = JI′ and since δI′(t) = δI(−t), we have ∆I′ = ∆−1
I . Thus

S ∗I =
(
JI∆

1/2
I

)∗
= ∆

1/2
I JI = JI∆

−1/2
I = JI′∆

1/2
I′ = S I′ .

It remains to show isotony. This follows Theorem 0.9.4. �

Note that eq. (0.17.2) holds true also for g ∈ G2 because U(rI) = JI .

3.6 Nets on S 1 and nets on R
Let H be a Hilbert space. A hsm factorization of real subspaces is a triple {Hi, i ∈
Z3} of standard subspaces of H such that Hi ⊂ H′i+1 is a hsm inclusion of standard
subspaces for each i ∈ Z3.
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Now, given a local net of standard subspaces of H, we obtain a hsm factoriza-
tion of standard subspaces by considering the standard subspaces associated to a
partition of S 1 by three intervals in the counterclockwise order (up to the bound-
ary points), due to the geometric property of the modular group. We shall see that
every factorization of standard subspaces actually arise in this way.

Lemma 3.6.1. Let G be the universal group (algebraically) generated by 3 one-
parameter subgroups δi(·), i ∈ Z3, such that δi and δi+1 have the same commuta-
tion relations of δIi and δIi+1 for each i ∈ Z3, where I0, I1, I2 are intervals forming a
partition of S 1 in the counterclockwise order. Then G is isomorphic to Ḡ and the
δi’s are continuous one parameter subgroups naturally corresponding to δIi .

Proof. Obviously G has a quotient isomorphic to Ḡ, and we denote by q the quo-
tient map. As the exponential map is a local diffeomorphism of the Lie algebra
of a Lie group and the Lie group itself, there exists a neighbourhood U of the
origin R3 such that the map (t0, t1, t2) → δI0(2πt0)δI1(2πt1)δI2(2πt2) is a diffeo-
morphism of U with a neighbourhood of the identity of Ḡ. Therefore the map
Φ : (t0, t1, t2) ∈ U → δ0(2πt0)δ1(2πt1)δ2(2πt2) ∈ G is still one-to-one. It is easily
checked that the maps gΦ : U → G, g ∈ G, form an atlas on G, thus G is a man-
ifold. In fact G is a Lie group since the group operations are smooth, as they are
locally smooth. Now G is connected by construction and q is a local diffeomor-
phism of G with Ḡ, hence a covering map, that has to be an isomorphism because
of the universality property of Ḡ. �

Theorem 3.6.2. Let (H0,H1,H2) be a hsm factorization of standard subspaces
and let I0, I1, I2 be intervals forming a partition of S 1 in counter-clockwise order.
There exists a unique local Möbius covariant net H of standard subspaces on S 1

such that H(Ik) = Hk, k ∈ Z3. The (unique) positive energy unitary representation
Uof G is determined by U(δIk(−2πt)) = ∆it

k (where ∆k ≡ ∆H(Ik)).

Proof. The subgroup of Ḡ generated by the one-parameter subgroups δIk and δIk+1 ,
k ∈ Z3, is a two-dimensional Lie group Pk isomorphic to P. As Hk ⊂ H′k+1 is a hsm
standard inclusion, by Thm. 0.11.1 the unitary group generated by ∆it

k and ∆is
k+1 is

isomorphic to P, indeed there exists a unitary representation Uk of Pk determined
by Uk(δIk(−2πt)) = ∆it

i and Ui(δIi+1(−2πs)) = ∆is
k+1, therefore by Lemma 0.18.1,

there exists a unitary representation U of Ḡ, such that U |Pk = Uk.
Let t0 = 1

2π log 2. Then we have (see eq. (0.11.1))

∆
it0
0 ∆

it0
1 H0 = H′1, (3.6.1)
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and similarly (
∆

it0
2 ∆

it0
0
)(

∆
it0
1 ∆

it0
2
)(

∆
it0
0 ∆

it0
1
)
H0 = H′0. (3.6.2)

The element g ≡ δI2(−2πt0)δI0(−2πt0)δI1(−2πt0)δI2(−2πt0)δI0(−2πt0)δI1(−2πt0) is
easily seen to be conjugate to the π-rotation in G, thus in Ḡ (gI0 = I′0, so g has
the form g = δI0(s)rI0 = δI0(s/2)rI0δI0(−s/2)), hence equation (0.18.2) entails that
U(R(2π))H0 = H0.

Set H(I0) ≡ H0. If I is an interval of S 1, then I = gI0 for some g ∈ Ḡ, and
we set H(I) = U(g)H(I0). Since the group GI0 of all g ∈ Ḡ such that gI0 = I0 is
generated by δI0(t), t ∈ R, and by 2kπ rotations, k ∈ Z, then U(g)H(I0) = H(I0)
for all g ∈ GI0 and H(I) is well defined.

The isotony of H follows if we show that gI0 ⊂ I0 ⇒ H(gI0) ⊂ H(I0). Indeed
any such g is a product of an element in GI0 and translations τI0(·) and τI′0

(·) map-
ping I0 into itself, hence the isotony follows by the half-sided modular conditions.

By (0.18.1) we have
∆

it0
1 ∆

it0
2 ∆

it0
0 ∆

it0
1 H0 = H2

and since the corresponding element in Ḡ maps I0 onto I2, we get H2 = H(I2) and
analogously H1 = H(I1).

The locality of H now follows by the factorization property.
Finally, the positivity of the energy follows by the Bisognano-Wichmann prop-

erty (Cor. 0.16.3) and U is a representation of G by the one-particle spin-statistics
relation (Cor. 0.16.2). �

By a net of real Hilbert subspaces on R we shall mean an isotonous map

I 7→ H(I) ⊂ H

that associates to each bounded interval of R a real Hilbert subspace of a Hilbert
space H. All properties like locality, translation-dilation covariance, etc. have
their obvious meaning.

Starting with a local net on S 1 we get by restriction a local net on R.
Although a local Möbius covariant net satisfies Haag duality on S 1, duality on

R does not necessarily hold.

Lemma 3.6.3. Let H be a local Möbius covariant net of standard subspaces on
S 1. The following are equivalent:

(i) The restriction of H to R satisfies Haag duality:

H(I) = H(R\I)′
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(ii) H is strongly additive: If I1, I2 are the connected components of the interval
I with one internal point removed, then

H(I) = H(I1) + H(I2)

(iii) if I, I1, I2 are intervals as above

H(I1)′ ∩ H(I) = H(I2)

Proof. Note that by Möbius covariance we may suppose that the point removed in
(i) and (ii) is the point∞. Now (i)⇔ (ii) because R\I consists of two contiguous
intervals in S 1 whose union has closure equal I′, and by Haag duality H(I) =

H(I′)′. Similarly (ii) ⇔ (iii) because, after taking symplectic complements and
renaming the intervals, one relation becomes equivalent to the other one. �

Examples of Möbius covariant nets on S 1 that are not strongly additive, i.e. not
Haag dual on the line, will be discussed later. Haag duality on S 1 entails duality
for half-lines on R hence essential duality, namely the dual net of the restriction
H0 to R is local:

I 7→ Hd
0 (I) ≡ H(R\I)′ , I ⊂ R.

Due to locality the net Hd
0 is larger than the original one, namely

H0(I) ⊂ Hd
0 (I) , I ⊂ R.

The main feature of the dual net Hd
0 is that it obeys Haag duality on R. The dual

net does not in general transform covariantly under the covariance representation
of the starting net.

Theorem 3.6.4. Let H be a local net of standard subspaces on the intervals of R,
and U a unitary representation of P acting covariantly on H. The following are
equivalent:

(i) H extends to a Möbius covariant net on S 1.

(ii) The Bisognano-Wichmann property holds for H, namely

∆it
(0,∞) = U(δ(0,∞)(−2πt)). (3.6.3)
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Proof. (i)⇒ (ii) follows by (ii) of Thm. 0.11.1.
(ii) ⇒ (i): Note first that ∆it

(a,∞) = U(δ(a,∞)(−2πt)) for all a ∈ R because of
translation covariance. Hence H(−∞, a) is a standard subspace of H(a,∞)′ that
is cyclic on Ω and globally invariant under the modular group of H(a,∞)′ with
respect to Ω, hence, by the modular theory (Prop. 0.8.10), duality for half-lines
holds

H(a,∞)′ = H(−∞, a).

