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1. Introduction

Question: What is the effect of the dissipation in nearly–integrable systems

and what is the interest in Celestial Mechanics?

Models (conservative and dissipative):

• standard map, • spin–orbit problem, • three–body problem.

Conservative case: ruled by the perturbing parameter, existence of invariant sets,

periodic orbits, cantori

Dissipative case: ruled by the perturbing parameter and by the dissipative constant;

existence of quasi–periodic attractors, periodic attractors, cantori

Conservative case: KAM theory, Nekhoroshev’s theorem, Greene’s method, converse

KAM, frequency analysis, FLI

Dissipative case: dissipative KAM theory, exponential stability estimates,

approximating periodic orbits, converse KAM, basins of attractions
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+ MOTIVATION: rotational and orbital dynamics in Celestial Mechanics.

• Moon, and all evolved satellites: spin–orbit 1:1 resonance (1 rotation = 1

revolution). Mercury: 3:2 spin–orbit resonance (3 rotations = 2 revolutions).

The analysis of the rotation provides information on the internal structure.

Does dissipation play a role in the selection of resonances?

• Effect of dissipation in astrodynamics (Space Manifold Dynamics):

invariant manifolds, low–energy transfers, attitude–orbit dynamics.

Can dissipation be used to modify orbits?
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+ Examples of nearly–integrable systems with (weak) dissipation in the

Solar System:

• Tidal torque: due to the non–rigidity of planets and satellites

• Yarkovsky effect: due to the joint action of solar lighting and rotation of

the body; the rotation causes that the re-emission of the absorbed radiation

occurs along a direction different from that of the Sun, thus provoking a

variation of the angular momentum and therefore of the orbit
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+ Examples of nearly–integrable systems with (weak) dissipation in the

Solar System:

• Tidal torque: due to the non–rigidity of planets and satellites

• Yarkovsky effect: due to the joint action of solar lighting and rotation of

the body; the rotation causes that the re-emission of the absorbed radiation

occurs along a direction different from that of the Sun, thus provoking a

variation of the angular momentum and therefore of the orbit

• Radiation pressure: exerted on any surfaces subject to electromagnetic

radiation

• Solar wind: caused by charged particles originating from the Sun

• Stokes drag: collision of particles with the molecules of the gas nebula

during the formation of the planetary system

• Poynting–Robertson effect: due to the absorption and re-emission of the

solar radiation, the velocity of a dust particle decreases
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2. Conservative and dissipative systems

+ Conservative Standard Map

y′ = y + ε g(x)

x′ = x+ y′ , (1)

where y ∈ R, x ∈ T ≡ R/(2πZ), ε > 0 perturbing parameter, g = g(x)

analytic, periodic function (typically g(x) = sinx).

+ Properties: integrable for ε = 0, non–integrable for ε 6= 0: periodic orbits

are surrounded by librational curves; quasi–periodic invariant curves are

slightly displaced and deformed (with w.r.t. the integrable case) and for a

given value of ε they break–down, leaving place to cantori, which are still

invariant sets, but they are graphs of a Cantor set.



Nearly–integrable models in Celestial Mechanics with Dissipation 8

+ Dissipative Standard Map:

y′ = λy + c+ ε g(x) y ∈ R , x ∈ T

x′ = x+ y′ , λ, c, ε ∈ R+ , (2)

g(x)(= sinx) analytic periodic function, 0 < λ < 1 dissipative parameter, c = drift

parameter (λ = 1, c = 0 conservative SM).

• Notice that for ε = 0 the trajectory {y = ω ≡ c
1−λ} × T is invariant:

y′ = y = λy + c , y = ω → ω = λω + c → ω ≡ c

1− λ → c = (1− λ)ω .
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Figure 1: SMD attractors. Left: invariant attractor coexisting with 0/1, 1/2, 1/1 periodic

orbits. Right: strange attractor.



