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GOAL

• Given a number of observations of a celestial body, determine its orbit
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• Given a number of observations of a celestial body, determine its orbit

• Determine the minimum number of observations needed for orbit

determination

• Take into account the topocentric observations, the movement of the Earth,

the aberration, nutation, equinox precession, error measurements, etc

• Determine the orbital elements with the best accuracy

• Predict the motion of the object in order to recover it in the sky.
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GOAL

• Given a number of observations of a celestial body, determine its orbit

• Determine the minimum number of observations needed for orbit

determination

• Take into account the topocentric observations, the movement of the Earth,

the aberration, nutation, equinox precession, error measurements, etc

• Determine the orbital elements with the best accuracy

• Predict the motion of the object in order to recover it in the sky.

♦ Leonhard Euler (Basel 1707 – St. Petersburg 1783)

♦ Giuseppe Piazzi (Ponte in Valtellina 1746 – Napoli 1826)

♦ Pierre Simon Laplace (Beaumont-en-Auge 1749 – Paris 1827, France)

♦ Carl Friedrich Gauss (Brunswick 1777 – Göttingen 1855, Germany)

♦ Ottaviano Fabrizio Mossotti (Novara 1791– Pisa 1863, Italy).
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Titius–Bode law

• Johann Daniel Tietz – Titius (1729–1796), Johann Elert Bode (1747–1826) found a

relation for computing the semimajor axes of the planets:

an = 0.4 + 0.3 · 2n AU ,

where Mercury: n = −∞, Venus: n = 0, Earth: n = 1, Mars: n = 2, ???? (another

planet?): n = 3, Jupiter: n = 4, Saturn: n = 5.

Planet Titius–Bode Law (AU) Distance (AU)

Mercury 0.4 0.39

Venus 0.7 0.72

Earth 1 1

Mars 1.6 1.52

Asteroids 2.8 2.77

Jupiter 5.2 5.20

Saturn 10 9.54

Uranus 19.6 19.19

Neptune 38.8 30.07
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Ceres discovery

• Piazzi: on the night of 1 January 1801 a new, faint object is observed from

the observatory of Palermo

• 19 observations over 42 days, but nothing after 12 February 1801

• In total the observed object made an arc of only 9o on the celestial sphere

• Piazzi thought a small comet without tail, or a planet within Mars and

Jupiter (remember Titius–Bode law)

• Franz von Zach (director of the Seeberg Observatory) published a ”call for

help” on the ”Monatliche Correspondenz” (Monthly Correspondence). In the

September issue Piazzi’s observations were finally published

• Gauss (24 years old): in a little more than a month, he found a method to

determine the orbit and to compute the ephemerides

• Using these ephemerides, von Zach observed Ceres on December 7, but

stopped due to bad weather
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• On 31 December 1801, von Zach and then Olbers (two days later)

independently confirmed the recovery of Ceres; using Gauss’ words, they were

able to “restore the fugitive to the observations”

• Piazzi named the object Ceres Ferdinandea in honour of the roman

goddess of grain and of King Ferdinand IV of Naples and Sicily. The

Ferdinandea part was later dropped for political reasons.

• Ceres is the first asteroid discovered in the asteroidal belt (diameter 974 km,

a = 2.76 AU, e = 0.079, i = 10.58o)

• Ceres has been upgraded in 2006 to a dwarf planet
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Elliptic elements

The motion of a celestial body is determined by means of 6 elliptic elements:

i inclination, 0 ≤ i < π, Ω longitude of the ascending node, 0 ≤ Ω < 2π,

ω argument of perihelion, 0 ≤ ω < 2π

a semimajor axis or p parameter, e eccentricity, M mean anomaly (v is

the true anomaly)
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• v is the true anomaly

• E is the eccentric anomaly (draw the circle with radius equal to a and

connect the perpendicular across the satellite to the center of the ellipse)

• M is the mean anomaly, the angle that would have span by the satellite if

the ellipse is run with uniform velocity, M(t) = nt+M(0) with n = 2π
Trev

• Kepler’s equation: M = E + e sin(E)

• r = a(1− e cos(E)), tg v
2 =

√
1+e
1−e tg E

2
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Two–body problem

• Simplified model for the study of of the dynamics; one considers only 2

celestial bodies (with masses M , m at distance d) interacting under Newton’s

law of gravitation:

F = −G Mm/d2 .

Example: Sun–Earth, Sun–Jupiter, Earth–Moon, Sun–asteroid, binary stars

• The solution is a conic section: ellipse, hyperbole, parabola.
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Kepler’s laws (1)

• Three laws providing the solution of the two–body problem: all planets

move along ellipses, they are faster close to the Sun, their period increases

with the distance from the Sun.

• Ellipse: locus of points such that the sum of the distances from two fixed

points F1, F2, called foci, is constant. The ellipse is characterized by the

semimajor axis a and by the eccentricity e; b is the semiminor axis.
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• Different eccentricities: e = 0 circle, 0 < e < 1 ellipse, e = 1 parabola, e > 1

hyperbole.

• Earth: 0.017, Jupiter: 0.048, Mercury: 0.206, Neptune: 0.008, Pluto: 0.249,

Moon: 0.055, Europa: 0.0094, Tarvos: 0.5309
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• Different eccentricities: e = 0 circle, 0 < e < 1 ellipse, e = 1 parabola, e > 1

hyperbole.

• Earth: 0.017, Jupiter: 0.048, Mercury: 0.206, Neptune: 0.008, Pluto: 0.249,

Moon: 0.055, Europa: 0.0094, Tarvos: 0.5309

• Perihelion = closer to the Sun, Aphelion = farther from the Sun
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Kepler’s laws (2)

• Assume that a small body C (with zero–mass) orbits the Sun; let ~r1, ~r2, ~r3 =

be the positions of C w.r.t Sun at t1, t2, t3

• n = 2π
Trev

mean motion

• M = M(t) = nt+M(0) = nt = mean anomaly (assume M(0) = 0)
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Kepler’s laws (2)

• Assume that a small body C (with zero–mass) orbits the Sun; let ~r1, ~r2, ~r3 =

be the positions of C w.r.t Sun at t1, t2, t3

• n = 2π
Trev

mean motion

• M = M(t) = nt+M(0) = nt = mean anomaly (assume M(0) = 0)

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

I law : ~r1, ~r2, ~r3 are coplanar and determine a conic section with parameter p

and eccentricity e (a = p/(1− e2))

II law : The areal velocity is constant: Ȧ(t) = p2

(1−e2)3/2n

III law : n2a3 = constant

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

Remark: II, III laws ⇒ A(t) =
√
p t
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Ceres–Gauss problem

• How can we compute the elliptic elements starting from observations from

Earth? How many observations do we need?

• The orbit is determined by 6 elements: (p, e, ω,Ω, i,M). Therefore we need

3 observations of 2 quantities, e.g. longitude and latitude, right ascension and

declination
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Ceres–Gauss problem

• How can we compute the elliptic elements starting from observations from

Earth? How many observations do we need?

