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Abstract.

In this paper we consider the problem of preconditioning symmetric positive definite
matrices of the form Aα = A+αI where α > 0. We discuss how to cheaply modify an
existing sparse approximate inverse preconditioner for A in order to obtain a precon-
ditioner for Aα. Numerical experiments illustrating the performance of the proposed
approaches are presented.
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1 Introduction.

In this paper we consider the efficient construction of preconditioners for
shifted matrices of the form

Aα = A+ αI,

where A is a symmetric positive definite (SPD) matrix of order n and α > 0 is a
positive shift. We assume that a preconditioner P is initially computed for the
matrix A, or possibly for A+αI for some initial value of α > 0. The question is
then how to compute a preconditioner Pα for subsequent values of the shift α.
The goal is to obtain an overall solution procedure that is cheaper, in terms of
total solution costs, than either reusing the same preconditioner over and over
again (without modifications) or recomputing a new preconditioner from scratch
for each new value of α. Reusing the same preconditioner each time often leads
to slow convergence, whereas recomputing a preconditioner each time is both
costly and wasteful. Clearly, there is a broad range of possibilities within these
two extremes. It should be possible to modify an existing preconditioner at a
cost much lower than recomputing a preconditioner from scratch; even if the
resulting preconditioner can be expected to be less effective than a brand new
one in terms of iteration count, the overall cost should be considerably reduced.
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When A is a symmetric M -matrix and the preconditioner an incomplete
Cholesky factorization, this problem has been studied by Meurant [15]. In this
paper we consider general SPD matrices and sparse approximate inverse precon-
ditioners in factorized form, focusing on the SAINV technique introduced in [2].
We recall here that the SAINV preconditioner is well defined for a general SPD
matrix (not just for M -matrices), and that it is well-suited for parallel imple-
mentation, since its application requires only matrix–vector products. Although
there exists a close relationship between incomplete Cholesky preconditioners
and factored approximate inverses [4, 8], our approach is different from the one
used by Meurant in [15]. Furthermore, we provide some theoretical analysis in
support of our modification strategies.
The paper is organized as follows. In section 2 we mention a few situations

that lead to shifted linear systems. In section 3 we briefly recall the SAINV pre-
conditioner. In section 4 we describe our proposed approaches and present some
underlying theoretical results. Section 5 is devoted to numerical experiments.
We present further possible improvements and concluding remarks in section 6.

2 Motivation.

The solution of shifted linear systems is an important problem that arises
in several contexts in scientific computing. Perhaps the most natural example
is the solution of parabolic partial differential equations by implicit methods.
Consider for instance a simple diffusion problem of the form

∂u

∂t
= (∇ ·D∇)u+ f(2.1)

on a plane region with Dirichlet boundary conditions and an initial condition
u(x, 0) = u0(x). Finite difference discretization in space with stepsize h and
an implicit (backward Euler) time discretization with time step τ results in a
sequence of linear systems(

I +
τ

h2
A

)
um+1 = um + τfm+1, m = 0, 1, 2, . . . ,M,(2.2)

where A is SPD. Typically the time step τ will not be constant, but it will change
adaptively from time to time. Upon multiplication of (2.2) by α = h2/τ , one
obtains a sequence of linear systems of the form

(αI +A)xα = bα(2.3)

for many different values of α. For example, if τ is of the same order of magnitude
as h, we see that the shift α = O(h) is a “small” number, relative to the entries
of A.
More generally, sequences of systems of the form (2.3) occur in the numeri-

cal solution of discretized nonlinear systems of ordinary and partial differential
equations with implicit methods; see, e.g., [1, 6, 7, 12] and the references therein.
Shifted linear systems also occur in other contexts, such as regularization of ill-
posed least squares problems, trust region methods in nonlinear optimization,
and elsewhere.
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3 The stabilized AINV preconditioner.