Nearly–integrable models in Celestial Mechanics with Dissipation 9

• Basins of attraction for the coexisting case (500× 500 random initial

conditions with preliminary iterations).
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Figure 2: Basins of attraction of a) 0/1 periodic orbit; b) 1/2 periodic orbit; c)

quasi–periodic attractor; d) 1/1 periodic orbit.
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3. Stability: KAM and Nekhoroshev

• KAM theorem: persistence of invariant tori on which a quasi–periodic

motion takes place.

2–dimensional systems: dim(phase space)=4, dim(constant energy level)=3,

dim(invariant tori)=2 → confinement in phase space for ∞ times between

bounding invariant tori

• No more valid for n > 2: the motion can diffuse through invariant tori,

reaching arbitrarily far regions (Arnold’s diffusion)
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3. Stability: KAM and Nekhoroshev

• KAM theorem: persistence of invariant tori on which a quasi–periodic

motion takes place.

2–dimensional systems: dim(phase space)=4, dim(constant energy level)=3,

dim(invariant tori)=2 → confinement in phase space for ∞ times between

bounding invariant tori

• No more valid for n > 2: the motion can diffuse through invariant tori,

reaching arbitrarily far regions (Arnold’s diffusion)

• Nekhoroshev theorem: bound on the action variables |y(t)− y(0)| ≤ ρ
for exponential times t ≤ T = T0 e

(
ε0
ε )a .

J.E. Littlewood: ”While not eternity, this is a considerable slice of it”.
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4. Conservative KAM results

Nearly–integrable Hamiltonian system:

H(y, x, t) = h(y) + εf(y, x, t) , y ∈ Rn, (x, t) ∈ Tn+1 .

Assume that the frequency ω = ω(y0) ≡ h′(y0) is Diophantine:

|ω · q + p| ≥ ν|q|−τ , ∀(q, p) ∈ Zn+1\{0} , ν > 0 , τ > 0 . (3)

KAM theorem: Assume ω diophantine and h not–degenerate det(h′′) 6= 0.

Persistence of invariant tori with diophantine frequency of the integrable case,

provided ε is sufficiently small, say ε ≤ εKAM .

• Results consistent with observations in spin–orbit problem and R3BP.

KAM theorem for SM: persistence of invariant curves with diophantine

frequency, provided ε is sufficiently small, say ε ≤ εKAM . For the golden

mean torus with ω =
√
5−1
2 , then εKAM = 0.838, whereas the numerical

threshold is εnum = 0.971635 (agreement of 86%).
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5. Dissipative KAM results

• Nearly–integrable Hamiltonian flow with dissipation, e.g.

ẋ = y + εfy(y, x, t)

ẏ = −εfx(y, x, t)− µ(y − η) , y ∈ R, (x, t) ∈ T2 . (4)

• Case ε = 0 and µ 6= 0: the torus T0 ≡ {y = η} × {(θ, t) ∈ T2} is a global

attractor with frequency η: the general solution is given by

x(t) = x0 + η (t− τ) +
1− exp(−µ(t− τ))

µ
(v0 − η) .

KAM theorem. For ω diophantine, there exists εKAM > 0 such that for

any 0 < ε ≤ εKAM and 0 ≤ µ < 1 there exists a quasi–periodic solution with

frequency ω, if η = ω (1 +O(ε2)).

• Dissipative KAM proof extended to general (i.e. conformally symplectic)

mapping systems (results for maps imply results for flows).
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6. Quasi–periodic (dissipative) attractors

Definition. A diffeomorphism f = fc defined on the phase space

M⊆ Rn × Tn (endowed with a symplectic form Ω) is conformally symplectic,

if there exists a function λ :M→ R such that the pull-back f∗c satisfies

f∗c Ω = λΩ

(i.e. a mapping contracting the area by a factor λ).