• The orbit is determined by 6 elements: (p, e, ω,Ω, i,M). Therefore we need

3 observations of 2 quantities, e.g. longitude and latitude, right ascension and

declination

• Difficulties:

� rotation of the Earth and revolution around the Sun

� equinox precession

� aberration due to the velocity of the observer

� nutation

� observational errors (telescope, clock, etc.)

� observational times are close (within the same night or spaced by few days)
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• For t = t1, t2, t3, let for k = 1, 2, 3:

~ak : position of the observer w.r.t. Sun (known from ephemerides)

~bk : unit vector of C w.r.t. Earth (known from observations)

ρk : unknown distances C to Earth

ρk~bk : geocentric position vectors of C (ρk unknowns)

~rk = ~ak + ρk~bk : position of C w.r.t. Sun
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Gauss Problem: Let the times of observations be t1, t2, t3. Let us define

the vectors ~a1, ~a2, ~a3, ~b1, ~b2, ~b3, such that ~b1, ~b2, ~b3 are independent and

|~bk| = 1. Find ρ1, ρ2, ρ3, such that the vectors ~rk = ~ak + ρk~bk are coplanar and

define a conic section C such that, denoting by ~r(t) the position vector

evolving on C according to Kepler laws from the initial datum ~r(t2) = ~r2, one

has ~r(t1) = ~r1, ~r(t3) = ~r3 .
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Gauss Problem: Let the times of observations be t1, t2, t3. Let us define

the vectors ~a1, ~a2, ~a3, ~b1, ~b2, ~b3, such that ~b1, ~b2, ~b3 are independent and

|~bk| = 1. Find ρ1, ρ2, ρ3, such that the vectors ~rk = ~ak + ρk~bk are coplanar and

define a conic section C such that, denoting by ~r(t) the position vector

evolving on C according to Kepler laws from the initial datum ~r(t2) = ~r2, one

has ~r(t1) = ~r1, ~r(t3) = ~r3 .

• Newton: one of the most difficult problems of mathematical astronomy

• C.F. Gauss, ”Theoria motus corporum coelestium in sectionibus conicus

solem ambientium” (1809, ”Theory of the motion of heavenly bodies moving

about the sun in conic sections”)

• The method is based on (minimum number) 3 observations, it is iterative, it

needs the solution of an implicit equation (> 3 use least square method)

”... for it is now clearly shown that the orbit of a heavenly body may be

determined quite nearly from good observations embracing only a few days;

and this without any hypothetical assumption [non–zero eccentricity]” - C.F.

Gauss
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Orbit determination for a circular orbit

• Orbit determination in case of (nearly) circular orbit: W. Olbers used 2

observations and computed the radius of a circular orbit which fits the 2

observations. Recall Kepler’s III law relating a and T .

• The 2 observations define 2 lines of sight from the Earth’s positions E1, E2 at

times t1, t2. Any sphere of radius r (r′) centered in the Sun intersects the lines of

sight in 2 points P , Q (P ′, Q′).

• Kepler’s III law tells how large is the arc PQ in the time interval t2 − t1.
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Astronomical effects

• As seen from Earth, the motion of C is determined by taking into account:

� the rotation of the Earth on its axis

� the non–uniform orbit of the Earth around the Sun

� the precession of the equinoxes with a period of 25 000 years ⇒ slow drift of

the rotation axis over the period of observation, larger than the precision

required by Gauss (1 arc second)

� the nutation, i.e. the periodic shift of Earth’s rotation axis, connected to the

orbit of the Moon

� the aberration, i.e. a shift of the apparent position of C relative to the true

one, due to the combined effect of the finite velocity of the light and the

velocity of the observer

� the diffraction of light, i.e. the apparent position of C is modified by the

diffraction of light in the atmosphere, which bends the rays.
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Carl Friedrich Gauss (1777 – 1855)

• Born from a low-middle class family; the father was a gardener, the uncle

(from the mother) was very brilliant and helped Gauss in culture; child

prodigy

• In primary school the teacher asked to sum all integer numbers from 1 to

100; Gauss gave the answer within seconds. Probably he recognized that

adding terms from opposite sides gives: 1 + 100 = 101, 2 + 99 = 101, 3 + 98

= 101, ..., for a total sum of 50 × 101 = 5050

• Became famous after the discovery of Ceres; director of the observatory of

Göttingen

• Contributions in analysis, number theory, statistics, differential geometry,

astronomy, geodesy, magnetism, optics

• A. von Humboldt: ”Who is the the greatest mathematician of Germany”;

Laplace: ”Pfaff”; v H.: ”What about Gauss?”; L.: ”Gauss is the greatest

mathematician of the world!”
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Overview of Gauss method

� Step 1: Introduce the coplanarity of ~r1, ~r2, ~r3
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� Step 2: Determine an implicit equation for ρ2, depending on some

quantities P , Q; define equations for finding ρ1, ρ3
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Overview of Gauss method

� Step 1: Introduce the coplanarity of ~r1, ~r2, ~r3

� Step 2: Determine an implicit equation for ρ2, depending on some

quantities P , Q; define equations for finding ρ1, ρ3

� Step 3: Iterate steps 1, 2, defining a map (P,Q) 7→ (P ′, Q′); the fixed point

of this map provides the solution for ρ2, from which one can compute ρ1, ρ3
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Overview of Gauss method

� Step 1: Introduce the coplanarity of ~r1, ~r2, ~r3

� Step 2: Determine an implicit equation for ρ2, depending on some

quantities P , Q; define equations for finding ρ1, ρ3

� Step 3: Iterate steps 1, 2, defining a map (P,Q) 7→ (P ′, Q′); the fixed point

of this map provides the solution for ρ2, from which one can compute ρ1, ρ3

� Step 4: Compute the elements e, p, ω
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Gauss method, coplanarity: STEP 1

• Assume that C moves on a conic section

• Input data: geocentric longitudes and latitudes, Earth–Sun distances,

ecliptical longitudes of the Earth⇒ ~ak, ~bk are known, while ρk are unknown

• Coplanarity of the vectors ~r1, ~r2, ~r3: there exist α, β s.t. ~r2 = α~r1 + β~r3

• Multiply by ~r3 or −~r1:

~r2 ∧ ~r3 = α ~r1 ∧ ~r3 ⇒ α =
~r2 ∧ ~r3
~r1 ∧ ~r3

=
n23
n13

−β ~r3 ∧ ~r1 = −~r2 ∧ ~r1 ⇒ β =
~r1 ∧ ~r2
~r1 ∧ ~r3

=
n12
n13

,

where npq is related to the area spanned by ~rp, ~rq.
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Gauss method, npq, Apq: STEP 1

• npq

2 = area triangle spanned by ~rp, ~rq

• Recall: α = n23

n13
, β = n12

n13

• Apq

2 = area conic sector.