It follows now that
(
H(−∞,−1),H(−1, 1),H(1,∞)

)
is a hsm factorization of stan-

dard subspaces. Indeed
(
H(−∞,−1) ⊂ H(−1, 1)′ to be a hsm inclusion is equiv-

alent (by Cor. 0.11.3 and duality for half-lines) to H(−1, 1) ⊂
(
H(−1,−∞) to

be a -hsm inclusion and this is the case by the geometric action of ∆it
(−1,∞) =

U(δ(−1,∞)(−2πt)); and also the inclusions H(−1, 1) ⊂ H(1,∞)′ and H(1,∞) ⊂
H(−∞,−1)′, namely the inclusions H(−1, 1) ⊂ H(= ∞, 1) and H(1,∞) ⊂ H(−1,∞)
are again hsm by the geometric action of the modular group.

Therefore we get a Möbius covariant net from Theorem 0.18.2. Due to the
Bisognano-Wichmann property, the associated unitary representation of G re-
stricts to a unitary representation of P that acts covariantly on H. So H is indeed
an extension to S 1 of the original net. �

Now, if H is a local Möbius covariant net on S 1, its restriction H0 to R does not
depend, up to isomorphism, on the point we cut S 1, because of Möbius covariance.
The local net on S 1 extending Hd

0 is thus well defined up to isomorphism. We call
it the dual net of H and denote it by Hd.

Corollary 3.6.5. The dual net of a local Möbius covariant net on S 1 is a strongly
additive Möbius covariant net on S 1.

Proof. By construction, the dual net satisfies Haag duality on R, hence strong
additivity by Lemma 0.18.3. �

The following Corollary summarizes part of the above discussion.

Corollary 3.6.6. There exists a one-to-one correspondence between:

• Half-sided modular inclusions of standard subspaces K ⊂ H.

• Pairs (H,U) with H a standard subspace and U is a one-parameter unitary
group with positive generator s.t. U(t)H ⊂ H, t ≥ 0.
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• Translation-dilation covariant, Haag dual nets of standard subspaces on R
with the Bisognano-Wichmann property ∆it

(0,∞) = U(δ(0,∞)(−2πt)).

• Strongly additive local Möbius covariant nets of standard subspaces on S 1.

• Unitary representations of G with lowest weight ≥ 1.

In the above Corollary the unitary representation of G has lowest weight one iff
U has no non-zero fixed vectors, iff the nets are irreducible, iff the hsm inclusion
is non-degenerate, see the following Cor. 0.22.2. We shall see that there exists a
unique irreducible hsm inclusion of standard subspaces and every non-degenerate
hsm inclusions of standard subspaces is unitary equivalent to a multiple of the
unique irreducible one.

We have also proved the following:

Theorem 3.6.7. We have a one-to-one correspondence:

Factorizations (H0,H1,H2)
l

P covariant local nets of standard subspaces on intervals of R with BW property
l

Local G covariant nets of standard subspaces on S 1

l

Unitary, positive energy representations of G

In particular the correspondence between local G covariant nets of standard sub-
spaces on S 1 and unitary, positive energy representations of G is given by com-
bining thm. 0.15.1 and Thm. 0.17.2 by using the correspondence between unitary,
positive energy representations of G and unitary, positive energy representations
of G2 given by Thm. 0.6.3.

As the positive energy unitary representations of G are classified, the above
theorem gives in particular a classification of all Möbius covariant nets of standard
subspaces. We shall see another version of this classification in Cor. 0.22.1.

3.7 Appendix. Locality for irreducible nets
If U is irreducible, the locality property for a Möbius covariant net of real Hilbert
spaces is automatic. This is due to the fact that we are assuming U to be a repre-
sentation of G, not of Ḡ.
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Proposition 3.7.1. Assume all properties 1 − 4 for H in Sect. 0.13. If U is irre-
ducible, then H is local (provided H(I) , H for some I ∈ I).

Proof. By the argument in the proof of the Reeh-Schlieder theorem, every H(I) is
cyclic. Set K ≡ ∩IH(I); then K ∩ iK is U-invariant, so it is either zero or equal to
H because U is irreducible. In the second case K = H, so H(I) = H, that is not
possible by assumption. So K is separating. This is equivalent to say that the net
I 7→ H(I′)′ is cyclic, so each H(I′)′ is cyclic, again by the argument in the proof
of the Reeh-Schlieder theorem. We conclude that every H(I) is separating.

Now, as in the proof of Th. 0.15.1, z(t) ≡ ∆it
I U(δI(2πt)) is independent of I

and so belongs to U(G)′. As U is irreducible, z(t) = χ(t) for a one-dimensional
character of R. As z(t)H(I) = H(I), z(t) commutes with JI . So z(t) = JIz(t)JI =

JIχ(t)JI = χ(−t) = z(−t) and z(t) = 1, namely the Bisognano-Wichmann property
(0.15.1) holds true and in particular ∆I′ = ∆−1

I . In fact the proof of Th. 0.15.1 also
shows that JI = JI′ . Then if ξ ∈ H(I), ξ′ ∈ H(I′) we have

(ξ, ξ′) = (S Iξ, S I′ξ
′) = (JI∆

1/2
I ξ, J′I∆

1/2
I′ ξ

′) = (JI∆
1/2
I ξ, JI∆

1/2
I′ ξ

′)

= (∆1/2
I′ ξ

′,∆1/2
I ξ) = (∆−1/2

I ξ′,∆1/2
I ξ) = (ξ′, ξ)

so =(ξ, ξ′) = 0, namely locality holds. �
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Chapter 4

Representations of G and local
subspaces

If one pass from a current and one of its derivative, the “real line” structure re-
mains unchanged. Here we describe this phenomenon and, at the same time,
provide a concrete description of the local standard subspaces that will give us
further information on the associated nets.

4.1 Representations of G with the same restriction
to P

We shall now consider pairs of unitary representations of Ḡ that coincide when
restricted to P or, equivalently, representations of the amalgamated free product
Ḡ ∗P Ḡ. As a motivation, recall from Chapter 0.12 that the dual net of Möbius
covariant net and the original net have different representations of G, that indeed
coincide when restricted to P.

Let U be an irreducible unitary representation of Ḡ ∗P Ḡ. We shall denote by
U1 and U2 the restrictions of U to the two copies of G. We shall say that U has
positive energy if U |P has positive energy, i.e. if P = −iT is a positive operator.
Here T is the image of the translation generator in the Lie algebra of P (we shall
often denote by the same symbol both an element of the Lie algebra and its image
under the representation).

We shall classify the unitary positive energy representations of G ∗P G such
that either U1 or U2 is irreducible or, equivalently, such that (L01 − L02)T is a
scalar, where L0k denotes the conformal Hamiltonian of Uk.
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Theorem 4.1.1. Let U be an irreducible unitary representation of G ∗P G with
positive energy. Then Uk is irreducible for some k = 1, 2 if and only if both the Uk

are irreducible, and if and only if (L01−L02)T ∈ C. Moreover, such representations
are classified by pairs of natural numbers (n1, n2), where nk is the lowest weight
of Uk.

We now describe all lowest weight representations of G (or its universal covering
group Ḡ) as extensions of the representation of P.

Let us fix now the unitary irreducible representation U of G with lowest weight
1 and denote by E, T and S Lie algebra generators in the representation space.

Proposition 4.1.2. Each irreducible unitary representation Uα of Ḡ with lowest
weight α ≥ 1 is unitarily equivalent to the representation obtained by exponentia-
tion of the operators Tλ = T, Eλ = E, S λ = S − λT−1 with λ = α(α − 1)1

Proof. Uα|P and U |P are irreducible and equivalent by Cor. 0.6.2, so we may iden-
tify them. Now by (0.5.1) the value of the Casimir operator in the representation
Uα is λ = α(α − 1), so one gets the formula for S λ by multiplying on the left by
T−1 both sides of the equation λ = E(E − 1) − TS λ because E(E − 1) − TS = 0 in
the representation U, see (0.3.2) and (0.5.1).