• Invariance equation. Look for c ∈ Rn, K : Tn →M, such that the

following invariance equation is satisfied:

fc◦K(θ) = K(θ+ω) . (INV )

(i.e. parametrize as K(θ) = (ω + u(θ)− u(θ − ω), θ + u(θ)) for the SM

with u = O(ε)).

• Remark. The solutions of (INV ) are locally unique up to a shift. If

Ts(θ) = θ + s and if (K, c) is a solution, then (K ◦ Ts, c) is a solution ∀s ∈ Tn.
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• The standard map with ε = 0 is given by (y′, x′) = (λy + c, x+ y′); from

K(θ) = (ω, θ) we get

fc ◦K(θ) = (λω + c, θ + λω + c) , K(θ + ω) = (ω, θ + ω) .

The invariance equation provides:

c = (1− λ)ω .

• For the standard map with ε 6= 0, recall yj = xj − xj−1 and let

K(θ) = (ω + u(θ)− u(θ − ω), θ + u(θ)). Since:

fc ◦K(θ) = (λω + λu(θ)− λu(θ − ω) + c+ εg(θ + u(θ)),

θ + (1 + λ)u(θ)− λu(θ − ω) + λω + c+ εg(θ + u(θ)))

and

K(θ + ω) = (ω + u(θ + ω)− u(θ), θ + ω + u(θ + ω)) ,

from the second component we get the invariance equation:

u(θ + ω)− (1 + λ)u(θ) + λu(θ − ω) + (1− λ)ω − c = εg(θ + u(θ)) .
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• For a Lagrangian torus K∗(Ω) = 0 and therefore the following holds true:

DKT (θ) J ◦K(θ) DK(θ) = 0 , (LAGR)

J being the matrix representing Ω at x: Ωx(u, v) = (u, J(x)v) for any u, v.

• Reduction of the linearization. In the neighborhood of an

(approximate) invariant torus, there exists a change of coordinates such that

the linearization of the invariance equation fc ◦K(θ) = K(θ + ω) (INV ) is a

constant coefficient equation.

• Taking the derivative of (INV ):

D(fc ◦K) DK −DK ◦ Tω = 0

and using (LAGR) one obtains an equation of the form

Dfc ◦K(θ)M(θ)−M(θ+ω)

 Id S(θ)

0 λ

 = 0 (RED)

for M(θ) = [DK(θ)| J−1 ◦ DK(θ) N(θ)] and for suitable functions N , S.
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• Approximate solution (K, c) of (INV ) with error E:

fc ◦K −K ◦ Tω = E .

By a Newton method, find corrections MW , σ, such that K ′ = K +MW

(W = (W1,W2)), c′ = c+ σ provide an error quadratically smaller: take the

linearization of (INV ) and use (RED) to find Id S(θ)

0 λ

W −W ◦ Tω = −Ẽ − Ã σ

for suitable known Ẽ ≡ (Ẽ1, Ẽ2), Ã ≡ [Ã1| Ã2], namely:

W1 −W1 ◦ Tω = −Ẽ1 − SW2 − Ã1 σ (W1)

λW2 −W2 ◦ Tω = −Ẽ2 − Ã2 σ (W2) .

• (W1) involves small divisors, solvable for ω diophantine.

• (W2) always solvable for any |λ| 6= 1.
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• Let W2 ≡W 2 + σW̃2:

λW 2 −W 2 ◦ Tω = −Ẽ2

λW̃2 − W̃2 ◦ Tω = −Ã2 .

Then:

W1 −W1 ◦ Tω = −Ẽ1 − SW 2 − (Ã1 + SW̃2)σ ,

where σ is chosen so that the r.h.s. has zero average, thanks to the

assumption:

det(〈Ã1 + SW̃2〉) 6= 0 .

Notice that:

W1 −W1 ◦ Tω = W1(θ)−W1(θ + ω) =
∑
k

Ŵ1,k e
ikθ(1− eikω)

and 1− eikω = 0 for k = 0.