• ηpq ≡ Apq

npq

• fpq = angle between ~rp, ~rq
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Gauss method, ρk: STEP 2

• Since ~rk = ~ak + ρk~bk, coplanarity becomes:

α(~a1 + ρ1~b1)− (~a2 + ρ2~b2) + β(~a3 + ρ3~b3) = ~0

• Assume that that ~rk are coplanar and not parallel, and that ~bk are linear

independent ⇒ ~b1 ∧~b2 ·~b3 6= 0

• Take the scalar product of coplanarity with

~c1 =
~b2 ∧~b3

~b1 ∧~b2 ·~b3
, ~c2 =

~b3 ∧~b1
~b1 ∧~b2 ·~b3

, ~c3 =
~b1 ∧~b2

~b1 ∧~b2 ·~b3
Assuming αβ 6= 0, it follows:

ρ1 = −~c1 · ~a1 +
1

α
~c1 · ~a2 −

β

α
~c1 · ~a3

ρ2 = α~c2 · ~a1 − ~c2 · ~a2 + β~c2 · ~a3

ρ3 = −α
β
~c3 · ~a1 +

1

β
~c3 · ~a2 − ~c3 · ~a3 (1)
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Gauss method, P , Q: STEP 2

• Inserting α and β in the second of (1):

ρ2 = −~c2 · ~a2 +
~c2 · ~a1n23 + ~c2 · ~a3n12

n12 + n23

n12 + n23
n13

, (2)

which is a function of α, β or of P , Q as defined below.

• Define

P ≡ n12
n23

, Q ≡ 2r32

(n12 + n23
n13

− 1
)

• Then:

ρ2 = −~c2 · ~a2 +
~c2 · ~a1 + ~c2 · ~a3 P

P + 1
(1 +

Q

2r32
)

• Let tpq = tq − tp, using Apq/Ars = tpq/trs from Kep II law, one finds:

P =
β

α
=
t12
t23

η23
η12

, Q =
t12t23 r

2
2

r1r3η12η23 cos f12 cos f23 cos f13
(3)
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Gauss equation: STEP 2

• One obtains:

α =
1

1 + P
(1 +

Q

2r32
) , β =

P

1 + P
(1 +

Q

2r32
) ,

• Using ρ2 (eq. 2) and P , Q (eq. 3), one finds an implicit equation for ρ2 of

degree 8 (r2 = r2(ρ2)):

ρ2 = G(P,Q, ρ2)

G(P,Q, ρ2) ≡ −~c2 · ~a2 +
~c2 · ~a1 + ~c2 · ~a3 P

P + 1
(1 +

Q

2r32
) .

• Given ~ak, ~bk (known from ephemerides and observations) and an initial

guess P = P0, Q = Q0, solve Gauss equation by a Newton’s method
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Gauss method, ρ1, ρ3: STEP 2

• After solving

ρ2 = G(P,Q, ρ2)

G(P,Q, ρ2) ≡ −~c2 · ~a2 +
~c2 · ~a1 + ~c2 · ~a3 P

P + 1
(1 +

Q

2r32
)

compute ρ1, ρ3 by means of

ρ1 = −~c1 · ~a1 +
P + 1

1 + Q
2r32

~c1 · ~a2 − P~c1 · ~a3

ρ3 = − 1

P
~c3 · ~a1 +

P + 1

P (1 + Q
2r32

)
~c3 · ~a2 − ~c3 · ~a3 .
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Gauss method, map: STEP 3

• Iterate Steps 1, 2 by introducing Gauss map F ≡ Ft12,t23 : (P,Q)→ (P ′, Q′)

with

P ′ ≡ t12
t23

η23
η12

Q′ ≡ t12t23 r
2
2

r1r3 η12η23 cos f12 cos f23 cos f13
.

Proposition: A conic section C on which a Keplerian motion t→ ~r(t) takes

place is a solution of Gauss problem ⇐⇒ there exists a fixed point (P,Q) of

the Gauss map, with C being its associated conic section.

• Gauss problem: looking for a non–trivial fixed point of the Gauss map

(trivial solution: Earth’s orbit if mE = 0)

• We describe the following algorithm: start from an initial approximation

(P0, Q0), find the solution, iterate (Pk, Qk) until finding a fixed point
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Gauss method, fixed point: STEP 3

• Find the fixed point according to the following procedure:

� Let

P0 =
t12
t23

, Q0 = t12t23

� Compute ρ2,0 from Gauss equation

� Find the corresponding values for ρ1,0, ρ3,0; hence we have rk,0, ηpq,0, fpq,0

� Iterate defining P1, Q1 through

P1 =
β

α
=
t12
t23

η23,0
η12,0

, Q1 =
t12t23 r

2
2,0

r1,0r3,0η12,0η23,0 cos f12,0 cos f23,0 cos f13,0

� Look for a non–trivial fixed point of Gauss map, which provides the solution
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Gauss method, approximations: STEP 3

• Let t13 = ε, t12 = τ12 ε, t23 = τ23 ε

• nkl = Akl +O(ε3) =
√
p τklε+O(ε3)

• The approximations on P , Q are:

P =
n12
n23

=

√
p τ12ε+O(ε3)
√
p τ23ε+O(ε3)

=
τ12
τ23

+O(ε2)

Q = 2r32 (
n12 + n23

n13
− 1) = ε2 τ12τ23 f0(ε) +O(ε3)

with f0(ε)→ 1 as ε→ 0.

• α, β are O(ε2), since

α =
1

1 + P
(1 +

Q

2r32
) , β =

P

1 + P
(1 +

Q

2r32
) .
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Gauss method, approximation for ρk: STEP 3

• Since P = β
α , Q = 2r32(α+β− 1), then α+β− 1 = O(ε3) (as the order of Q)

• One has that ~ap − ~aq = O(ε2).

• Therefore ρk are determined up to O(ε), as it follows from the following

formulae:

ρ1 = −α+ β − 1

α
~c1 · ~a1 +

1

α
~c1 · (~a2 − ~a1)− β

α
~c1 · (~a3 − ~a1)

ρ2 = α~c2 · (~a1 − ~a2) + (α+ β − 1)~c2 · ~a2 + β~c2 · (~a3 − ~a2)

ρ3 = −α
β
~c3 · (~a1 − ~a3) +

1

β
~c3 · (~a2 − ~a3)− α+ β − 1

β
~c3 · ~a3 .
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Gauss method, e, p, ω: STEP 4

• Compute e, p, ω using the polar equation

r =
p

1 + e cos(θ − ω)

as

e = − r3 − r1
r3 cos (θ3 − ω)− r1 cos (θ1 − ω)

p = r1 r3
cos (θ3 − ω)− cos (θ1 − ω)

r3 cos (θ3 − ω)− r1 cos (θ1 − ω)

and ω as (θij = θj − θi)

A = r2(r3 − r1) + r1(r2 − r3) cos θ12 + r3(r1 − r2) cos θ23

B = r1(r2 − r3) sin θ12 − r3(r1 − r2) sin θ23

tan (θ2 − ω) = −A
B
.
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Gauss method: summary

• Compute ~c1, ~c2, ~c3 by means of ~b1, ~b2, ~b3

• Define P0, Q0 by means of t12, t23, t13

• Solve the implicit equation for ρ2

• Compute ρ1, ρ3

• Iterate to compute successive approximations

• Compute the orbital elements
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Gauss algorithm: details

Assume that ~ak, ~bk, tk are given for k = 1, 2, 3.