The SAINV (for Stabilized AINV) preconditioner [2, 13] is a robust variant
of the AINV preconditioner [4] that is guaranteed to be well defined, in exact
arithmetic, for general SPD matrices. The algorithm is based on a conjugate
Gram–Schmidt (or A-orthogonalization) process. We start by recalling that
since A is SPD, it defines an inner product on R

n via

〈x, y〉A := xTAy for all x, y ∈ R
n.(3.1)

Given a set of n linearly independent vectors v1, v2, . . . , vn ∈ R
n, we can build an

A-orthogonal (or A-conjugate) set of vectors z1, z2, . . . , zn ∈ R
n by a conjugate

Gram–Schmidt process, i.e., a Gram–Schmidt process with respect to the inner
product (3.1). Written as a modified Gram–Schmidt process, the (right-looking)
algorithm starts by setting zi = vi and then performs the following nested loop:

zi ← zi −
〈zj , zi〉A
〈zj , zj〉A

zj,(3.2)

where j = 1, 2, . . . , n− 1 and i = j + 1, . . . , n. Letting

Z = [z1, z2, . . . , zn],

we have

ZTAZ = D = diag (d1, d2, . . . , dn),(3.3)

where
dj = 〈zj , zj〉A = zT

j Azj > 0, 1 ≤ j ≤ n.

If we set vi = ei (the i-th unit basis vector) for 1 ≤ i ≤ n, then ZT = L−1

where L is the unit lower triangular factor in the root-free Cholesky factorization
A = LDLT ; the matrixD is exactly the same here and in (3.3). Indeed, it is clear
from (3.2) that the vector zi is modified only above position i (for 2 ≤ i ≤ n),
therefore Z is unit upper triangular and by virtue of (3.3) and the uniqueness
of the LDLT factorization, it must be ZT = L−1.
The SAINV preconditioner is constructed by carrying out the updates in the

A-conjugation process (3.2) incompletely. Given a drop tolerance 0 < ε < 1, the
entries of zi are scanned after each update and entries that are smaller than ε in
absolute value are discarded. We denote by z̃i the sparsified vectors, and we set

Z̃ = [z̃1, z̃2, . . . , z̃n].

In alternative, a relative drop tolerance can be used; for example, ε can be
replaced by ε||ai||2, where ai is the i-th column of A. It is often advantageous
to symmetrically scale A so that A has unit diagonal; this tends to improve
the conditioning of the matrix and it allows for the use of an absolute drop
tolerance ε. Whatever the scaling or the drop strategy used, the incomplete A-
orthogonalization process results in a sparse matrix Z̃ ≈ L−T , that is, we have
an incomplete inverse factorization of A of the form

A−1 ≈ Z̃D̃−1Z̃T ,
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where D̃ is diagonal with entries d̃i = z̃T
i Az̃i > 0. This is a factored sparse

approximate inverse that can be used as a preconditioner for the conjugate gra-
dient algorithm applied to Ax = b. The preconditioner is guaranteed to be
positive definite (since Z̃ is nonsingular and d̃i > 0 for all i) and is easily ap-
plied in parallel, since its application only requires matrix–vector products. The
preconditioner has been successfully used in solving a wide range of challenging
problems; see [2, 3, 13].
Because computing a sparse approximate inverse preconditioner is relatively

expensive (generally more so than computing an incomplete Cholesky factoriza-
tion), the potential savings from using cheap modifications of an existing SAINV
preconditioner on a sequence of shifted linear system can in principle be very
significant.

4 The proposed approaches.

Consider a family of linear systems

Aαjxj = bj , Aαj = A+ αjI, αj ∈ [0, αmax], j = 0, 1, . . . , s,(4.1)

where A is a large, sparse, possibly ill-conditioned SPD matrix, bj are given
right-hand side vectors, and xj are the corresponding solution vectors. The
linear systems (4.1) may be given simultaneously or sequentially; the latter case
occurs, for instance, when the right-hand side bj depends on the previous solution
xj−1, as in (2.2).
For simplicity of notation, we will consider a generic shift α and drop the

subscript. Assume now that A has been normalized in such a a way that the
largest entry in A is equal to 1. Then clearly if α is “large enough” there is no
need to use any preconditioning whatsoever. Indeed, denoting by λmin and λmax

the extremal eigenvalues of A, we have that

κ2(A+ α I) =
λmax + α

λmin + α
≤ λmax

α
+ 1(4.2)

and, in practice, preconditioning is no longer necessary (or beneficial) as soon as
λmax/α is small enough. Note that, for diagonally dominant problems, λmax ≤ 2
and, for our normalized examples (see Section 5), we have that λmax is always
less than four. In practice, we found that preconditioning is no longer beneficial
as soon as α is of the order of 10−1. In some cases this might already be true for
even smaller values of α, depending on the distribution of the eigenvalues. At
the other extreme, continuity suggests that there is a value of α under which one
might as well reuse the preconditioner computed for the original A. However, in
our experiments we found cases where reusing a preconditioner for A gives poor
results already for α as small as O(10−5). Hence, there is a fairly broad range
of values of α where modification strategies are of potential benefit.