To show that Tλ = T , Eλ = E, S λ = S − λT−1 exponentiate to the unitary
representation Uα, it is sufficient to show that the domain of the conformal Hamil-
tonian L0λ ≡ L0 + iλT−1 contain a complete orthonormal set of eigenvectors that
belong to the domain of Tλ, Eλ and S λ. Indeed it is enough to find a non-zero
α-eigenvector ξ for L0λ which is C∞ for the Lie algebra representation given by
T , E, S λ (cf. Lemma 0.5.1).

To this end, we may assume that E,T are the operators in the Schrödinger
representation. Now observe that when λ > 0, λ = α(α − 1), α ≥ 1,

L0λ = −
i
2

(
ex −

d
dx

(
e−x d

dx

)
+ λe−x

)
.

so the function ξ(x) ≡ eαxe−ex
is such a vector. �

Proof of Theorem 0.20.1. If (L01 − L02)T is a scalar, eitL02 belongs to (U1(G))′′

and eitL01 belongs to (U2(G))′′, therefore, since U is irreducible, Uk is irreducible
too, k = 1, 2. On the other hand, if say U1 is irreducible, we may identify it with
one of the representations described in Proposition 0.20.2 for some α ∈ R. Then,

1If A and B are linear operator with closable sum, the closure of their sum is denoted simply
by A + B.
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since U is irreducible and U1|P = U2|P, U2 too has to be of the form described in
Proposition 0.20.2, hence (L01− L02)T is a scalar. The rest of the statement is now
obvious. �

Corollary 4.1.3. Given two irreducible unitary representations Uα, Uβ of Ḡ with
lowest weight α, β ≥ 1, with the same restriction to P, they extend to anti-unitary
irreducible representations Ũα, Ũβ of Ḡ2 with the same anti-untary involution
C ≡ Ũα(r) = Ũβ(r), where r is the reflection associated to the upper semi-circle.

Proof. Let Eλ, Tλ and S λ be the generators of the representation of lowest weight
α as above. Ḡ2 is generated by Ḡ and an element corresponding to the matrix(
−1 0
0 1

)
of S L(2,R), which correspond to the change of sign on R, so we look

for a anti-unitary C which satisfies CEλC = Eλ, CTλC = −Tλ and CS λC = −S λ.
Since in the Schrödinger representation the complex conjugation C satisfies the
mentioned commutation relations with T0, S 0 and E0, it trivially has the prescribed
commutation relations with Tλ and Eλ, and the last relation follows by the formula
S λ = S 0 − λT−1

0 . �

Multiplicative perturbations
We now give an alternative way to pass from the representation of lowest weight
1 to the representation with lowest weight α > 0. In this subsection we denote
by E,T, S the Lie algebra generators in the lowest weight 1 representation, and
with E,T, S α the corresponding generators in the lowest weight α case. Instead of
defining the generator S α as S − λT−1, λ = α(α− 1), we will define the unitary Rα

corresponding to the ray inversion (in the real line picture), namely Rα ≡ Uα(R(π)
)

is the π−rotation in the representation Uα with lowest weight α. We set R ≡ R1.
As R is given, we will equivalently define

Γα = RαR = JαJ (4.1.1)

where J, resp. Jα is the modular conjugation of H(−1, 1), resp. Hα(−1, 1), as
J = CR and Jα = CRα with the same anti-unitary conjugation commuting with
them as in the proof of Cor. 0.20.3. In the examples with α an integer, Γ will
be the canonical unitary for the inclusion of algebras Hα(−1, 1) ⊂ H(−1, 1) and
its second quantization will implement the canonical endomorphism for the cor-
responding algenras given by (α − 1)-derivative of the current algebra.
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We now make some formal motivation calculations, that may however be
given a rigorous meaning. First note that Γ − α commutes with E, because both J
and Jα commute with E, hence Γα must be a bounded Borel function of E because
the bounded Borel functions of E form a maximal abelian von Neumann algebra.
Indeed, by Cor. 0.6.2, we can easily check this in the Schrödinger representation
because E and T exponentiate to an irreducible representation of P with strictly
positive energy.

Set
fα(z) ≡

(z − 1)(z − 2) · · · (z − n + 1)
(z + 1)(z + 2) · · · (z + n − 1)

.

Then fα is a function on C that satisfies the functional equation

fα(z − 1)
fα(z)

= 1 −
λ

z(z − 1)
, z ∈ C , (4.1.2)

and | fα(z)| = 1 for all z ∈ iR.

Proposition 4.1.4. If α = n is an integer, then

Γα =
(E − 1)(E − 2) · · · (E − n + 1)
(E + 1)(E + 2) · · · (E + n − 1)

. (4.1.3)

Proof. Let Γα be given by the formula (0.20.4), namely Γα ≡ fα(E). In order to
check that Γα is (up to a phase) the unitary (0.20.1) it is enough to check that

ΓαEΓ∗α = RαERα = E (4.1.4)
ΓαS Γ∗α = RαTRα = S α (4.1.5)

because the representation generated by E and S is irreducible by Cor. 0.6.2.
The first equation is obvious because Γα is a function of E. To verify the

second equation we notice that −iS is positive and non-singular by Cor. 0.6.2. As
S E − ES = S , we have S ES −1 = E + 1 which implies S f (E)S −1 = f (E + 1) for
all Borel bounded functions f . The functional equation (0.20.2) for fα implies

fα(E)S fα(E)∗ = fα(E) fα(E + 1)∗S =
(
1 − λ

(
E(E + 1)

)−1
)
S = S − λT−1 = S α ,

where we have used the identity
(
E(E + 1)

)−1S = T−1 or, equivalently, the identity
E(E + 1) = S T ; the latter is indeed the adjoint of the equation E(E − 1) = TS
that holds true because the Casimir operator vanishes in the lowest weight one
representation.

That the phase in one can be verified by eq. (0.21.3), (0.21.4) in the following.
�
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Along the same lines, in the case of the irreducible lowest weight α representation
of Ḡ, we have Γα = fα(E) with

fα(z) =
Γ(z + 1)Γ(z)

Γ(z + α)Γ(z − α + 1)
(4.1.6)

where Γ is the Euler Gamma-function.

4.2 Lowest weight representations of G and deriva-
tives of the U(1)-current

We now give a concrete realization of the lowest weight representations of G, and
of the corresponding local Möbius covariant nets of standard subspaces. Namely
we describe the one-particle Hilbert space of a free Boson field on the circle, and
of its derivatives.

On the space C∞(S 1,R) of real valued smooth functions on the circle S 1, we
consider the seminorm

‖φ‖2 =

∞∑
k=1

k|φ̂k|
2

and the operator J : Ĵφk = −isign(k)φ̂k, where the φ̂k’s denote the Fourier coeffi-
cients of φ.

Since J2 = −1 and J is an isometry w.r.t. ‖ · ‖, (C∞(S 1,R), J, ‖ · ‖) becomes
a complex vector space with a positive bilinear form, defined by polarization.
Thus, taking the quotient by constant functions and completing, we get a complex
Hilbert space H.

We note that the symplectic form ω may be written as

ω( f , g) = =( f , g) =
−i
2

∑
k∈Z

k f̂−kĝk =
1
2

∫
S 1

gd f .

The natural action of G on S 1 gives rise to a unitary representation on H:

U(g)φ(t) = φ(g−1t)

Then, observing that J cos kt = sin kt for k ≥ 1, it is easy to see that cos kt is an
eigenvector of the rotation subgroup U(θ):

U(θ) cos kt = cos k(t − θ) = (cos kθ + sin kθ J) cos kt = eikθ cos kt, k ≥ 1,
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and that all the eigenvectors have this form. Therefore the representation has
lowest weight 1.

We need another description of the Hilbert space H which is more suitable to
be generalized. First we pass to the real line picture (x = tan(ϑ/2)) and so identify
C∞(S 1,R) with C∞(R̄). Since the symplectic form is the integral of a differential
form it does not depend on the coordinate:

ω( f , g) =
1
2

∫
R

g(x)d f (x)

A computation shows that the anti-unitary J applied to a function f coincides up
to an additive constant with the convolution of f with the distribution 1/(x+ i0) on
R, therefore, since the symplectic form is trivial on the constants, the (real) scalar
product may be written as

〈 f , g〉 = ω( f , Jg) =
1
2

∫ (
1

x + i0
∗ g(x)

)
f ′(x)dx

=
1

4π

∫
f (x)g(y)

1
|x − y + i0|2

dxdy = const.
∫ ∞

0
p f̂ (−p)ĝ(p)dp

(4.2.1)

and H may be identified with the completion of C∞(R̄) w.r.t. this norm.
Note that since J f = −i f if supp f̂ ⊂ [0,+∞), H is also the completion of

C∞(R,C) modulo { f | f̂ |(−∞,0] = 0} with scalar product ( f , g) =
∫ ∞

0
p f̂ (p)ĝ(p)dp.