• Compute t12 = t2 − t1, t23 = t3 − t2, t13 = t3 − t1
• Compute ~z1 = ~b2 ∧~b3, ~z2 = ~b1 ∧~b3, ~z3 = ~b1 ∧~b2
• Compute D0 = ~z3 ·~b3
• Compute ~ck = ~zk

D0

• Compute P0 = t12
t23

, Q0 = t12 t23

• Compute Ã = −~c2 · ~a2 + ~c2·~a1+~c2·~a3 P
P+1

• Compute B̃ = ~c2·~a1+~c2·~a3 P
P+1

Q
2

• Find the roots of the implicit equation ρ2 = Ã+ B̃
r32

, where r2 = |~a2 + ρ2~b2|

• Solve the equations for ρ1, ρ3

• Compute ~rk = ~ak + ρk~bk

• Determine the elliptic elements or refine the preliminary orbit
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Ottaviano Fabrizio Mossotti (1791-1863)

• Born in Novara, studied at the University of Pavia and started to work in

1813 at the Observatory of Brera

• He needed to go abroad due to political reasons, since he was a supporter of

the revolutionary Filippo Buonarroti of the liberal party

• He went to Switzerland, England and Argentina; he came back to Italy in

1835

• In 1840 he was appointed professor at the University of Pisa, where he

taught Mathematical Physics and Celestial Mechanics

• he was named senator of the Italian kingdom in 1861

• He contributed to mathematics, celestial dynamics, fluid dynamics, optics.
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Leonhard Euler (1707-1783)

• Born from a pastor of the Reformed Church, his father was friend of the Bernoulli

family. Arago: ”Euler calculated without apparent effort, as men breathe, or as

eagles sustain themselves in the wind”

• He contributed to the problem of orbit determination, but after 3 days of

computations he got sick and lost the right eye

• Contributions in analysis, graph theory, mechanics, fluid dynamics, astronomy

(lunar theory), optics

”On 7 September 1783, after having enjoyed some calculations on his blackboard

concerning the laws of ascending motion for aerostatic machines for which the recent

discovery was the rage of Europe, he dined with Mr. Lexell and his family, spoke of

Herschel’s planet [Uranus] and the mathematics concerning its orbit and a little

while later he had his grandson come and play with him and took a few cups of tea,

when all of a sudden the pipe that he was smoking slipped from his hand and he

ceased to calculate and live. ”

(Eulogy to Mr. Euler by the Marquis de Condorcet, The Euler Society, March 2005)
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Pierre Simon Laplace (1749-1827)

• Son of a farm-labourer, Laplace owed his education to the interest excited in

some wealthy neighbours by his abilities

• His masterpiece is Celestial Mechanics (hence the name of this discipline)

• Contributions in analysis, probability, astronomy, celestial mechanics

• He studied the stability of the solar system and came to the conclusion of

absolute determinism: ”We may regard the present state of the universe as

the effect of its past and the cause of its future. An intellect which at a

certain moment would know all forces that set nature in motion, and all

positions of all items of which nature is composed, if this intellect were also

vast enough to submit these data to analysis, it would embrace in a single

formula the movements of the greatest bodies of the universe and those of the

tiniest atom”
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Overview of Laplace method

• Determine ~r, ~v at a given time (t2) and then compute the orbit.

• If f = f(t), let f ′(t) = df(t)
dt , f ′′(t) = d2f(t)

dt2 , ...



Orbit determination 37

Overview of Laplace method

• Determine ~r, ~v at a given time (t2) and then compute the orbit.

• If f = f(t), let f ′(t) = df(t)
dt , f ′′(t) = d2f(t)

dt2 , ...

� Step 1: From the equations of motion, derive an implicit equation for ρ2



Orbit determination 37

Overview of Laplace method

• Determine ~r, ~v at a given time (t2) and then compute the orbit.

• If f = f(t), let f ′(t) = df(t)
dt , f ′′(t) = d2f(t)

dt2 , ...

� Step 1: From the equations of motion, derive an implicit equation for ρ2

� Step 2: Compute b′2, b′′2 in terms of the derivatives of the geocentric

longitudes (λ′2, λ
′′
2) and latitudes (β′2, β

′′
2 ), which are given by interpolation

formulae



Orbit determination 37

Overview of Laplace method

• Determine ~r, ~v at a given time (t2) and then compute the orbit.

• If f = f(t), let f ′(t) = df(t)
dt , f ′′(t) = d2f(t)

dt2 , ...

� Step 1: From the equations of motion, derive an implicit equation for ρ2

� Step 2: Compute b′2, b′′2 in terms of the derivatives of the geocentric

longitudes (λ′2, λ
′′
2) and latitudes (β′2, β

′′
2 ), which are given by interpolation

formulae

� Step 3: Determine the distance ~r(t2) and the velocity ~v(t2)



Orbit determination 37

Overview of Laplace method

• Determine ~r, ~v at a given time (t2) and then compute the orbit.

• If f = f(t), let f ′(t) = df(t)
dt , f ′′(t) = d2f(t)

dt2 , ...

� Step 1: From the equations of motion, derive an implicit equation for ρ2

� Step 2: Compute b′2, b′′2 in terms of the derivatives of the geocentric

longitudes (λ′2, λ
′′
2) and latitudes (β′2, β

′′
2 ), which are given by interpolation

formulae

� Step 3: Determine the distance ~r(t2) and the velocity ~v(t2)

� Step 4: Compute the elements, given the position and the velocity
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Laplace method, implicit equation for ρ: STEP 1

• For t = tk, k = 1, 2, 3, let ~rk = ~ak + ρk~bk be the position of C w.r.t. Sun:

~ak : position of the observer w.r.t. Sun (known from ephemerides)

~bk : unit vector of C w.r.t. Earth (known from observations)

ρk : unknown distances C to Earth

ρk~bk : geocentric position vectors of C (ρk unknowns)
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Laplace method, implicit equation for ρ: STEP 1

• Assume that Earth and C have zero–mass (mE = mC = 0), that

GmSun = 1 and that Earth and C move on Keplerian orbits:

~a′′ = − ~a
a3

, ~r ′′ = − ~r

r3
.

• Geocentric position and velocity are given by

~r = ~a+ ρ~b , ~v = ~a′ + ρ′~b+ ρ~b′ .

• The equation of motion of C becomes

− ~a
a3

+ ρ′′~b+ 2ρ′~b′ + ρ~b′′ = −~a+ ρ~b

r3
.

or

ρ(~b′′ +
~b

r3
) + 2ρ′~b′ + ρ′′~b = −(

1

r3
− 1

a3
)~a .
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Laplace method, implicit equation for ρ: STEP 1

• Multiplying by ~b ∧~b′, ~b ∧~b′′ write ρ, ρ′ as:

ρ =
d1
d

(
1

r3
− 1

a3
) , ρ′ =

d2
d

(
1

r3
− 1

a3
) ,

where if d(t) 6= 0 (depending on ~b, ~b′, ~b′′):

d = ~b ∧~b′ ·~b′′ , d1 = −~b ∧~b′ · ~a , d2 = −1

2
~b ∧ ~a ·~b′′ .