4.1 Order k modified preconditioners.

Consider a preconditioner of the form

P−1 = Z̃ D̃−1 Z̃T ≈ A−1,(4.3)
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computed with the SAINV approach outlined in section 3. Letting L̃ = Z̃−T ,
we can write A ≈ P = L̃D̃L̃T . Hence, P can be regarded as an approximate
LDLT factorization of A. For theoretical analysis purposes, it will be sometimes
useful to work with P rather than P−1, although in practice only P−1 (more
precisely, the factors Z̃ and D̃) is computed and operated with.
Let now E = ET be a generic symmetric matrix, and consider modified SAINV

preconditioners of the form

P−1
α = Z̃ (D̃ + αE)−1 Z̃T .(4.4)

In order for this preconditioner to be well defined and SPD, we need the matrix
D̃ + αE to be SPD. Moreover, the matrix E must be cheap to compute, and
such that linear systems with coefficient matrix D̃ + αE can be easily solved.
With these constraints, we would like to find a matrix E such that P−1

α given by
(4.4) is a good preconditioner for Aα. To guide us in this choice, we assume that
P−1 = ZD−1ZT = A−1 (the exact inverse); hence, P−1

α = Z (D + αE)−1 ZT .
Consider now the difference

Pα −Aα = Z−T (D + αE)Z−1 − (A+ αI) = α(LELT − I).(4.5)

Taking E = L−1L−T = ZTZ in (4.4) would result in the exact inverse P−1
α =

A−1
α . Note that ZTZ is SPD and its (i, j) entry is given by zT

i zj . Of course,
this would not be a practical choice, quite apart from the fact that we don’t
know the exact Z in practice, but only a sparse approximation Z̃. However,
(4.5) suggests that we use some simple approximation to E = ZTZ in order to
generate successive approximations to A−1

α . A possible approach would be to
set up a constrained minimization problem of the form

min
E∈S
‖I − LELT ‖F ,

where S is a set of matrices E such that D + αE is SPD and “easy to invert”.
Here || · ||F denotes the Frobenius norm. Note that this problem, although quite
expensive to solve, would have to be dealt with only once, since there is no de-
pendency on α. However, in the context of approximate inverse preconditioning
we do not have access to L, but rather to (an approximation of) L−1. A more vi-
able approach, which uses only information available from the already computed
factor Z, is the following. For k ≥ 1 define the order k modified preconditioner
as

P−1
α := Z(D + αEk)−1ZT ,(4.6)

where Ek is the symmetric positive definite band matrix given by

Ek = ZT
k Zk,(4.7)

and Zk is obtained by extracting the k − 1 upper diagonals from Z if k > 1 or
E1 = diag(ZTZ) if k = 1. Thus, E1 corresponds to the order 1 preconditioner,
while the symmetric tridiagonal band matrix E2 corresponds to the order 2
preconditioner. It is worth to note that Ek is always positive definite since
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Zk is a unit upper triangular matrix and therefore nonsingular. Therefore, the
modified approximate inverse is guaranteed to be positive definite. To complete
the hierarchy of approximations, we define the order −1 preconditioner by letting
E = 0 (which corresponds to just using P−1 = A−1 as an approximation of A−1

α )
and the order 0 preconditioner by letting E = I. This approach is motivated by
the observation that under suitable assumptions, the entries along the rows of
Z decay away from the main diagonal [9, 14, 5]; hence, banded approximations
of Z tend to contain most of the large entries in Z.
Typically, only small values of k are viable. To form Ek we need to get the

entries in the first k diagonals in the upper triangular part of Z and to compute
the product ZT

k Zk. This needs to be done only once, as the entries of Z are
independent of α. Applying the order k preconditioner Z(D+αEk)−1ZT within
a step of the conjugate gradient algorithm requires, besides multiplication by Zk

and its transpose, the solution of banded linear systems of the form

(D + αEk)u = v.(4.8)