• In the nearly–integrable case the compatibility condition gives a relation

between ω and c of the form c = (1− λ)ω (1 +O(ε2)).
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• Norms.

Definition. Given ρ > 0, we denote by Tnρ the set

Tnρ = {z ∈ Cn/Zn : |Im(zi)| ≤ ρ} .

For k ∈ N let Aρ,k the set of analytic functions in the interior of Tnρ and

continuous with its k derivatives in Tnρ with the norm:

‖f‖Aρ,k = max
0≤i≤k

sup
z∈Tnρ

|Dif(z)| . (5)

Given m > 0 and denoting the Fourier series of f = f(z) as

f(z) =
∑
k∈Zn f̂k exp(2πikz), define Hm as

Hm =
{
f : Tn → C : ‖f‖2m ≡

∑
k∈Zn

| f̂k |2(1 + |k|2)m <∞
}
. (6)

Advantages of using Sobolev norms are that they apply to mappings with

finite regularity and that all estimates in the proof can be followed by a

straightforward numerical implementation.
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• Homological equation. Let ϕ : Tn → C, η : Tn → C:

ϕ(θ + ω)− λϕ(θ) = η(θ) ,

where λ ∈ C, ω ∈ Rn are given.

Lemma. Let |λ| ∈ [A,A−1] for 0 < A < 1, ω diophantine, η ∈ Aρ,k, ρ > 0,

k ∈ Z (resp. η ∈ Hm, m ≥ τ) and∫
Tn
η(θ) dθ = 0 .

Then, there is only one solution up to addition of a constant and if we choose

it such that
∫
Tn ϕ(θ)dθ = 0, then we have (C is a constant):

‖ϕ‖Aρ−δ,k+` ≤ Cδ−τ−`
1

ν
‖η‖Aρ,k , 0 < ` < k ,

‖ϕ‖Hm−τ ≤ C
1

ν
‖η‖Hm .
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• Main Theorem. Let ω be Diophantine and fc be a family of conformally

symplectic mappings. Let K0 : Tn →M, c0 ∈ Rn be such that

fc0 ◦K0 −K0 ◦ Tω = E , f∗c0Ω = λ0Ω .

Assume that the compatibility condition holds:

det(〈Ã1 + SW̃2〉) 6= 0 . (7)

Then, in the analytic and in the Sobolev setting, there exists Ke, ce, such that

fce ◦Ke −Ke ◦ Tω = 0

and

||Ke−K0||Aρ−δ,k ≤ Cν−2δ−2τ−1||E||Aρ,k , |ce− c0| ≤ Cν−2δ−2τ−1||E||Aρ,k

or

||Ke −K0||Hm+τ−1 ≤ Cν−2||E||Hm , |ce − c0| ≤ Cν−2||E||Hm .
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• Uniqueness Theorem. Let (K1, c1), (K2, c2) be solutions; let

βA =
‖K2 −K1‖Aρ,k
|c2 − c1|

, βH =
‖K2 −K1‖Hm
|c2 − c1|

.

Assume the inequality

C‖K2 −K1‖Aρ,k

(
1 +
‖M‖2Aρ,k
βA

)
< 1.

and in the Sobolev case:

C‖K2 −K1‖Hm
(

1 +
‖M‖2Hm
βH

)
< 1 .

Then, there exists s ∈ Rn such that

K2(θ) = K1(θ + s) , c1 = c2 .
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7. Break–down of quasi–periodic attractors

7.1 Sobolev’s norms

• From the equations of the dissipative standard map, setting γ = ω(1− λ)− c:

u(θ + ω)− (1 + λ)u(θ) + λu(θ − ω) + γ = εg(θ + u(θ)) .