Let us now consider the space Xn ≡ C∞(R̄) + R2(n−1)[x], n ≥ 1, where Rp[x]
denotes the space of real polynomials of degree p, and the bilinear form on it
given by

〈 f , g〉n =
1

4π

∫
f (x)g(y)

1
|x − y + i0|2n dxdy

It turns out that 〈 · , · 〉n is a well defined positive semi-definite bilinear form on
Xn which degenerates exactly on R2(n−1)[x]. On this space one may define also a
symplectic form by

ωn( f , g) =
1
2

∫
f (x)g(y)δ(2n−1)

0 (x − y)dxdy

Here δ(k)
0 denotes the k-derivative of the Dirac measure at zero. This form may

be read as the restriction of ω1 to the n-th derivatives. Therefore we can recog-
nize this symplectic form as coming from the commutation relations for the n-th
derivatives of U(1)−currents. This form again degenerates exactly on R2(n−1)[x],
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and the operator J defined before connects the positive form with the symplectic
form for any n in such a way that (·, ·)n ≡ 〈·, ·〉n + iωn(·, ·) becomes a complex bi-
linear form on (Xn, J). We shall denote by Hn the complex Hilbert space obtained
by completing the quotient Xn/R2(n−1)[x].

With g =

(
a b
c d

)
acting on R̄ as in (0.1.1), for any n ≥ 1 consider the operators

Un(g) on Xn:
Un(g) f (x) = (cx − a)2(n−1) f (g−1x).

It turns out that Un is a representation of G, n ≥ 1, and that the positive form is
preserved as well as the symplectic form and the operator J, therefore Un extends
to a unitary representation of G on Hn.

We remark that while Xn and R2(n−1)[x] are globally preserved by Un, the space
C∞(R̄) is not, and that explains why the space Xn had to be introduced.

By definition the space H1 coincides with the space H and the representation
U1 with the representation U, which we proved to be lowest weight 1. We observe
that, for functions in C∞(R̄), one gets

〈 f , g〉n =
1
2

∫
R

|p|2n−1 f̂ (−p)ĝ(p)dp

ω( f , g)n =
1
2

∫
R

p2n−1 f̂ (−p)ĝ(p)dp

hence
( f , g)n = (Dn−1 f ,Dn−1g)1,

i.e. Dn−1 is a unitary between Hn and H1 ≡ H, where D is the derivative operator.
The following holds:

Theorem 4.2.1. The representation Un has lowest weight n.

Proof. Making use of the results of Proposition 0.20.4, we have to show that

RnR =

n−1∏
k=1

(
E − k
E + k

)
, n ≥ 1

where Rn = Dn−1Un(r)(Dn−1)∗ with r the ray inversion, R = R1. This amounts to
prove

Dn−1Un(r) =

n−1∏
k=1

(
E − k
E + k

)
U(r)Dn−1. (4.2.2)
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Now we take equation (0.21.2) as an inductive hypothesis. Then, equation( 0.21.2)
for n+1 can be rewritten, using the inductive hypothesis and the relation Un+1(r) =

x2Un(r), as

Dn(x2Un(r)) =

(E − n
E + n

)
Dn−1Un(r)D. (4.2.3)

Finally we observe that Un(r)D = x2DUn − 2(n − 1)xUn, hence equation (0.21.3)
is equivalent to

(E + n)Dn(x2·) = (E − n)Dn−1(x2D · −2(n − 1)x·). (4.2.4)

Since E = −xD, equation (0.21.4) follows by a straightforward computation. �

Proposition 4.2.2. The unitary representations of G on H given by

Dn−1Un(Dn−1)∗, n ≥ 1,

coincide on P.

Proof. We have to prove that Dn−1Un(g) = U(g)Dn−1 when g is a translation or
a dilation. For translations, Un(t) f (x) = f (x − t), and the equality is obvious;

for dilations, g =

(
eλ/2 0
0 e−λ/2

)
, Un(g) f (x) = eλn f (e−λx), hence Dn−1Un(g) f (x) =

f (n)(e−λx) = U(g)Dn f (x). �

4.2.1 Local spaces and regularity
Let fix n ≥ 1 and, for any interval I of R̄, we set

Xn(I) = { f ∈ Xn : f |I′ ≡ 0}.

It is easy to check that that the immersion iI
n : Xn(I) → Hn is injective and the

spaces Hn(I) ≡ (iI
nXn(I))−, where the closure is taken w.r.t. ‖ · ‖n, form a local

Möbius covariant net of standard subspaces of Hn; moreover

lin.spanI⊂R̄Hn(I) = Hn .

Now we identify Hn with H via the unitary Dn−1, and set Hn(I) ≡ Dn−1Hn(I).
Then, if I is a bounded interval of R and f ∈ Hn(I), f may be integrated n − 1
times, giving a function which has still support in I, therefore

Hn(I) =

{
[ f ] ∈ H : f |I′ = 0,

∫
tk f = 0, k = 0, . . . , n − 2

}
, (4.2.5)
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where [ f ] denotes the equivalence class of f modulo polynomials.
If I is a half line in R, Hn(I) is an invariant subspace of the dilation subgroup,

which is the modular group of H(I). Hence, see Prop. 0.8.10, this implies that

Hn(I) = H(I), I half-line. (4.2.6)

Finally we observe that by the unique correspondence in Thm. 0.18.7, these nets
coincide with those abstractly constructed in Section 0.17.

Now, we fix a bounded interval I in R, e.g. (−1, 1), and consider the family
Hn(I).

Proposition 4.2.3. We have Hm(I) ⊂ Hn(I) and codim(Hm(I) ⊂ Hn(I)) = m − n,
m ≥ n.

Theabove concrete characterization of Hn shows that Hm(I) ⊂ Hn(I) if m ≥ n.
Before proving the codimension formula, we discuss some of its consequences.

A net H is said to be n−regular if, for any partition of S 1 into n intervals I1, . . . , In,
the linear span of the H(Ik), k = 1, . . . n, is dense in H.

All irreducible local Möbius covariant nets are 2-regular, because Haag dual-
ity holds and local spaces are factors. Obviously, strong additivity implies n-
regularity for all n.

Corollary 4.2.4. H1 is n-regular for any n. H2 is 3-regular but it is not 4-regular.
Hn, n ≥ 3, is not 3-regular. Moreover Hn is strongly additivity iff n = 1, therefore
H1 is the dual net of Hn for every n.

Proof. First we recall that a net is strongly additive if and only if it coincides with
its dual net. Then, the net H ≡ H1 is strongly additive because its dual net should
be of the form Hn (cf. Prop. 0.20.2) and should satisfy Hd(−1, 1) ⊃ H(−1, 1). As
a consequence, H is n-regular for any n.

Then, since the spaces for the half-lines do not depend on n, the dual net of Hn

does not depend on n either, hence coincides with H.
Since G acts transitively on the ordered triples of distinct points, we may study

3-regularity for the special triple (−1, 1,∞) in R ∪ {∞}. Then,(
Hn(∞,−1) + Hn(−1, 1) + Hn(1,∞)

)′
=

(
H1(∞,−1) + Hn(−1, 1) + H1(1,∞)

)′
=

(
H1(−1, 1)′ + Hn(−1, 1)

)′
= Hn(−1, 1)′ ∩ H1(−1, 1)

where we used strong additivity and duality for H1. By Theorem 0.21.3, 3-
regularity holds if and only if n = 1, 2.
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Violation of 4-regularity for H2 may be proved by exhibiting a function which
is localized in the complement of any of the intervals (∞,−1), (−1, 0), (0, 1),
(1,∞), i.e. belongs to H2(−1, 0)′ ∩ H2(0, 1)′ ∩ H1(−1, 1):

φ(x) =


1 + x if − 1 ≥ x ≥ 0,
1 − x if 0 ≥ x ≥ 1,
0 if |x| ≥ 1

In the same way we may construct a function which violates 3-regularity for H3,
namely

φ(x) =

{
x2 − 1 if |x| < 1,
0 if |x| ≥ 1

Clearly, φ ∈ H3(∞,−1)′ ∩ H3(−1, 1)′ ∩ H3(1,∞)′ = H3(I)′ ∩ H1(I). �

Proof of Prop. 0.21.3: It is sufficient to show that codim
(
Hm+1(I) ⊂ Hm(I)

)
= 1.