For k ≥ 2, a banded Cholesky factorization of the matrix D + αEk must be
computed (for each new value of α), and the linear system (4.8) is solved by
forward and backward substitution. These are, again, O(kn) operations for the
forward/backward substitutions per iteration and O(k2n) for the factorization
(before starting the iteration). On a parallel computer, a parallel band solver
would be required; see, e.g., [10].
In the numerical experiments we consider preconditioners of order 0, 1 and

2. However, there may be specific cases where higher order preconditioners are
well-suited. In practice, we found that the best results are often obtained with
the preconditioners of order 0 and 1. In the following, we analyze the order
0 preconditioner in some detail. Higher order preconditioners can be analyzed
along similar lines.

4.2 Theoretical justification.

We will consider the following expressions:

Pα − (A+ α I), P−1
α (A+ α I)− I.(4.9)

It is worth repeating that for the purpose of this analysis, we are assuming that
Z and D are computed exactly; that is, ZD−1ZT = A−1. Also, A has been
normalized so that its largest entry (which is necessarily on the main diagonal)
is equal to 1.

Theorem 4.1. Let A = LDLT be a normalized SPD matrix of order n, and
let Aα = A + αI, α ∈ (0, αmax). Assume that, fixed δ ∈ (0, 1) suitably small, s
of the eigenvalues λi of the matrix LLT − I satisfy |λi| ≤ δ, with n−s = k � n.
Also, let P−1

α = Z(D + αI)−1ZT where Z = L−T . Then, there exist matrices
F , ∆ and a constant 0 < c1 < 1 such that

P−1
α (A+ α I) = I + F +∆, ||F ||2 ≤ c1δ||Z||22,
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and rank(∆) = rank(∆1) = k � n. Moreover, k and c1 do not depend on α.
Proof. Consider the difference

Pα −Aα = Z−T (D + αI)Z−1 − (A+ αI) = α(LLT − I).(4.10)

Clearly, how well Pα approximates Aα depends on the size of α and on how far
the symmetric matrix LLT is from the identity matrix.
Let us consider now the preconditioned matrix P−1

α Aα and the identity

Aα = Pα + α(I − LLT ).

Let the eigenvalues λ1, . . . , λn of K = I − LLT be such that

0 ≤ |λ1| ≤ . . . ≤ |λs| ≤ δ < |λs+1| ≤ . . . ≤ |λn|, K = Udiag (λ1, . . . , λn)UT ,

where U is an orthogonal matrix which diagonalizes K. Moreover, let F1 and
∆1 be such that F1 +∆1 = I − LLT , with

F1 = Udiag (λ1, . . . , λs, 0, . . . , 0)UT , ∆1 = Udiag (0, . . . , 0, λs+1, . . . , λn)UT .

We have that
||F1||2 ≤ δ, rank(∆1) ≤ n− s = k

and the preconditioned matrix P−1
α (A+ αI) can be written as

P−1
α Aα = I + αP−1

α (I − LLT ) = I + α(P−1
α F1 + P−1

α ∆1) = I + F +∆,(4.11)

where rank(∆) = rank(∆1) = n− s = k � n.
To prove the upper bound for the 2-norm of F = αP−1

α F1, let us consider first
||P−1

α ||2. We have:

||P−1
α ||2 = ||Z(D + αI)−1ZT ||2 ≤ ||Z||22||(D + αI)−1||2

= ||Z||22 ·max
i

{
|di + α|−1

}
.(4.12)

By virtue of the well-known properties of the Rayleigh quotient, the diagonal
elements di = zT

i Azi, i = 1, . . . , n, of the matrix D are bounded as follows:

λmin(A)||zi||22 ≤ di ≤ λmax(A)||zi||22, ||zi||2 ≥ 1, i = 1, . . . , n.(4.13)

Therefore, by setting

c1 =
(
λmin(A)
αmax

+ 1
)−1

,(4.14)

from (4.12) and (4.13), we have

||P−1
α ||2 ≤ ||Z||22

1
λmin(A) + α

≤ c1
||Z||22
α

,(4.15)

where, by (4.14) and the hypotheses,

0 < c1 =
(
λmin(A)
αmax

+ 1
)−1

< 1, 0 <
λmin(A)

α
.
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Therefore, c1 < 1 does not depend on α and it can be c1 � 1 if αmax � λmin(A),
say. Finally, from (4.15), we have

||F ||2 = α||P−1
α F1||2 ≤ αc1δ

||Z||22
α

= c1δ||Z||22.(4.16)

Notice that the dependence on the shift parameter α disappears in (4.11) (but
not in (4.10)).