• Close to the breakdown the smooth norms must blow up. Given the trigonometric

polynomial u(M)(ϑ) =
∑
|k|≤M ûk e

2πikϑ, we consider the Sobolev norm defined as:

‖u(M)‖m =

 ∑
|k|≤M

(2πk)m|ûk|2
 1

2

. (8)

• A regular behavior of ‖u(M)‖m as parameters increase provides evidence of the

existence of the invariant attractor; see Table showing εcrit for ωr =
√
5−1
2

.

λ εcrit

0.5 0.979215

0.9 0.972088
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7.2 Periodic orbits and Arnold’s tongues

• Parametric representation of the 2π p/q–periodic orbit up to εq−1, being the order

q undetermined. The drift c (equivalent to γ) must belong to an interval, say

[c
(p,q)
− , c

(p,q)
+ ], whose amplitude decreases as ε gets smaller: Arnold’s tongues (inside

the periodic orbit is stable).
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Figure 3: Arnold’s tongues providing the drift c as a function of ε. Each panel

shows the tongues associated to three different periodic orbits, precisely with

frequencies 2π · 1/3 (left), 2π · 1/2 (center), 2π · 2/3 (right). a) λ = 0.5, b) λ = 0.8.



Nearly–integrable models in Celestial Mechanics with Dissipation 24

7.3 Approximation through periodic orbits

• Critical breakdown threshold: compute the sequence of periodic orbits

P(
pj
qj

)→ T (ω) (analytically found through a constructive IFT).

• Fix the period
pj
qj

; for each set (ε, λ) there exists a whole interval of the drift

parameter c corresponding to that periodic orbit.
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Figure 4: For λ = 0.9 and ε = 0.5 invariant attractor with frequency ωr and

periodic orbits: 5/8 (∗), 8/13 (+), 34/55 (×).
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• Conservative standard map: the breakdown of an invariant curve is strictly

related to the stability character of the approximating periodic orbits.

• Dissipative case: for fixed values of the parameters there is a whole interval

of c which admits p/q–periodic orbits.

Select one of these periodic orbits and evaluate its stability by computing the

monodromy matrix along a full cycle of the periodic orbit.

Let εp,q(λ) the maximal value of ε ∈ [0, 1) for which the periodic orbit is

stable.

• The results show that the stability value seems to decrease toward a given

threshold as the order of the periodic approximant is increased, thus defining

a breakdown threshold of the invariant attractor consistent with Sobolev’s

norms.
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Table 1: Stability threshold εp,q(λ) of the periodic orbits approximating

ωr =
√
5−1
2 .

pj/qj εωrp,q(λ = 0.9) εωrp,q(λ = 0.5)

εSob = [0.972] εSob = [0.979]

1/2 0.999 0.999

2/3 0.999 0.999

3/5 0.999 0.999

5/8 0.993 0.992

8/13 0.981 0.987

13/21 0.980 0.983

21/34 0.976 0.980

34/55 0.975 0.979

55/89 0.974 0.979
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8. Applications to Celestial Mechanics

+ ROTATIONAL DYNAMICS: quasi–periodic attractors for the spin–orbit

problem.

• Model: satellite S, ellipsoid rotating about an internal spin–axis and revolving

around a central body P:

(i) S moves on a Keplerian orbit;

(ii) the spin–axis coincides with the smallest physical axis (principal rotation);

(iii) the spin–axis is perpendicular to the orbital plane (zero obliquity);

(iv) dissipative forces: tidal torque T depending linearly on the angular velocity of

rotation.
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8. Applications to Celestial Mechanics

+ ROTATIONAL DYNAMICS: quasi–periodic attractors for the spin–orbit

problem.

• Model: satellite S, ellipsoid rotating about an internal spin–axis and revolving

around a central body P:

(i) S moves on a Keplerian orbit;

(ii) the spin–axis coincides with the smallest physical axis (principal rotation);

(iii) the spin–axis is perpendicular to the orbital plane (zero obliquity);

(iv) dissipative forces: tidal torque T depending linearly on the angular velocity of

rotation.