• The first equation is an implicit equation for ρ of the form:

ρ = L(
d1
d
, ρ) , L(x, ρ) ≡ x(

1

h(ρ)
− 1

a3
) ,

h(ρ) ≡ r3 = |~a+ ρ~b|3 = (a2 + 2~a~bρ+ ρ2)3/2 .
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Laplace method, main statement: STEP 1

• If t2 is the time of mean observation, then

~r2 = ~a2 + ρ2~b2 , ~v2 = ~a′2 + ρ′2
~b2 + ρ2~b

′
2 ,

where ~a2 and ~a′2 are given by ephemerides.

• The unknown orbit is completely determined by the equation of motion and

by the initial condition ~r(t2) = ~r2, ~r ′(t2) = ~v2.

• The result is summarized in the following proposition.
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Laplace method, main statement: STEP 1

• Proposition: Let C be a conic section with Keplerian motion t→ ~r(t). Let

t2 be the time of mean observation. Assume d(t2) 6= 0 and let t→ ~a(t) be a

fixed Keplerian motion on some conic section CE . Then, the position and

velocity vectors at time t2 may be expressed as functions of ~b2, ~b′2 as well as

ρ2, ρ′2 at t = t2:

~r2 = ~a2 + ρ2~b2 , ~v2 = ~a′2 + ρ′2
~b2 + ρ2~b

′
2

with

ρ2 =
d1
d

(
1

r32
− 1

a32
) , ρ′2 =

d2
d

(
1

r32
− 1

a32
) ,

and

d = ~b2 ∧~b′2 ·~b′′2 , d1 = −~b2 ∧~b′2 · ~a2 , d2 = −1

2
~b2 ∧ ~a2 ·~b′′2 .
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Laplace method, computation of ~b′2: STEP 2

• Algorithm for the computation of ~b′2, ~b′′2 from λ, β and their derivatives. Let

λ and β be the geocentric longitude and latitude of C; then:

b1(t) = cosλ(t) cosβ(t)

b2(t) = sinλ(t) cosβ(t)

b3(t) = sinβ(t) .

• Let λ2 ≡ λ(t2), β2 ≡ β(t2); taking the derivatives in t = t2, one obtains

(b′2,1 = db1(t2)/dt)

b′2,1 = −λ′2 sinλ2 cosβ2 − β′2 cosλ2 sinβ2

b′2,2 = λ′2 cosλ2 cosβ2 − β′2 sinλ2 sinβ2

b′2,3 = β′2 cosβ2 .
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Laplace method, computation of ~b′′2: STEP 2

• For the computation of ~b′′2 ≡ (b′′2,1, b
′′
2,2, b

′′
2,3) one has:

b′′2,1 = −λ′′2 sinλ2 cosβ2 − β′′2 cosλ2 sinβ2

− (λ′2)2 cosλ2 cosβ2 +

+ 2λ′2β
′
2 sinλ2 sinβ2 − (β′2)2 cosλ2 cosβ2

b′′2,2 = λ′′2 cosλ2 cosβ2 − β′′2 sinλ2 sinβ2

− (λ′2)2 sinλ2 cosβ2 +

− 2λ′2β
′
2 cosλ2 sinβ2 − (β′2)2 sinλ2 cosβ2

b′′2,3 = β′′2 cosβ2 − (β′2)2 sinβ2 .

• ~b′2, ~b′′2 depend on 4 parameters, namely the first and second derivatives of

latitude and longitude at t = t2: λ′2, λ′′2 , β′2, β′′2
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Laplace method, values for λ′2, λ
′′
2, β

′
2, β

′′
2 : STEP 2

• Approximate values for λ′2, λ′′2 , β′2, β′′2 can be found by quadratic

interpolation between the observed values λ1, λ2, λ3, β1, β2, β3.

• Using Taylor expansion up to the second order:

λ1 = λ2 − λ′2 t12 +
1

2
λ′′2 t

2
12 +R1

λ3 = λ2 + λ′2 t23 +
1

2
λ′′2 t

2
23 +R3 ,

where tpq ≡ tq − tp and R1, R3 are the remainder functions.

• Similarly for β1, β3 with remainder functions S1, S3.

• Solve these equations to find λ′2, λ′′2 , β′2, β′′2 .



Orbit determination 46

Laplace method, values for λ′2, λ
′′
2, β

′
2, β

′′
2 : STEP 2

• Set t13 = ε. The remainders R1, R3, S1, S3 are O(ε3):

λ′2 = − t23
t12 t13

(λ1 −R1)− t12 − t23
t12 t23

λ2 +
t12

t13 t23
(λ3 −R3)

λ′′2 =
2

t12 t13
(λ1 −R1)− 2

t12 t23
λ2 +

2

t13 t23
(λ3 −R3)

β′2 = − t23
t12 t13

(β1 − S1)− t12 − t23
t12 t23

β2 +
t12

t13 t23
(β3 − S3)

β′′2 =
2

t12 t13
(β1 − S1)− 2

t12 t23
β2 +

2

t13 t23
(β3 − S3) .

• This allows to compute ~b′, ~b′′ and therefore d, d1, d2, so that we can solve

the implicit equation for ρ by a Newton’s method.
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Laplace method, interpolation formulae: STEP 2

• Inserting R1 = R3 = S1 = S3 = 0 one obtains approximate values for λ′2,0,

λ′′2,0, β′2,0, β′′2,0 (interpolation formulae):

λ′2,0 = − t23
t12 t13

λ1 −
t12 − t23
t12 t23

λ2 +
t12

t13 t23
λ3

λ′′2,0 =
2

t12 t13
λ1 −

2

t12 t23
λ2 +

2

t13 t23
λ3

β′2,0 = − t23
t12 t13

β1 −
t12 − t23
t12 t23

β2 +
t12

t13 t23
β3

β′′2,0 =
2

t12 t13
β1 −

2

t12 t23
β2 +

2

t13 t23
β3 .

• These quantities represent an approximation of λ′2, β′2, λ′′2 , β′′2 , being

λ′2 = λ′2,0 +O(ε2), β′2 = β′2,0 +O(ε2), λ′′2 = λ′′2,0 +O(ε), β′′2 = β′′2,0 +O(ε).
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Laplace method, more observations: STEP 2

• Remark: With m observations at t1,...,tm, m ≥ 3, one can compute

interpolating polynomials λ̃(t), β̃(t) of degree m− 1:

λ̃(t) =
(t− t2)...(t− tm)

(t1 − t2)...(t1 − tm)
λ1 + ...+

(t− t1)...(t− tm−1)

(tm − t1)...(tm − tm−1)
λm ,

β̃(t) =
(t− t2)...(t− tm)

(t1 − t2)...(t1 − tm)
β1 + ...+

(t− t1)...(t− tm−1)

(tm − t1)...(tm − tm−1)
βm .

• Taking the derivatives, for instance in t = t2, one obtains:

λ′2 = λ̃′(t2) +O(εn+2) , β′2 = β̃′(t2) +O(εn+2) ,

λ′′2 = λ̃′′(t2) +O(εn+1) , β′′2 = β̃′′(t2) +O(εn+1) ,

where n = m− 3.