We observe that the same argument as above can be used to establish similar
results for order k > 0 preconditioners. Furthermore, as observed by one of the
referees, this result can be extended to cover the more general case of shifted
matrices of the type A+ αE, where E is an arbitrary SPD matrix.
As is well known, the preconditioned conjugate gradient (PCG) method con-

verges rapidly when the preconditioned matrix differs from the identity by a
matrix that can be written as the sum of a matrix of small norm and one of
small rank. Hence, it follows from Theorem 4.1 that if ||Z||2 is not too large
and/or c1 is small, rapid convergence can be expected. In general, however,
||Z||2 could be arbitrarily large.
One case where we can expect the underlying preconditioners to be effective

is when the entries of Z decay fast enough from the main diagonal. To this end,
in [5] the authors prove exponential decay bounds for the entries of ZD−1/2,
Z = (zi,j) for A symmetric and positive definite.

Theorem 4.2. Let A be SPD and normalized, A−1 = ZD−1ZT . Then for
j > i we have

|zi,j | ≤
√
dj c2 t

j−i,where c2 =
1− tn

1− t
max

{
λ−1
min(A),

(1 +
√
κ)2

2λmin(A)κ

}
,(4.17)

t =
(√

κ− 1√
κ+ 1

) 1
n

, κ =
λmax(A)
λmin(A)

, 1 ≤ i < j ≤ n.

Proof. Follows from Theorem 4.1 in [5].

For a banded A, the upper bound on the entries of Z can be improved consid-
erably. In particular when the bandwidth and the condition number of A are not
too large, then the entries of Z are bounded in a rapidly decaying fashion away
from the main diagonal along rows. Thus ||Z||22 ≤ c3, where c3 is of the order of
unity. By (4.15), (4.17), defining c4 = c1c3, we have ||P−1

α ||2 ≤ c4/α. Therefore,
by (4.11), we have ||F ||2 ≤ c4δ and the influence of the term α(I −LLT ) can be
moderate in (4.2) for large values of α as well. We stress that we will consider α
“large” for the given matrix if there is no need to precondition the corresponding
shifted linear system.

Corollary 4.3. Let A be a normalized SPD diagonally dominant matrix.
Then the preconditioned matrix P−1

α Aα has clustered spectrum.
Proof. If A is normalized so that |ai,j | ≤ 1, then |li,j | ≤ 1. Moreover, by

using the bound in (4.17) and the diagonal dominance in Theorem 4.1, it is easy
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Table 5.1: Test results for NOS5. n = 468, nnz = 5172, κ ≈ 1.1e + 04, zfill = 2618.

α full SAINV SAINV2 SAINV1 SAINV0 SAINV(A)
% fill It Mf It Mf it Mf it Mf it Mf

0 1 40 2.37 – – – – – – – –
1.49e-5 1 40 2.37 40 1.2 40 1.07 40 1.07 40 1.07
2.38e-4 .97 30 2.08 30 .9 30 .81 30 .81 30 .81
1.5e-3 .84 23 1.69 19 .57 19 .52 19 .52 20 .55
2.4e-1 .33 7 .68 51 1.51 55 1.47 53 1.41 61 1.63
2.4e-1∗ .33 7 .68 13 .24 13 .24 13 .24 43 .78

to see that the entries of LLT decay fast away from the main diagonal. Therefore
k = 0, ∆1 = ∆ = 0 in the decomposition (4.11), and LLT − I can be regarded
as a small norm approximation of the null matrix in (4.10).