• Notation:

A < B < C principal moments of inertia; n = 2π
Trev

≡ 1 mean motion; a semimajor

axis; r orbital radius; f true anomaly; x angle between pericenter line and major

axis of the ellipsoid.
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ẍ +
3

2

B −A
C

(
a

r
)3 sin(2x− 2f) = −µ[ẋ− η] . (9)

+ ε ≡ 3
2
B−A
C

perturbing parameter; Moon–Mercury: ε ' 10−4;

+ r and f are known Keplerian functions of the time;

+ Tidal torque T due to internal non–rigidity: as in [Correia–Laskar] average over one

orbital period (K ' 10−8 for Moon–Mercury):

〈T 〉 = −µ(e,K)
[
ẋ− η(e)

]
,

with

µ(e,K) = K
1 + 3e2 + 3

8
e4

(1− e2)9/2
, η(e) =

1 + 15
2
e2 + 45

8
e4 + 5

16
e6

(1 + 3e2 + 3
8
e4)(1− e2)3/2

.
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• We are led to consider the following equation of motion for the dissipative

spin–orbit problem:

ẍ + εVx(x, t) = −µ[ẋ− η] . (10)

• The tidal torque vanishes provided

ẋ ≡ η(e) =
1 + 15

2 e
2 + 45

8 e
4 + 5

16e
6

(1− e2)
3
2 (1 + 3e2 + 3

8e
4)
.

• It is readily shown that for circular orbits the angular velocity of rotation

corresponds to the synchronous resonance, being ẋ = 1. For Mercury’s

eccentricity e = 0.2056, it turns out that ẋ = 1.256.

+ SMD corresponds to the Poincarè map at times 2π, obtained integrating

the spin–orbit problem with a leap–frog method.
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+ Mercury and the quasi–periodic attractors.

QUESTION: Why Mercury is not trapped in a 1:1 resonance? The frequency

of the attractor depends on the eccentricity.

0.1 0.205 0.3 0.4

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Untitled-4 1

Graph of e→ η(e)

+ By the Theorem there exist a quasi–periodic attractor associated to e = 0.2056

with ω ' η(e) +O(10−8) ' 1.256; the 3:2 periodic orbit is above, thus Mercury is

trapped above.

+ In particular, ω = 1.5 for e = 0.285 compatible with the variations induced by

perturbations on Mercury’s eccentricity.
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+ Interplay periodic/quasi–periodic attractors.

• Frequencies of the attractors versus percentage of attracted initial data:

integrating 103 random initial conditions (with ε = 10−3, K = 10−4), compute the

occurrences of the attractors.

• For e small the 1/1 resonance dominates; increasing e there appear 3/2, 2/1, 5/2

and the natural frequency η = η(e); for example η(0.284927) = 1.5.
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Figure 5: x–axis: frequency. y–axis: percentage of attracted initial data.

e = 0.0549, e = 0.2056, e = 0.284927.
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+ ORBITAL DYNAMICS: Dissipative 3BP, equations of motion

• Planar, circular, restricted 3–body problem with dissipation. Masses of the

primaries m, 1−m. Coordinates in a synodic reference frame: P = (x, y),

P1 = (−m, 0), P2 = (1−m, 0). Equations of motion in a synodic frame:

ẍ = 2ẏ + x− (1−m)
x+m

r31
−mx− 1 +m

r32
+ Fx

ÿ = −2ẋ+ y − (1−m)
y

r31
−m y

r32
+ Fy ,

where r21 = (x+m)2 + y2, r22 = (x− 1 +m)2 + y2, K = dissipative constant,

(Fx, Fy) = −K(ẋ− y, ẏ + x) (linear)

(Fx, Fy) = −K(ẋ− y + αΩy, ẏ + x− αΩx) (Stokes)

(Fx, Fy) = − K

r12
(ẋ− y, ẏ + x) (PR) .