Since Hm+1(I) = {φ ∈ Hm(I) :
∫

xm−1φ(x)dx = 0}, and we may find a function
ψm−2 ∈ C∞(R) such that ψ′m−1(x) = xm−1 for x ∈ (−1, 1), we get Hm+1(I) = {φ ∈
Hm(I) : ω(ψm−1, φ) = 0}. As the functional φ → ω(ψm, φ) is continuous and non
zero on Hm, the thesis follows. �

4.3 Modular construction of nets on R and their ex-
tensions to S 1

Let U be the unique irreducible positive energy unitary representation of P with
no non-zero translation fixed vector on a Hilbert space H. Denote by the symbol
U its extension to a (anti-)unitary representation of P2. With J the anti-unitary
involution corresponding to the map x 7→ −x on R and K the generator of the
dilation one-paramenter unitary group, set S ≡ Je−πK and H(0,∞) ≡ ker(1 − S );
then we get a net H on the half-lines I ⊂ R given by

H(a,∞) ≡ U(τ(a))H(0,∞), H(∞, a) ≡ H(a,∞)′ .

The following Corollary summarizes part of the above discussion.

Corollary 4.3.1. Let H the above net on the half-lines ofR. There exists a bijective
correspondence between

• Extensions of H to a local Möbius covariant net on the intervals of S 1.
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• Standard subspaces K ⊂ H(−∞, 1)′ ∩ H(0,∞) such that U(δ(0,∞)(s))K ⊂ K
and U(δ(∞,1)(−s))K ⊂ K for s ≥ 0.

• The real linear spaces Hn(0, 1), n ∈ N.

Proof. Combine the above discussion with Thm. 0.18.2. �

We shall say that the hsm inclusion of standard subspaces K ⊂ H is trivial if
K = H and non-degenerate if it has no trivial, non-zero direct summand.

In the above corollary K ⊂ H is non degenerate iff U has lowest weight 1 iff
K′ ∩ H = 0, iff U has no non-zero fixed vector, iff there is no nonzero joint fix
vector for ∆H and ∆K etc. . We shall also say that K ⊂ H is irreducible if it is
not the direct sum of two non-zero hsm inclusions of standard subspaces, i.e. if
U is irreducible. We have an example of irreducible hsm inclusion by the above
corollary by considering the irreducible positive energy representation of G with
lowest weight 1. This is indeed the unique one:

Corollary 4.3.2. All irreducible, non-zero, non-degenerate hsm inclusions of stan-
dard subspaces are unitarily equivalent.

If K ⊂ H is a non-degenerate hsm inclusion of standard subspaces, then K ⊂
H is unitary equivalent to a direct sum of copies of the unique irreducible one.

Every hsm inclusion of standard subspaces is canonically the direct sum of a
non-generate one and (possibly) of a trivial one.

Proof. By Wiesbrock theorem a hsm inclusion K ⊂ H of standard subspaces gives
rise to a positive energy representation U of P. Then, by Prop. 0.7.1, a vector is
fixed by U iff it is fixed by ∆it

H iff it is fixed by ∆it
K . So we get the decomposition

in a direct sum of a trivial inclusion (the fixed points) and a non-degenerate hsm
inclusion. The rest is clear. �
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Chapter 5

Nuclearity properties and
SL(2,R) operator inequalities

An important condition for a positive energy representation of G is the trace class
property, namely Tr(e−βL0) < ∞ for all β > 0, that is there exists a “partition func-
tion”. We will study how this condition is related to other nuclearity properties
for a net of standard subspaces, We shall apply our analysis in later chapters in
relation with the split properties.

Most of the analysis in this chapter will consist in set a number of remarkable
identities and inequalities for operators associated with a positive energy unitary
representation of G.

5.1 A first operator identity associated with SL(2,R)

If I, Ĩ are intervals of S 1 we shall write I b Ĩ if the closure of I is contained in the
interior of Ĩ.

Let U be a unitary positive energy representation of Ḡ on a Hilbert space H.
We shall denote by KI the infinitesimal generator of U(δI(s)). Given intervals
I b Ĩ we shall set

T Ĩ,I(λ) ≡ e2πiλKĨ e−2πiλKI .

Suppose U is a representation of G and let H be the associated local Möbius
covariant net of real Hilbert subpaces of H. Then KI = −2π log ∆I , where ∆I ≡

∆H(I) is the modular operator of H(I), so

T Ĩ,I(λ) ≡ ∆−iλ
Ĩ ∆iλ

I
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(the closure on the right hand side operator is omitted as usual); by Cor. 0.10.2
the map λ 7→ T Ĩ,I(λ) is holomorphic in the strip S1/2, continuous on its closure and
||T Ĩ,I(iλ)|| ≤ 1.

The case λ = i/4 is of particular relevance and we set

T Ĩ,I ≡ T Ĩ,I(i/4) .

In this chapter the upper and the right semicircle will be denoted respectively by
I1 and I2. We put Kk ≡ KIk and ∆k ≡ ∆Ik .

We now prove a formula pointed out by Schroer and Wiesbrock.

Theorem 5.1.1. Let U be a positive energy unitary representation of Ḡ. For every
s ≥ 0, the following identity holds

∆
1/4
1 ∆−is

2 ∆
−1/4
1 = e−2πsL0 (5.1.1)

where ∆k ≡ e−πKk , k = 1, 2 and L0 are associated with U.
More precisely the domain of ∆

1/4
1 ∆−is

2 ∆
−1/4
1 is a core for ∆

−1/4
1 and the closure

of ∆
1/4
1 ∆−is

2 ∆
−1/4
1 is equal to e−2πsL0 .

Proof. We assume that U is a representation of G; for the general case see the
remark below.

We denote here by k1, k2 and l0 the elements of the Lie algebra slC(2,R) cor-
responding to K1 ≡ KI1 , K2 ≡ KI2 and L0 (thus k1 = i

2 E and k2 = i
2 (T − S )).

Then
[k1, k2] = −il0, [k1, l0] = k2 .

Denoting by Ad(g) the adjoint action of g ∈ G on slC(2,R) we then have

Ad(e−2πitk1)(k2) =

∞∑
n=0

tn

n!
δn

k1
(k2) = cosh(2πt)k2 − sinh(2πt)l0

where δk1 ≡ 2π[k1, · ], therefore for all s, t ∈ R we have the identity in G

e−2πitk1e2πisk2e2πitk1 = e2πis
(

cosh(2πt)k2−sinh(2πt)l0
)

that of course gives the operator identity

e−2πitK1e2πisK2e2πitK1 = e2πis
(

cosh(2πt)K2−sinh(2πt)L0

)
(5.1.2)

Consider the right hand side of eq. (0.23.2) that we denote by Ws(t). Given
r > 1/2, by Lemma 0.23.2 there exist s0 > 0, a dense set V ⊂ H of joint analytic
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vectors for K1,K2, L0 such that, for any fixed s ∈ R with |s| ≤ s0 and η ∈ V, the
vector-valued function

t 7→ Ws(t)η ≡ e2πis
(

cosh(2πt)K2−sinh(2πt)L0

)
η

has a bounded analytic continuation in the ball Br ≡ {z ∈ C : |z| < r}.
Consider now the left hand side of eq. (0.23.2). By definition it is equal to

∆it
1∆−is

2 ∆−it
1 .

Now the map
t ∈ R 7→ ∆it

1∆−is
2 ∆−it

1 (5.1.3)

has a uniformly bounded, strongly continuous, analytic extension in the strip S−1/2.
Indeed ∆λ

1∆−is
2 ∆−λ1 = TI1,I1,s(−λ)∆−is

2 where I1,s = δI2(2πs)I1 ⊂ I1, so the analyticity
of (0.23.3) follows from Lemma 0.10.2.