5 Numerical experiments.

In this section we present the results of some numerical tests with a Matlab
implementation of the proposed techniques. We limit ourselves to modified pre-
conditioners of order 0, 1 and 2. These low-order modifications are compared
with the “full” SAINV preconditioner (i.e., the SAINV preconditioner is recom-
puted from scratch for each different α) and with the “order −1” preconditioner,
which is just the preconditioner computed for α = 0.
Since diagonally dominant matrices are easily handled (as expected from Corol-

lary 4.3), we focus for the most part on SPD matrices that are not diagonally
dominant. The test matrices are all available from the Matrix Market [16] with
the exception of GEO, which is part of a problem from [11], and of DISCD-
IFF, which is from [15, p. 425]. This is a finite difference discretization of the
diffusion equation (2.1) on [0, 1]× [0, 1] with discontinuous coefficients. The dif-
fusivity coefficient D is 1000 in [1/4, 3/4]× [1/4, 3/4] and 1 elsewhere. Except
for DISCDIFF and 1138BUS (also used in [15]), the test problems used here are
generally more difficult than those considered by Meurant in [15].
In all the experiments the initial guess for the conjugate gradient iteration

was the null vector, while the stopping criterion was ||rk||2 < 10−6||r0||2, where
rk denotes the true residual after k iterations. In the tables, a “†” indicates
no convergence within 1000 iterations. In all tests, the SAINV preconditioner
was computed with drop tolerance ε = 0.1. No attempt was made to tune ε for
optimal performance. The matrices were normalized so that maxi{aii} = 1, and
the original ordering was used. The values used for the shift α are similar to the
(small) values used by Meurant [15].
In the tables we denote the modified SAINV preconditioner of order k by

SAINVk, for k = 2, 1, 0. The full SAINV preconditioner is denoted by “full
SAINV” and the order −1 preconditioner by “SAINV(A)”. For each precondi-
tioner we report (under “It”) the number of PCG iterations for some significant
values of α, similar to those used by Meurant [15]. Under “% fill” we report the
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amount of fill in the approximate inverse factor Z̃, normalized with respect to
the number of nonzeros in Z̃ corresponding to α = 0. The total number of float-
ing point operations (in Megaflops) is reported under “Mf”, and it includes both
the work for computing the preconditioner and the work for the iteration phase.
Note that for the modified preconditioners, the former is always negligible. In
the caption of each table we report the order n of the matrix A, the number
nnz of nonzero entries in the lower triangular part of A, an estimate κ of its
condition number, and the number zfill of nonzeros in the Z̃ factor computed
for α = 0.
In some of the tables, we have in addition experimented with using Z̃ = I in

(4.4) for some of the (relatively large) values of α, denoted by the superscript ∗.
The motivation is that for some of the matrices the decay of the entries of Z is
very slow (or absent). For these problems, the use of modified preconditioners
reusing the Z̃ computed for α = 0 is not suitable for larger values of α. On the
other hand, setting Z̃ = I works quite well in several cases.

Table 5.2: Test results for 1138BUS. n = 1138, nnz = 2596, κ ≈ 3.84e + 04,
zfill = 5462.

α full SAINV SAINV2 SAINV1 SAINV0 SAINV(A)
%fill It Mf It Mf it Mf it Mf it Mf

0 1 61 9.21 – – – – – – – –
1.49e-5 .95 47 8.27 43 2.25 43 1.89 45 1.98 46 2.03
2.38e-4 .72 25 6.05 35 1.84 35 1.55 45 1.98 70 3.08
1.5e-3 .50 17 4.37 49 2.56 50 2.2 54 2.31 120 5.26
2.4e-1 .22 6 2.24 79 4.1 85 3.73 86 3.77 623 27.2
2.4e-1∗ .22 6 2.24 18 .64 21 .56 21 .56 703 18.5

Table 5.3: Test results for GEO. n = 729, nnz = 19027, κ ≈ 3.08e+08, zfill = 10459.