• More than 3 observations are used only to compute the interpolating

polynomials.
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Laplace method, distance and velocity: STEP 3

• Determine distance and velocity through the following algorithm

• Theorem (Laplace Algorithm). Given ~a1, ~a2, ~a3, ~b1, ~b2, ~b3, let C be a

conic section such that d(t2) 6= 0, ρ(tk) 6= 0 for k = 1, 2, 3 and
∂
∂ρL(d1/d, ρ2) 6= 1. For n = m− 3, let

λ′2 = λ̃′(t2) +O(εn+2) , β′2 = β̃′(t2) +O(εn+2)

λ′′2 = λ̃′′(t2) +O(εn+1) , β′′2 = β̃′′(t2) +O(εn+1)

and let ~b′n = (b′n,1, b
′
n,2, b

′
n,3) be defined as:

b′n,1 = −λ̃′(t2) sinλ2 cosβ2 − β̃′(t2) cosλ2 sinβ2

b′n,2 = λ̃′(t2) cosλ2 cosβ2 − β̃′(t2) sinλ2 sinβ2

b′n,3 = β̃′(t2) cosβ2 .
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Laplace method, main statement: STEP 3

• Similarly for ~b′′n.

• Let

dn = ~b2 ∧~b′n ·~b′′n , dn,1 = −~b2 ∧~b′n · ~a2 , dn,2 = −1

2
~b2 ∧ ~a2 ·~b′′n .

Then, there exists U ngbh. of x ≡ d1/d and V of ρ2 s.t. if dn,1/dn ∈ U , there

exists ρn ∈ V such that ρ2 = ρn +O(εn+1). Defining

ρ′n =
dn,2
dn

( 1

|~a+ ρn~b|3
− 1

a3

)
and

~rn = ~a2 + ρn~b2 , ~vn = ~a′2 + ρ′n
~b2 + ρn~b

′
n ,

the Keplerian solution of the eq. of motion with initial data ~r(t2) = ~rn,

~r ′(t2) = ~vn defines a conic section Cn s.t. C = Cn +O(εn+1).
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Laplace method, elliptic elements: STEP 4

• Computation of the elements given the position ~r2 and velocity ~v2

• Let (~i,~j,~k) = ecliptic frame, ~m = normal to the orbit plane, ~n unit vector of
~k ∧ ~m, ~n′ = ~m ∧ ~n

• Assume that ~M ≡ ~r ∧ ~v 6= ~0. Let (~n, ~n′, ~m) as before; let θ = argument of

latitude:

cos θ =
~r · ~n
|~r|

, sin θ =
~r · ~n′

|~r|
.

• To compute p, e, ω, use the polar equation:

r(θ) =
p

1 + e cos (θ − ω)
.

with

θ̇(t) =
p1/2

r2(t)
= p−3/2 · [1 + e cos (θ(t)− ω)]2 .
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Laplace method, elliptic elements: STEP 4

• The components along ~n and ~n′ of ~r(t) at time t are

~r(t) · ~n = r(t) cos θ(t) , ~r(t) · ~n′ = r(t) sin θ(t) ;

taking the derivatives:

~v(t) · ~n = ṙ(t) cos θ(t)− r(t) sin θ(t)θ̇(t)

~v(t) · ~n′ = ṙ(t) sin θ(t) + r(t) cos θ(t)θ̇(t) .

• Moreover, from the polar equation one has

ṙ(t) =
p e sin (θ(t)− ω)

[1 + e cos (θ(t)− ω)]2
θ̇(t) = p−1/2e sin (θ(t)− ω) .
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Laplace method, elliptic elements: STEP 4

• Casting together we obtain

|~v|2 = p−1(1 + 2e cos (θ − ω) + e2)

~r · ~v = rp−1/2e sin (θ − ω) , e cos (θ − ω) =
p

r
− 1 .

• Integrals of motion: angular momentum and energy in terms of e, p:

|~r ∧ ~v| = p1/2 = |~r2 ∧ ~v2| ≡M
v2

2
− 1

r
= −1− e2

2p
=
v22
2
− 1

r2
≡ E ;

therefore we get

p = M2 , e = (1 + 2E M2)1/2 .

• Let f2 ≡ θ2 − ω be the true anomaly associated to ~r2; setting ~r = ~r2, ~v = ~v2

we obtain

cos f2 =
p− r2
r2e

, sin f2 =
~r2 · ~v2 p1/2

r2e
⇒ ω .
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Laplace method: summary

• Compute λ′2, λ′′2 , β′2, β′′2 by means of λ1, λ2, λ3, β1, β2, β3

• Compute ~b′2, ~b′′2 by means of λk, λ′k, λ′′k , βk, β′k, β′′k , k = 1, 2, 3

• Compute d, d1, d2 at t = t2 by means of ~b2, ~b′2, ~b′′2 , ~a2

• Solve the implicit equation for ρ2, compute ρ′2

• Compute ~r2, ~v2 with ~r2 = ~a2 + ρ2 ~b2, ~v2 = ~a′2 + ρ′2
~b2 + ρ2 ~b2

′
(~a2, ~a′2 from

ephemerides)

• Compute the elements of the orbit corresponding to the equations of motion

with initial data ~r2, ~v2 at t = t2
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Application to (3) Juno

• Juno: 240 km diameter, mass 2 · 1019 kg.

• Input data to start the procedure (see [Gauss]):

1) the epochs of three observations, say t1, t2, t3;

2) the Earth–Sun (log) distances at the above epochs (from ephemerides);

3) the ecliptical longitudes of the Earth at times tj (j = 1, 2, 3) (from

ephemerides);

4) the geocentric ecliptical longitudes of the body at times tj (j = 1, 2, 3)

(from observations);

5) the geocentric ecliptical latitudes of the body at times tj (j = 1, 2, 3) (from

observations).

• Corrections for fixed star aberration, time aberration, precession of the

equinox, nutation, diurnal motion are included in the initial data referring to

October 1804 ([Gauss]).
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Application to (3) Juno

Epoch Log(distance) AU Longitude

Earth–Sun distance Earth

Oct. 5.458644 9.9996826 12o 28’ 27.76”

Oct. 17.421885 9.9980979 24o19’49.05”

Oct. 27.393077 9.9969678 34o16’9.65”

Epoch Longitude Latitude

of C of C

Oct. 5.458644 354o44’31.60” -4o59’31.06”

Oct. 17.421885 352o34’22.12” -6o21’55.07”

Oct. 27.393077 351o34’30.01” -7o17’50.95”

• The output are the 6 elements (a, e, i, ω,Ω,M), where M is referred to

1/1/1805 for the meridian of Paris.
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Application to (3) Juno

• Table: first line Gauss after 3 iterations; second line (GL) Gauss or Laplace;

third line (Astr. data) NASA values (M refers to different epochs).

• Difference between 3 and 1, 2 is due to the different computational

framework (two or more body problem), to the epoch of computation, to the

correction for aberrations and to eventual observational errors.