Ω = Ω(r) ≡ r−3/2 is the Keplerian angular velocity at r =
√
x2 + y2 from the

origin of the synodic frame, α ∈ [0, 1) ratio between the gas and Keplerian

velocities.
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+ ORBITAL DYNAMICS: Dissipative 3BP, qualitative dynamics

• Use regularized equations: Levi–Civita transformation and introduction of the

fictitious time to regularize collisions with the primaries.

• Periodic attractors are found in the linear and Stokes drag models; they do not

occur within the PR–drag model → one needs to modify the model → add a third

primary (e.g., Saturn–like), whose action balances that of the two main primaries.

• Global behavior of the dynamics through FLI: the norm of the tangent vector over

a finite interval of time is an indicator of the dynamical character of a trajectory.

• The dissipation decreases the semi–major axis of orbits that collide with one of the

primaries, even on very short time scales; a large fraction of initial conditions in the

interior region collides with the Sun. In the exterior region, collisions with Jupiter.

Increasing the dissipation or the integration time, a larger fraction of orbits ends on

one of the primaries. The effect of the PR–drag is faster than Stokes and linear.
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Figure 6: FLI map for the conservative case (ẏ(0) = 0; ẋ(0) is computed from the Jacobi

constant C = 2.99047 corresponding to the Lagrangian point L4). Left: non regularized

equations; right: regularized equations. Periodic (blue to red), quasi–periodic (orange),

chaotic (yellow), collision orbits (black).
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Figure 7: FLI map for the Stokes drag case with α = 0.995 (top) and for the

PR drag (bottom) with T = 100. Left: K = 10−5, right: K = 10−3.
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Figure 8: FLI map for the Stokes case with α = 0.995. Top: T = 100, bottom:

T = 5000. Left: K = 10−5, right: K = 10−3.
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9. Nekhoroshev’s theorem

• Original version of Nekhoroshev’s theorem formulated under the steepness

condition, later relaxed to the convex/quasi–convex hypotheses (J. Pöschel):

H(y, x) = h(y) + εf(y, x) , y ∈ Y ⊂ Rn , x ∈ Tn . (11)

• Define a complex neighborhood of Y × Tn as Vr0Y ×Ws0Tn, where

. Vr0Y = complex nbh. of radius r0 around Y w.r.t. Euclidean norm ‖ · ‖

. Ws0Tn ≡ {x ∈ Cn : max1≤j≤n |Im xj | < s0}.

• Let Ur0Y ≡ Vr0Y ∩ Rn be the real neighborhood of Y .

• For an analytic function on Vr0Y ×Ws0Tn with Fourier expansion

u(y, x) =
∑
k∈Zn ûk(y)eik·x, let the norm

‖u‖Y,r0,s0 ≡ sup
y∈Vr0Y

∑
k∈Zn

|ûk(y)| e(|k1|+...+|kn|)s0 .
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• Definition. Given m > 0, then h(y) is said m–convex if

(h′′(y)v, v) ≥ m‖v‖2 for all v ∈ Rn , for all y ∈ Ur0Y .

Given m, ` > 0, the unperturbed Hamiltonian is said m, `–quasi–convex if

for any y ∈ Ur0Y one of the following inequalities holds for any v ∈ Rn:

|(ω(y), v)| > `‖v‖ , (h′′(y)v, v) ≥ m‖v‖2 . (12)

Nekhoroshev’s theorem [Pöschel]. Assume h is quasi–convex with

supy∈Vr0Y ‖h
′′(y))‖ ≤M . Let r0 ≤ 4`

m , A ≡ 11M
m , ε0 ≡ mr20

210A2n ; if for s0 > 0,

one has ‖f‖Y,r0,s0ε ≤ ε0, then for any initial condition (y0, x0) ∈ Y × Tn the

following estimates hold:

‖y(t)− y0‖ ≤
r0
A

(
ε

ε0
)

1
2n for |t| ≤ A2s0

Ω0
e
s0
6 (

ε0
ε )

1
2n ,

where Ω0 ≡ sup‖y−y0‖≤ r0A ‖ω(y)‖.