Taking matrix elements

(η,∆it
1∆−is

2 ∆−it
1 ξ) = (Ws(t)∗η, ξ) = (W−s(t)η, ξ)

with η ∈ V and ξ an entire vector for ∆1, both the functions defined by the left and
the right side of the above equation have an analytic extension in S−1/2 ∩ Br.

Taking the value at t = −i/4 we have

(η,∆1/4
1 ∆−is

2 ∆
−1/4
1 ξ) = (e−2πsL0η, ξ) = (η, e−2πsL0ξ)

hence the closure of ∆
1/4
1 ∆−is

2 ∆
−1/4
1 is equal to e−2πsL0 if s is real and |s| ≤ s0, hence

for all s ∈ R by the group property. This ends the proof. �

Remark. Equation (0.23.1) is clearly equivalent to the identity ∆−is
2 ∆

−1/4
1 ⊂ ∆

−1/4
1 e−2πsL0 .

Note that we have a closed operator on both sides. If the representations U1 and
U2 have lowest weight α1 and α2, then U ≡ U1⊗U2 has lowest weight α = α1+α2.
So, if α is an integer, formula (0.23.1) holds for U. It easy to infer then that for-
mula (0.23.1) holds for any lowest weight representation. In the following we
prove other operator inequalities for unitary lowest weight representations of G.
A similar argument then shows that they are all valid for any lowest weight unitary
representation.

We now recall the following result by Nelson used in the proof of Thm. 0.23.1.



74 Nuclearity properties and SL(2,R) operator inequalities

Lemma 5.1.2 ([?]). Let U be a unitary representation of a Lie group on a Hilbert
space H and X1, X2, . . . Xn a basis for the associated Lie algebra generators.
There exist a neighborhood U of the origin in Cn and a dense set of vectors V ⊂ H

of smooth vectors for U such that
∞∑

k=0

||(u1X1 + u2X2 + · · · + unXn)kη||

k!
< ∞

for all (u1, u2, . . . un) ∈ U and η ∈ D.

5.2 Trace class property and L2-nuclearity for rep-
resentations of G

Second formula
If A ∈ B(H), the nuclear norm ||A||1 of A is the L1 norm, namely ||A||1 ≡ Tr(|A|)
where |A| ≡

√
A∗A; the Hilbert-Schmidt norm is given by ||A||2 = Tr(A∗A)1/2.

We shall consider the property that ||T U
Ĩ,I
||1 < ∞, that we call L2-nuclearity

(with respect to I b Ĩ). Note that ||T U
Ĩ,I
||1 depends only on `(Ĩ, I), namely ||T U

Ĩ,I
||1

does not change if we replace I b Ĩ by hI b hĨ with h ∈ G.
Given intervals I b Ĩ we consider the inner distance `(Ĩ, I), see Appendix

0.26.

Proposition 5.2.1. In every positive energy unitary representation U, we have

T U
Ĩ,I = e−sL0∆

is/2π
2

where Ĩ = I1, I b Ĩ is symmetric w.r.t. the vertical axis, s = `(Ĩ, I) and ∆2 is as
above. Therefore

||T U
Ĩ,I ||1 = ||e−sL0 ||1 (5.2.1)

for any inclusion I b Ĩ such that s = `(Ĩ, I).

Proof. By multiplying both sides of formula (0.23.1) by ∆is
2 on the right, we get

the equality

e−2πsL0∆is
2 =∆

1/4
1

(
∆−is

2 ∆
−1/4
1 ∆is

2
)

=∆
1/4
1

(
U(δI2(2πs))∆−1/4

1 U(δI2(−2πs))
)

=∆
1/4
1 ∆

−1/4
I1,2πs
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where I1,s ≡ δI2(s)I1; that is to say T U
Ĩ,I

= e−sL0∆
is/2π
2 where s = `(Ĩ, I). Since then

∆
is/2π
2 is unitary we are done. �

As a consequence we have a key equation for the T operator

T Ĩ,IT
∗

Ĩ,I = e−2sL0 , s ≡ `(Ĩ, I) (5.2.2)

with Ĩ the upper semicircle and I symmetric w.r.t. the vertical axis. Of course by
Möbius covariance we have a general formulation of the above proposition and
the above equation for arbitrary inclusions I b Ĩ. In particular formula (0.24.1)
holds true for any inclusion of intervals I b Ĩ with s = `(Ĩ, I).

Third formula

let I ∈ I be an interval and Ia′,a ≡ τ
′(−a′)τ(a)I with a, a′ > 0, so that Ia′,a b I. Let

U be a positive energy unitary representation of G and denote by PI and P′I the
positive selfadjoint generators of the one-parameter unitary subgroups corrspond-
ing to τI and τ′I . We have:

Proposition 5.2.2.
T U

I,Ia′ ,a
= e−a′P′I e−aPI e−iaPI eia′P′I .

Proof. Indeed

T U
I,Ia′ ,a
≡ ∆

1/4
I ∆

−1/4
Ia′ ,a

= ∆
1/4
I e−ia′P′I eiaPI ∆

−1/4
I e−iaPI eia′P′I

= ∆
1/4
I e−ia′P′I ∆

−1/4
I ∆

1/4
I eiaPI ∆

−1/4
I e−iaPI eia′P′I

= e−a′P′I e−aPI e−iaPI eia′P′I

(5.2.3)

where we have used the commutation relation ∆is
I eiaPI ∆−is

I = ei(e−2πs)aPI and the
analogous one with P′I instead of PI . If a > 0, the above equation holds true for
all complex s ∈ S−1/2 and we have applied it with s = −i/4 (see the proof of
0.9.1). �

As a consequence we have another key equation for the T operator:

TI,Ia′ ,aT
∗
I,Ia′ ,a

= e−aPI e−2a′P′I e−aPI . (5.2.4)
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Note also that by Prop. 0.24.1 we also have

||TI,Ia′ ,a ||1 = Tr(e−`(I,Ia′ ,a)L0) = Tr(e−2 sinh−1(`′(I,Ia′ ,a))L0) = Tr(e−2 sinh−1(
√

aa′)L0)

where `′(I, Ia′,a) =
√

a′a is the second inner distance (Appendix 0.26), thus `′ =

sinh( `2 ) by Prop. 0.26.1. We now have some of our basic formulas.

Theorem 5.2.3. In any positive energy unitary representation of G we have

e−2sL0 = e− tanh( s
2 )Pe− sinh(s)P′e− tanh( s

2 )P (5.2.5)

therefore
e−2sL0 ≤ e−2 tanh( s

2 )P (5.2.6)

for all s > 0.

Proof. Consider an inclusion of intervals I b Ĩ with Ĩ = I1, I symmetric with
respect to the vertical axis and `(Ĩ, I) = s. By Prop. 0.24.1 we have T Ĩ,I =

e−sL0∆
is/2π
2 thus

T Ĩ,IT
∗

Ĩ,I = e−2sL0 .

On the other hand by Prop. 0.24.2 we have

T Ĩ,IT
∗

Ĩ,I = e−aPe−2a′P′e−aP

where a > 0 and a′ > 0 satisfy τ′(−a)τ(a)Ĩ = I. By equation (0.26.5) we have
a′ = sinh(s)/2 and a = tanh(s/2), so we have formula (0.24.5).

Equation (0.24.5) immediately entails e−2sL0 ≤ e−2 tanh( s
2 )P. �

Note that the inequality
e−sL0 ≤ e− tanh( s

2 )P (5.2.7)

follows from (0.24.6) because the square root is an operator-monotone function.1

Note also that the equation

e−2sL0 = e− tanh( s
2 )P′e− sinh(s)Pe− tanh( s

2 )P′

follows by (0.24.5) by applying a conjugation by a π-rotation on both sides.
Remark. We may formally analytically continue the parameter s in formula (0.24.5)
to the imaginary axis and get the equality

e−2isL0 = ei tan( s
2 )Pei sin(s)P′ei tan( s

2 )P , (5.2.8)

which correspond to the identity in G: R(2s) = τ(tan s
2 )τ′(sin s)τ(tan s

2 ). In partic-
ular we have e−iπL0 = eiPeiP′eiP.