α full SAINV SAINV2 SAINV1 SAINV0 SAINV(A)
%fill It Mf It Mf it Mf it Mf it Mf

0 1 121 21.77 – – – – – – – –

1.49e-5 1.01 104 20 104 10 104 9.28 104 9.28 104 9.28

2.38e-4 .99 93 18.7 88 8.48 89 7.95 88 7.86 88 7.86

1.5e-3 .96 64 15.1 64 6.19 64 5.73 64 5.73 64 5.73

2.4e-1 .26 11 3.15 47 4.56 54 4.84 58 5.2 61 5.41

2.4e-1∗ .26 11 3.15 25 1.28 25 1.28 25 1.28 27 1.38

For each value of α > 0, the best results in terms of operation count are re-
ported in boldface. There are several observations that can be made on the basis
of these numerical experiments. First of all, there seems to be little reason to use
the order 2 preconditioner, SAINV2. The best results overall are obtained with
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Table 5.4: Test results for BCSSTK09. n = 1083, nnz = 9760, κ ≈ 6.8e + 07,
zfill = 8215.

α full SAINV SAINV2 SAINV1 SAINV0 SAINV(A)
% fill It Mf It Mf it Mf it Mf it Mf

0 1 88 17.1 – – – – – – – –
1.49e-5 1 87 17 87 8 87 7.25 87 7.25 87 7.25
2.38e-4 1 78 16.3 81 7.52 81 6.76 81 6.76 81 6.76
1.5e-3 1 56 14.4 56 5.2 56 4.7 56 4.7 56 4.7
2.4e-1 .34 12 4.5 18 1.72 18 1.54 19 1.63 19 1.63

Table 5.5: Test results for NOS3. n = 960, nnz = 15844, κ ≈ 3.7e + 04, zfill = 5860.

α full SAINV SAINV2 SAINV1 SAINV0 SAINV(A)
fill It Mf It Mf it Mf it Mf it Mf

0 1 79 11.6 – – – – – – – –
1.49e-5 1 78 11.54 78 6 78 5.25 78 5.25 78 5.25
2.38e-4 1 73 11.2 73 5.61 73 4.91 73 4.91 73 4.91
1.5e-3 1 63 10.5 63 4.85 63 4.25 63 4.25 63 4.25
2.4e-1 .52 12 4.18 14 1.13 15 1.04 16 1.11 17 1.18

the order 1 preconditioner SAINV1, with SAINV0 often being equally valid. For
very small values of α it is usually the case that good results are obtained by sim-
ply reusing the preconditioner already computed for A, denoted by SAINV(A)
in the tables. Note, however, that there are exceptions; see the results for NOS6
in Table 5 and DISCDIFF in Table 5.
The modified preconditioners performed especially well for problems 1138BUS,

DISCDIFF, NOS6, BCSSTK07 and BCSSTK27, in some cases allowing for large
savings in total solution costs. This is especially encouraging for DISCDIFF,
which is the most physically meaningful of the test problems considered here.
Similar results were also observed for other diffusion-type problems.
The modified preconditioners also performed well for NOS5, GEO, BCSSTK09

and NOS3; in these cases, however, the “unmodified” preconditioner SAINV(A)
also performed well. In any case, the modified preconditioners were not worse
than the unmodified one.

6 Conclusions.

In this paper we have considered preconditioner modification strategies for
shifted linear systems. We targeted general SPD matrices and the sparse ap-
proximate inverse preconditioner SAINV. This is not an easy problem in general,
since the inverse of A+αI can be quite different from A−1 if A is ill-conditioned.
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Table 5.6: Test results for BCSSTK07. n = 420, nnz = 7860, κ ≈ 3.5e + 09,
zfill = 5779.

α full SAINV SAINV2 SAINV1 SAINV0 SAINV(A)
fill It Mf It Mf it Mf it Mf it Mf

0 1 70 6.6 – – – – – – – –
1.49e-5 .86 32 3.2 29 1.4 29 1.3 31 1.39 32 1.43
2.38e-4 .45 14 1.82 39 1.9 41 1.82 35 1.56 38 1.7
1.5e-3 .29 10 1.2 91 4.3 104 4.59 92 4 77 3.4
1.5e-3∗ .29 10 1.2 42 .96 42 .96 42 .96 73 1.65
2.4e-1 .09 6 .5 6 1.27 999 43.8 † † 541 23.8
2.4e-1∗ .09 6 .5 15 .35 15 .35 15 .35 217 4.9

Table 5.7: Test results for NOS6. n = 675, nnz = 1965, κ ≈ 7.7e + 06, zfill = 2358.