Nearly–integrable models in Celestial Mechanics with Dissipation 39

• The proof is based on three main ingredients: the construction of a suitable

normal form, the use of the convexity/quasi–convexity, the analysis of the

geography of the resonances.

• Why quasi–convexity is necessary?

• Counterexample to Nekhoroshev theorem if quasi-convexity is violated:

H(y1, y2, x1, x2) =
y21
2
− y22

2
− ε sin(x1 + x2) ;

Hamilton’s equations:

ẏ1 = ε cos(x1 + x2) ẏ2 = ε cos(x1 + x2)

ẋ1 = y1 ẋ2 = −y2 .

A solution is

x1(t) = −x2(t) = x0 + y0t+
1

2
εt2 , y1(t) = y2(t) = y0 + εt ;

Nekhoroshev’s exponential estimates do not hold.
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10. Effective estimates in Celestial Mechanics

• The stability estimates provided by Nekhoroshev’s theorem are particularly

relevant in Celestial Mechanics. In fact, they can be used to provide bounds

on the elliptic elements for an exponentially long time, possibly comparable

with the age of the solar system, namely 5 billion years.

• Effective estimates have been developed for

♦ the three–body problem;

♦ the triangular Lagrangian points;

♦ the resonant D’Alembert problem;

♦ the perturbed Euler rigid body.
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11. Exponential estimates for dissipative systems

• Consider the following n–dimensional, time–dependent vector field

ẋ = ω(y) + εh10,y(y, x, t) + µf01(y, x, t)

ẏ = −εh10,x(y, x, t) + µ (g01(y, x, t)− η(y, x, t)) , (13)

where y ∈ Rn, (x, t) ∈ Tn+1, ε ∈ R+, µ ∈ R+, ω and η are real–analytic, h10,

f01, g01 are periodic, real–analytic.

Having fixed y0 ∈ Rn, denote by A ⊂ Rn an open neighborhood of y0.

• Assume that for some K ∈ Z+ the vector function ω = ω(y) satisfies the

non–resonance condition

|ω(y) · k +m| > 0 for all y ∈ D ⊂ A , (k,m) ∈ Zn+1\{0} , |k|+ |m| ≤ K .

(14)
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Theorem. Consider the vector field (13) defined on A× Tn+1 and let y ∈ D
be such that ω = ω(y) satisfies (14). Let ρ0 > 0, τ0 > 0; there exist ε0 > 0,

µ0 > 0, such that for any ε ≤ ε0, µ ≤ µ0:

‖y(t)− y(0)‖ ≤ ρ0 for |t| ≤ CteKτ0 ,

for some positive constant Ct.

• Proof: is based on the construction, up to an optimal order N , of a double

coordinate change of variables:

(X,Y ) = ∆
(N)
d ∆(N)

c (x, y) ,

where we refer to ∆
(N)
c as the conservative transformation and to ∆

(N)
d as the

dissipative transformation.

• The proof can be extended to the resonant case.

• The drift η = η(y, x, t) must be chosen in order that the compatibility

conditions (required to solve the homological equations) are satisfied.
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12. Conclusions and perspectives
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12. Conclusions and perspectives

• Computer–assisted optimal estimates in discrete and continuous systems

(on–going collaboration with R. Calleja, R. de la Llave).

• Exponential estimates for the nearly–integrable (resonant/non resonant)

dissipative models (on–going collaboration with C. Lhotka).

• Cantori for generic dissipative systems.

• Converse KAM for more–dimensional dissipative systems.

• Galactic dynamics with dissipative effects.

• Coupled attitude–orbit dynamics with dissipation: modify the orbital motion by

changing (through dissipative effects) the attitude of the spacecraft.

• Role of the dissipation in the selection of the resonances (capture into resonance or

separatrix crossing).