1The inequality (0.24.7) does not follow from L0 ≥
1
2 P because the exponential is not operator

monotone.
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More general embeddings
With U a positive energy representation of G as above, we shall need to estimate
the nuclear norm of the more general embedding operators

T U
I,I0

(iλ) = T U
I,I0

(iλ) ≡ ∆λ
I ∆
−λ
I0
, 0 < λ < 1/2,

associated with an inclusion of intervals I0 b I. As above T U
I,I0

= T U
I,I0

(i/4).

Proposition 5.2.4. For an inclusion of intervals It ⊂ I with It ≡ It,t = τ′−tτtI as
above, thus `′(I, It) = t, we have

TI,It(iλ) = e−i cos(2πλ)tP′I
(
e− sin(2πλ)tP′I e− sin(2πλ)tPI

)
ei cos(2πλ)tPI e−itPI eitP′I .

Proof.

TI,It(iλ) ≡ ∆λ
I ∆
−λ
It

= ∆λ
I e−itP′I eitPI ∆−λI e−itPI eitP′I

=
(
∆λ

I e−itP′I ∆−λI
)(

∆λ
I eitPI ∆−λI

)
e−itPI eitP′I

= e−i(e−2πiλ)tP′I ei(e2πiλ)tPI e−itPI eitP′I

= e−i(cos(2πλ)−i sin(2πλ))tP′I ei(cos(2πλ)+i sin(2πλ))tPI e−itPI eitP′I

= e−i cos(2πλ)tP′I e− sin(2πλ)tP′I e− sin(2πλ)tPI ei cos(2πλ)tPI e−itPI eitP′I

(5.2.9)

�

Corollary 5.2.5. ‖TI,It(iλ)‖1 = ‖TI,Isin(2πλ)t‖1, 0 < λ < 1/2.

Proof. Immediate because by Proposition 0.24.4 the operator TI,Isin(2πλ)t is obtained
by left and right multiplication of TI,It(iλ) by unitary operators.

A fourth operator inequality
Proposition 5.2.6. Let U be a positive energy unitary representation of G. We
have the following inequality:

||e− tan(2πλ)dI P∆−λI || ≤ 1 , 0 < λ < 1/4 . (5.2.10)

Here P is the translation generator, I is an interval of R with usual lenght dI and
∆I is the modular operator associated with I.
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Proof. Fix a > 0. Then

∆is
(a,∞) = U(a)∆isU(−a) = ∆is∆−isU(a)∆isU(−a) = ∆isU(e2πsa − a)

∆is
(∞,−a) = U(−a)∆isU(a) = ∆is∆−isU(−a)∆isU(a) = ∆isU(−e2πsa + a)

where ∆ ≡ ∆(0,∞).
We have for all real z

T (z) ≡ ∆−iz∆iz
(a,∞) = U(e2πza − a)

thus for all complex z ∈ S1/2. Indeed the both sides of the above equations define
a bounded continuous function on S1/2, analytic on S1/2, that are equal for real
z. The left side is analytic because of Thm. 0.10.2, and the right side is analytic
because =(e2πza − a) ≥ 0 for z ∈ S1/2 and the translation generator P is positive.
In particular, setting z = iλ, 0 ≤ λ ≤ 1/2 we have

∆λ∆−λ(a,∞) = U(ei2πλa − a) = U
(
a cos(2πλ) − a + ia sin(2πλ)

)
= e−a sin(2πλ)PU

(
a cos(2πλ) − a

)
(5.2.11)

Analogously
∆−λ∆λ

(−∞,−a) = e−a sin(2πλ)PU
(
− a cos(2πλ) + a

)
therefore

e−a sin(2πλ)P = ∆λ∆−λ(a,∞)U
(
− a cos(2πλ) + a

)
= ∆λU(a)∆−λU

(
− a cos(2πλ)

)
e−a sin(2πλ)P = ∆−λ∆λ

(−∞,−a)U
(
a cos(2πλ) − a

)
= ∆−λU(−a)∆λU

(
a cos(2πλ)

)
Choosing a = dI/ cos(2πλ), that forces to take λ < 1/4, we have

e−dI tan(2πλ)P = ∆λU(a)∆−λU(−dI) = ∆λU(a − dI)∆−λ(dI ,∞)

e−dI tan(2πλ)P = ∆−λU(−a)∆λU(dI) = ∆−λU(−a + dI)∆λ
(−dI ,∞)

Let E± be the spectral projection of ∆ relative to the intervals (1,∞) and (0, 1].
Then

E−e−dI tan(2πλ)P∆−λI = E−∆λU(a − dI)∆λ
(−∞,dI )∆

−λ
I = E−∆λU(a − dI)T(−∞,dI ),I

E+e−dI tan(2πλ)P∆−λI = E+∆−λU(−a + dI)∆λ
(−dI ,∞)∆

−λ
I = E+∆−λU(−a + dI)T(−dI ,∞),I

Now ||E∓∆±λU
(
± (a− dI)

)
|| ≤ 1. As I is contained in (−∞, dI) and in (−dI ,∞), we

also have ||T(−∞,dI ),I || ≤ 1, ||T(−dI ,∞),I || ≤ 1, hence

||e−dI tan(2πλ)P∆−λI || ≤ 2 (5.2.12)
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We show now that the left hand side is bounded by 1, namely Indeed we may
consider the n-tensor product net U ⊗ · · · ⊗ U and apply eq. (0.24.12) to it. Then

||e− tan(2πλ)ddI P∆−λI ||
n ≤ 2

that proves our inequality as n is arbitrary. �

Note that the inequality (0.24.10) gives

∆−λI e−2 tan(2πλ)dI P∆−λI ≤ 1

namely
e−2 tan(2πλ)dI P ≤ ∆2λ

I .

In particular, if I = I2 is the interval (−1, 1) of the real line, we have e−2 tan(2πλ)P ≤

∆2λ
2 . By conjugating both members of the inequality with the modular conjugation

JI2 (ray inversion map) we get e−2 tan(2πλ)P′ ≤ ∆−2λ
2 , namely

e−2 tan(2πλ)P ≤ ∆2λ
2 ≤ e2 tan(2πλ)P′ (5.2.13)

and, by rescaling with the dilation unitaries we obtain the inequality

e−2 tan(2πλ)dI P ≤ ∆2λ
I ≤ e2 tan(2πλ) 1

dI
P′ (5.2.14)

In particular, evaluating at λ = 1/8, we get

e−2dI P ≤ ∆
1/4
I ≤ e

2
dI

P′
. (5.2.15)

5.3 Modular nuclearity and L2-nuclearity

Basic abstract setting
Recall that a linear operator A : X → Y between Banach spaces X,Y is called nu-
clear if there exist sequences of elements fk ∈ X∗ and yk ∈ Y such that

∑
k || fk|| ||yk|| <

∞ and Ax =
∑

k fk(x)yk. (A linear operator on a Hilbert space is nuclear iff it is of
trace class). The infimum ||A||1 of

∑
k || fk|| ||yk|| over all possible choices of { fk} and

{yk} as above is the nuclear norm of A.
Let H be a Hilbert space and H ⊂ H̃ an inclusion of standard subspaces of H.
We shall say that H ⊂ H̃ satisfies L2-nuclearity if the operator

TH̃,H ≡ ∆
1/4
H̃

∆
−1/4
H
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is nuclear.
We shall say that H ⊂ H̃ satisfies modular nuclearity if the operator

∆
1/4
H̃

EH

is nuclear. Here EH is the real orthogonal projection of H onto H and the operator
∆

1/4
H̃

EH is thus a real linear operator.
L2 and modular compactness are analogously defined by requiring the com-

pactness of the corresponding operators.

Proposition 5.3.1. L2-nuclearity implies modular nuclearity and ||∆1/4
H̃

EH ||1 ≤

||TH̃,H ||1.

Proof. First note that

||∆
1/4
H |H || ≤ 1 ,

indeed if ξ ∈ H we have

||∆
1/4
H ξ||2 = (∆1/2

H ξ, ξ) = (JHξ, JH∆
1/2
H ξ) = (JHξ, S Hξ)

= (JHξ, ξ) ≤ ||JHξ|| ||ξ|| = ||ξ||
2 .

