KREIN’S TRACE THEOREM REVISITED

FEDOR SUKOCHEV

Abstract. M. G. Krein’s celebrated Trace Theorem states that if \(A, B \) are self-adjoint operators in a separable Hilbert space such that \(A - B \) is a trace class operator, then, for any function \(f \) of a real variable, whose derivative \(f' \) in distributional sense has Fourier transform belonging to \(L^1(\mathbb{R}) \), the difference \(f(A) - f(B) \) is again a trace class operator and the formula

\[
\text{Trace}(f(A) - f(B)) = \int_{\mathbb{R}} f'(s) \xi(s) \, ds
\]

holds where the function \(\xi \in L^1(\mathbb{R}) \) depends only on \(A \) and \(B \) and is uniquely determined by the above formula. The function \(\xi \) is called the spectral shift function of the pair \(A, B \) and is an important ingredient in the perturbation theory of self-adjoint operators.

The original proof of Krein uses complex analysis and is quite involved. We supply a new proof which does not use complex analysis. Our proof works also for \(\sigma \)-finite von Neumann algebras \(M \) of type II and unbounded perturbations from the predual of \(M \). The exposition is based on joint work with D. Potapov and D. Zanin.

E-mail address: f.sukochev@unsw.edu.au

School of Mathematics & Statistics, University of NSW, Kensington NSW 2052 AUSTRALIA