• Difference between the original results by Gauss (1) and our computer

programs (2) are due to computational precision (we used double precision)

and to a higher iterations (we iterated 100 times, instead of 3 as in Gauss)

a e i ω Ω M

Gauss 2.645080 0.245316 13.1123 241.1724 171.130 349.5701

GL 2.644619 0.245049 13.1155 241.1547 171.132 349.5678

Astr. data 2.667332 0.258614 12.9717 247.9220 170.129
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A comparison of the methods

i) In Gauss the vectors ~a1, ~a2, ~a3 need not to be coplanar. On the contrary,

Laplace requires that the heliocentric position vectors of the observer are

coplanar, since it starts with the equations of motion.

ii) In Laplace mass and radius of the Earth are zero. For more physical

results, modify the equations of motion as follows (µE = mE/mSun):

~a′′ = −(1 + µE)
~a

a3
, ~r ′′ = − ~r

r3
,

Consequently, one should take

ρ =
d1
d

(
1

r3
− (1 + µE)

1

a3
) , ρ′ =

d2
d

(
1

r3
− (1 + µE)

1

a3
) ,

where d = ~b ∧~b′ ·~b′′, d1 = −~b ∧~b′ · ~a, d2 = − 1
2
~b ∧ ~a ·~b′′.

iii) Laplace gets a first good approximation and stops; Gauss also finds a first

good approximation and then he improves it by iterating.



Orbit determination 59

Tests on Gauss and Laplace

• Implement Gauss and Laplace for 105 initial conditions, varying randomly

longitude and latitude of C, and the three times of observation.

• First, compute the true orbital elements of the conic, obtained letting the

program iterate several times until convergence is reached. Result: at, et, it.

• Implement the methods without iterating the algorithms (as in the original

Laplace method) with results (aG, eG, iG) for Gauss and (aL, eL, iL) for

Laplace.

• Define relative errors and make a test over 105 samples.
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Gauss and Laplace: relative error

• To have a measure of the relative error let (G and L refer to Gauss and

Laplace):

εa,G ≡ |
aG − at
at

| , εe,G ≡ |
eG − et
et

| , εi,G ≡ |
iG − it
it
| ,

εa,L ≡ |
aL − at
at

| , εe,L ≡ |
eL − et
et

| , εi,L ≡ |
iL − it
it
| .

• Introduce the difference between the relative errors as

∆a ≡ εa,G − εa,L , ∆e ≡ εe,G − εe,L , ∆i ≡ εi,G − εi,L .

• If one of the above quantities is negative, Gauss provides better results than

Laplace and viceversa.
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Gauss and Laplace compared

• Table: first line = number of times such that ∆a < 0, ∆e < 0, ∆i < 0 and

all 3 values simultaneously negative; second line = number of times for which

they are positive.

• Laplace: better estimate of a, being ∆a > 0 for 59 095 trajectories (G better

for 40 905 orbits); G and L equivalent for e, while Gauss prevails for errors in i.

• The last column denotes the number of orbits for which all quantities ∆a,

∆e, ∆i have simultaneously the same sign, providing therefore the correct

result for all orbital elements. In this case, Gauss method gives more than

twice times the best results when compared to Laplace algorithm.

∆a ∆e ∆i ∆a&∆e&∆i

Gauss 40 905 49 402 71 979 28 436

Laplace 59 095 50 598 28 021 13 837
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Dependence on the observation times

• Consider the first 10 000 numbered asteroids and 615 Kuiper belt objects.

• Apply G and L for different time intervals t12 and t23, where the central

time t2 is the real observational time as provided by the astronomical data.

• Starting from (a, e, i, ω,Ω,M) at t2, and given the time intervals t12 and t23,

compute the geocentric longitude and latitude at times t1, t2, t3 by means of

the coordinates of the object and that of the Earth.

• Apply G and L (with iteration until convergence).

• To be sure that a given method converges in a significant range around t2

(and not only for time t2), define tnij ≡ tij + n/2, where n = 0,±1,±2; if the

method converges for tn12 and tn23 (n = 0,±1,±2), then we say that the

method is successful, otherwise we decide that the method fails.

• Consider several choices of tij from 3 to 90 days as well as two observations

within the same night.
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Equal time intervals

• The first percentage of successful results refers to asteroids, the second to

Kuiper.

t12 t23 G L

3d 3d Ast 99.86 / Kui 79.67 Ast 99.00/ Kui 93.33

5d 5d Ast 99.87/ Kui 93.33 Ast 98.90/ Kui 93.98

10d 10d Ast 99.78/ Kui 93.98 Ast 98.73/ Kui 94.63

15d 15d Ast 99.58/ Kui 94.47 Ast 98.54/ Kui 94.63

30d 30d Ast 99.45/ Kui 94.63 Ast 98.17/ Kui 94.63

60d 60d Ast 98.77/ Kui 94.63 Ast 96.00/ Kui 94.63

90d 90d Ast 96.80/ Kui 94.63 Ast 94.32/ Kui 94.63
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Different time intervals

• Notice that the time intervals t12, t23 are now different.

t12 t23 G L

10d 30d Ast 99.60/ Kui 94.63 Ast 98.01/ Kui 94.63

5d 10d Ast 99.82/ Kui 94.47 Ast 98.63/ Kui 94.63

1h 5d Ast 99.77/ Kui 7.32 Ast 98.82/ Kui 93.17

5h 5d Ast 99.87/ Kui 17.40 Ast 98.86/ Kui 93.66

1h 10d Ast 99.80/ Kui 17.40 Ast 98.60/ Kui 94.31

5h 10d Ast 99.81/ Kui 53.17 Ast 98.55/ Kui 94.30

1h 30d Ast 99.68/ Kui 63.25 Ast 97.59/ Kui 94.63

5h 30d Ast 99.70/ Kui 83.85 Ast 97.61/ Kui 94.63
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Dependence on the observation times: remarks

• Concerning asteroids, Gauss provides the best result, while Laplace is better

for Kuiper.

• For equal time intervals t12 = t23, the number of successful cases within the

asteroidal belt increases as the time interval decreases, while (again) the

opposite conclusion can be drawn for the Kuiper belt objects.

• One might expect that whenever the time interval ε = t13 among the

observations is sufficiently small (say ε < ε̄), Gauss converges.

• Of course ε̄ depends on C, τ12(= t12/ε), τ23(= t23/ε) (and t2), implying that

smaller is ε, greater is the number of converging orbits for fixed values of τ12,

τ23. On the other hand, the dependence of ε̄ on τ12, τ23 implies that t12, t23

cannot be chosen too small, otherwise C (as well as its approximants Cn) is

badly determined.
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Different parameter regions

• To see the distribution of the previous results as functions of a, e, i,

compute the percentages of successful results of the first 10 000 asteroids,

considering four regions in a, e, i (each one with 2 500 objects).

• Each parameter region is composed by 2 500 objects belonging to the first

10 000 numbered asteroids.

• Parameter regions: 0 ≤ a < 2.341 AU, 2.341 ≤ a < 2.6144 AU,

2.6144 ≤ a < 3.0053 AU, 3.0053 ≤ a < 100 AU

• Conclusion: Gauss seems to be independent on the parameter regions, while

Laplace depends on the a, e, i - parameter regions.
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• Percentage of successful results; time intervals: t12 = 1h and t23 = 5d.