Therefore, assuminig L2-nuclearity for H ⊂ H̃, we have

||∆
1/4
H̃

EH ||1 = ||TH̃,H∆
1/4
H EH ||1 ≤ ||TH̃,H ||1||∆

1/4
H EH || ≤ ||TH̃,H ||1

�

We shall consider the condition

‖TH̃,H(iλ)‖1 < ∞

with TH̃,H(z) ≡ ∆−iz
H̃

∆iz
H, for general exponents 0 < λ < 1/2.

By an immediate extension of the above argument we then have

||∆λ
H̃EH ||1 ≤ ||TH̃,H(iλ)||1 .



5.3 Modular nuclearity and L2-nuclearity 81

Comparison of the nuclearity conditions
Let H be a Möbius covariant net of real Hilbert subspaces of a Hilbert space H.
Consider the following nuclearity conditions for H.

Trace class condition: Tr(e−sL0) < ∞, s > 0;

L2-nuclearity: ||T Ĩ,I(iλ)||1 < ∞, ∀I b Ĩ, 0 < λ < 1/2;

Modular nuclearity: ΞĨ,I(λ) : ξ ∈ H(I) → ∆λ
Ĩ
ξ ∈ H is nuclear ∀I b Ĩ, 0 < λ <

1/2;

Buchholz-Wichmann nuclearity: ΦBW
I (s) : ξ ∈ H(I) → e−sPξ ∈ H is nuclear, I

interval of R, s > 0 (P the generator of translations);

Conformal nuclearity: ΨI(s) : ξ ∈ H(I)→ e−sL0ξ ∈ H is nuclear, I interval of S 1,
s > 0.

We shall show the following chain of implications:

Trace class condition
m

L2 − nuclearity
⇓

Modular nuclearity
⇓

Buchholz-Wichmann nuclearity
⇓

Conformal nuclearity

Where all the conditions can be understood for a specific value of the parameter,
that will be determined, or for all values in the parameter range.

We have already discussed the implications “Trace class condition ⇔ L2-
nuclearity⇒Modular nuclearity”.

Modular nuclearity⇒ BW-nuclearity
Equation (0.24.10) gives ||e− tan(2πλ)dI P∆−λI || ≤ 1 for all 0 < λ < 1/4, so the follow-
ing holds:

Proposition 5.3.2. Let I0 b I be a an inclusion of intervals of R. We have

||ΦBW
I0

(
tan(2πλ)dI

)
||1 ≤ ||ΞI,I0(λ)||1
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where dI is the length of I, 0 < λ < 1/4.

Proof. With ξ ∈ H(I0) we have

ΦBW
I0

(s)ξ = e−sPξ =
(
e−sP∆−λI

)
∆λ

I ξ

thus
ΦBW

I0

(
tan(2πλ)dI

)
=

(
e− tan(2πλ)dI P∆−λI

)
· ΞI,I0(λ)

and so ||ΦBW
I0

(
tan(2πλ)dI

)
||1 ≤ ||ΞI,I0(λ)||1 as desired �

Quantitative and asymptotic estimates
At this point we have the following chain of inequalities:

||ΦBW
I0

(
tan(2πλ)dI

)
||1 ≤ ||ΞI,I0(λ)||1
≤ ||TI,I0(λ)||1
= ||TI,I1 ||1 `′(I, I1) = sin(2πλ)`′(I, I0)

= Tr(e−sL0), s = `(I, I1)

Note that s = 2 sinh−1(`′(I, I1)
)

= 2 sinh−1( sin(2πλ)`′(I, I0)
)

by Prop. 0.26.1.
As λ → 0+ one has tan(2πλ) ∼ 2πλ and s ∼ 4πλ`′(I, I0) so we have the

asymptotic inequality

||ΦBW
I0

(a)||1 ≤ Tr(e−(2`′(I,I0)/dI )aL0), a→ 0+ . (5.3.1)

Here below we have our last estimate that will give a relation to conformal
nuclearity.

BW-nuclearity⇒ Conformal nuclearity
By equation (0.24.6) there exists a bounded operator B with norm ||B|| ≤ 1 such
that

e−sL0 = Be− tanh( s
2 )P

therefore
ΨI(s) = BΦBW

I (tanh(s/2)) (5.3.2)

and so we have

Proposition 5.3.3. ||ΨI(s)||1 ≤ ||ΦBW
I (tanh(s/2))||1 .
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5.4 Appendix. Inner distance
Given intervals I b Ĩ we consider the inner distance between Ĩ and I to be the
number `(Ĩ, I) defined as follows. First, in the real line picture, assume Ĩ = (−1, 1).
Then there exists s ∈ R such that δĨ(s)I is symmetric, i.e. I = (−a, a). Then we set
`(Ĩ, I) = − log a. By definition `(Ĩ, I0) = `(Ĩ, I) if I and I0 are in the same δĨ-orbit.

If now I b Ĩ is any inclusion of intervals of S 1, we choose g ∈ G such that gĨ
is the right semicircle (that corresponds to (−1, 1) in the real line picture). Then
we set `(Ĩ, I) ≡ `(gĨ, gI). As the choice of g is unique modulo right multiplication
by an element δĨ(s), the inner distance is well defined.

Note the following equality

`(I2, δI1(−s)I2) = s (5.4.1)

where I1 and I2 are the upper and the right semicircles and s > 0.
It is easily seen that the inner distance satisfies the following properties:

• Positivity: `(Ĩ, I) > 0 if I b Ĩ and all positive values are attained.

• Monotonicity: If I1 b I2 b I3 we have `(I3, I1) > `(I3, I2) and `(I3, I1) >
`(I2, I1).

• Möbius invariance: `(Ĩ, I) = `(gĨ, gI) for all g ∈ G.

• Super-additivity: `(I3, I1) ≥ `(I3, I2) + `(I2, I1) if I1 b I2 b I3.

We now define second inner distance `′ as follows. For any a, a′ > 0 we set

`′(Ĩ, I) =
√

aa′ if I = τ′Ĩ(−a′)τĨ(a)Ĩ .

Since conjugating τĨ(t) and τ′
Ĩ
(t) by a dilation δĨ(s) by λ = es gives τĨ(λt) and

τ′
Ĩ
(λ−1t), the above formula gives a well defined and Möbius invariant quantity.

Note now that τ′−t is the conjugate of τt by the ray inversion

τ′(−t) : x 7→
x

1 + tx
,

Proposition 5.4.1. `′ = sinh(`/2).

Proof. Given t > 0 and an inclusion of intervals I ⊂ Ĩ with `′(Ĩ, I) = t we want to
calculate s ≡ `(Ĩ, I). We may assume that Ĩ = R+ and I = Ĩλ−1t,λt ≡ τ

′(λ−1t)τ(λt)Ĩ.
Then

I = τ′(−λ−1t)τ(λt)Ĩ = τ′
(
− λ−1t

)
(λt,∞) =

(
λ−1t

1 + t2 ,
1
λt

)
.
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We may further choose λ so that I symmetric under ray inversion, namely λ−1 =√
1 + t2. thus

I =

 t
√

1 + t2
,

√
1 + t2

t

 . (5.4.2)

Now in the real line picture the right semicircle I2 corresponds to the interval
(−1, 1), thus by eq. (0.26.1) s is determined by

δ(−1,1)(s)0 =
t

√
1 + t2

. (5.4.3)

Now
δ(−1,1)(s) : x 7→

x + 1 − e−s(x − 1)
x + 1 + e−s(x − 1)

thus eq. (0.26.3) gives

t
√

1 + t2
=

1 − e−s

1 + e−s = tanh(s/2) =
sinh(s/2)√

1 + sinh2(s/2)

and this implies t = sinh(s/2). �

Note that δ(−1,1)(s)R+ = Iλ−1t,λt ≡ τ
′(−λ−1t)τ(λt)I with λ = 1/

√
1 + t2, namely

δ(−1,1)(s)R+ = τ′
(
− t
√

1 + t2)τ(t/√1 + t2)R+ . (5.4.4)

In term of the inner distance s the interval I in (0.26.2) is given by

I =
(

tanh(s/2), coth(s/2)
)

= τ′
(
− sinh(s/2) cosh(s/2)

)
τ
(
tanh(s/2)

)
R+

= τ′
(
− sinh(s)/2

)
τ
(
tanh(s/2)

)
R+ (5.4.5)
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