G L

0 ≤ a < 2.341 99.56 97.36

2.341 ≤ a < 2.6144 99.96 98.48

2.6144 ≤ a < 3.0053 99.96 99.52

3.0053 ≤ a < 100 99.92 99.92

0 ≤ e < 0.094 99.92 99.60

0.094 ≤ e < 0.140244 99.92 99.56

0.140244 ≤ e < 0.187321 99.64 98.52

0.187321 ≤ e < 1 99.64 97.60

0 ≤ i < 3.2185 99.72 98.68

3.2185 ≤ i < 6.0218 99.84 98.36

6.0218 ≤ i < 10.918 99.72 99.08

10.918 ≤ i < 360 99.80 99.16
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• Percentage of successful results; time intervals t12 = 10d and t23 = 10d.

G L

0 ≤ a < 2.341 99.56 96.88

2.341 ≤ a < 2.6144 99.80 98.40

2.6144 ≤ a < 3.0053 99.88 99.72

3.0053 ≤ a < 100 99.88 99.92

0 ≤ e < 0.094 99.92 99.56

0.094 ≤ e < 0.140244 99.84 99.48

0.140244 ≤ e < 0.187321 99.80 98.92

0.187321 ≤ e < 1 99.56 96.96

0 ≤ i < 3.2185 99.84 99.08

3.2185 ≤ i < 6.0218 99.76 97.92

6.0218 ≤ i < 10.918 99.76 98.84

10.918 ≤ i < 360 99.76 99.08
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Milani method: Too short arcs

• Observations are sometimes performed in 1 night, giving 3-5 positions over

1-2 hours ⇒ very short arc

• Classical methods might fail to find the preliminary orbit, since the ~bk’s

must be independent

• An attributable is a vector A = (α, δ, α̇, δ̇) representing the topocentric

angular position and velocity of the body at time t

• When the preliminary orbit is not found or iterations do not converge:

Too Short Arc (TSA); a new paradigm for orbit determination is needed

• A TSA provides a number of positions with deviations from alignment

compatible with a random observational error

• The attributables do not provide ρ and ρ̇, but they are constrained if we

assume C belonging to the Solar System and not being an Earth’s satellite
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Constraints on (ρ, ρ̇)

heliocentric 2–body energy:

ES(ρ̇, ρ) =
1

2
‖̇~r‖2 − k2

‖~r‖

geocentric 2–body energy:

EE(ρ̇, ρ) =
1

2
‖̇~r −~̇a‖2 − k2µ

‖~r − ~a‖
, µ =

mE

mSun

radius of the sphere of influence of the Earth (i.e. distance from L2):

RSI = a(
µ

3
)

1
3 = 0.010044 AU

radius of the Earth:

RE ' 4.2 · 10−5 AU



Orbit determination 71

Admissible region

• Introduce an admissible region: for a given attributable the values (ρ, ρ̇)

must belong to a compact admissible region as follows

• Define the following domains:

D1 = {(ρ, ρ̇) : EE ≥ 0}, i.e. C not satellite of E

D2 = {(ρ, ρ̇) : ρ ≥ RSI}, i.e. orbit of C not controlled by E

D3 = {(ρ, ρ̇) : ES ≤ 0}, i.e. C belongs to the Solar System

D4 = {(ρ, ρ̇) : ρ ≥ RE}, i.e. C is outside the Earth.

• Definition. Given an attributable A, we define an admissible region as

D = {D1

⋃
D2}

⋂
D3

⋂
D4 .

• Provide an analytical and topological description of the admissible region.
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Sampling the admissible region

• Sample D with a number of points by a Delaunay triangulation; the nodes

are selected as the points (ρi, ρ̇i), i = 1, ..., N , sampling the admissible region,

with the sides and the triangles providing a geometric structure.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−0.01

−0.005

0

0.005

0.01

0.015

• Triangulation of the admissible region: each node generates a Virtual

Asteroid.
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Virtual Asteroids

• When a single orbit solution is not available, or it is not enough to represent

the possible orbits, it is replaced replaced by a swarm of Virtual Asteroids

(VAs)

• The VAs share the reality of the physical asteroid, in that only one of them

is real, but we do not know which one. Additional observations allow to

decrease the number of VAs still compatible

• The VAs are identified through Xi = (α, δ, α̇, δ̇, ρi, ρ̇i), i = 1, ..., N and a

covariance matrix ΓA (where A = (α, δ, α̇, δ̇) associated to the mean

observation time of the first very short arc

• To each VA one associates an attribution penalty by comparing the

uncertainty of the VA with the attributable at another time
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Propagate to another time

• Given a triangulation, take a VA in the admissible region at the first time

with associated covariance matrix (with rank 4)

• Propagate to the time of the second attributable and compute the

attribution penalty

• Note that the attribution penalty is a measure of the probability that

another attributable, computed from an independently detected TSA, belongs

to the same object

• Select the VAs with better attribution penalty, compute an orbit with

constrained differential corrections. If they converges we have 5 parameter

solutions (LOV solutions), that can be used as starting guesses for full

differential corrections
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Milani method: Warnings

• Warning 1, Asteroid identification: the correspondence between very

short arcs and the physical objects is not known; provide an algorithm to

know whether 2 TSAs belong to the same object (attribution and linkage)

• Warning 2, Multiple solutions: in some cases there can be multiple

orbits.
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Milani method: algorithm

Assume that 2 attributables belonging to the same object are available.

1. The admissible region of the first attributable is computed and sampled by

a Delaunay triangulation, providing a set of VAs

2. The predictions for the time of the second arc, computed from the VAs of

the first, are compared with the second arc attributable

3. For the VAs with lower attribution penalty compute a preliminary orbit

4. Use these preliminary orbits as first guess in the iterations; when

convergence, they provide solutions fitting both very short arcs

5. Propagate these solutions and compare with the attributables of the third

arc, fourth arc, etc.

6. The orbit resulting from the fit to all very short arcs is used with its

covariance for additional attributions, when more observations are available.
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Orbit determination for space debris

• Modify the definition of admissible region taking into account the orbits of

the Earth’s satellites

• ~r = geocentric position of a space debris, ~r0 = geocentric position of the

observer, ~rd = ρ~b topocentric position of the space debris
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Debris admissible region

• Geocentric two-body energy:

EE(ρ, ρ̇) =
1

2
‖̇~r‖2 − mE

~r

• Lower bound for the space debris distance from the position of the observer

on the Earth:

ρmin = 2RE ' 12 756 km

• Upper bound for the space debris distance from the position of the observer

on the Earth

ρmax = 20RE ' 127 560 km

• D1 = {(ρ, ρ̇) : EE ≤ 0} (it is a satellite of the Earth)

• D2 = {(ρ, ρ̇) : ρmin < ρ < ρmax} (the distance from the observer is in the

interval (ρmin, ρmax))

• Admissible region: D1

⋂
D2
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Debris algorithm

1. The admissible region of the first attributable is computed and sampled by

a Delaunay triangulation, providing a set of Virtual debris (VD) objects

2. The predictions for the time of the second arc, computed from the VD of

the first, are compared with the second arc attributable

3. For the VD, such that the attribution penalty is low, a preliminary orbit is

computed

4. The above preliminary orbits are used as first guesses in constrained

differential corrections