α full SAINV SAINV2 SAINV1 SAINV0 SAINV(A)
%fill It Mf It Mf it Mf it Mf it Mf

0 1 25 2.4 – – – – – – – –
1.49e-5 .73 21 1.8 30 .88 34 .8 37 .9 92 2.2
2.38e-4 .67 20 1.7 33 .97 40 .97 42 1 229 5.5
1.5e-3 .67 19 1.6 32 .9 37 .9 40 .97 309 7.4
2.4e-1 .4 9 1.1 22 .67 29 .7 29 .7 420 10

Indeed, note that
d

dα
(A+ αI)−1

|α=0 = −A
−2,

showing that the inverse of A + αI can be very sensitive around α = 0 when
A−2 has large entries, as it is to be expected if A is ill-conditioned.
We found that simply shifting the pivots in the SAINV approximate inverse

factorization leads to surprisingly good results in many cases. We gave a theo-
retical justification of this fact for matrices that exhibit rapid decay away from
the main diagonal in the inverse Cholesky factor.
It is likely that these techniques can be further improved upon by including

modifications to the Z factor. For instance, if the decay rate of the elements
of Z is very slow or there is no decay at all, we can consider modified order k
preconditioners where the Z factor in (4.6) now varies with α.
Indeed, notice that for α→∞, the conjugate gradient method preconditioned

with (4.6) can converge faster if Z̃α is used in (4.3) instead of a fixed Z̃, where
Z̃α is such that

lim
α→∞

Z̃α = I.

This follows by using Z̃α instead of Z in (4.9). As shown in some of our numerical
experiments, simply using Z̃α = I gives good results for relatively large values
of α.
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Table 5.8: Test results for DISCDIFF. n = 900, nnz = 4380, κ ≈ 3.5e + 05,
zfill = 2856.

α full SAINV SAINV2 SAINV1 SAINV0 SAINV(A)
%fill It Mf It Mf it Mf it Mf it Mf

0 1 59 5 – – – – – – – –
1.49e-5 1 46 4.6 46 1.86 46 1.4 46 1.4 46 1.4
2.38e-4 1 18 3.7 19 .8 21 .67 21 .67 21 .67
1.5e-3 1 12 3.5 17 .7 21 .66 21 .66 24 .76
2.4e-1 .33 7 1.5 16 .6 22 .7 22 .7 127 3.95

Table 5.9: Test results for BCSSTK27. n = 1224, nnz = 56126, κ ≈ 3.5e + 06,
zfill = 16451.

α full SAINV SAINV2 SAINV1 SAINV0 SAINV(A)
%fill It Mf It Mf it Mf it Mf it Mf

0 1 75 37.6 – – – – – – – –

1.49e-5 .99 73 37 73 15 73 14.2 73 14.2 74 14.4

2.38e-4 .89 53 30.4 57 11.8 57 11.1 59 11.5 60 11.7

1.5e-3 .66 35 21.4 40 8.3 41 8 64 12.4 81 15.8

2.4e-1 .15 10 5.4 162 33.2 257 49.7 830 160 344 66.5

2.4e-1∗ .15 10 5.4 22 3 22 3 22 3 330 43.6

For example, we could define Z̃α as follows:

Z̃α =
{

(1− α)Z̃ + αI 0 ≤ α < β,
I α ≥ β,

where Z̃ is the matrix computed for (4.3). The threshold parameter β can be
determined for specific classes of normalized matrices A by considering (4.2).
For example, a reasonable choice could be β = c · 10−1, where c is a constant of
the order of unity.
Finally, we mention briefly another possible approach based on the interpo-

lation of two (or more) matrices Z̃αr related to the matrices Aαr for different
values of the shift parameter. For example, if Z̃1, Z̃2 are unit upper triangular
matrices such that the following approximate inverse decompositions hold:

(A+ α1I)−1 ≈ Z̃1D̃
−1
1 Z̃T

1 , (A+ α2I)−1 ≈ Z̃2D̃
−1
2 Z̃T

2 ,

where 0 ≤ α1 < α2 < 1, α1, α2 suitably chosen, we can use an order k precon-
ditioner (4.6) with Z = Z̃α, where Z̃α is defined as follows:

Z̃α =

{ α2 − α

α2 − α1
Z̃1 +

α− α1

α2 − α1
Z̃2 α1 ≤ α ≤ α2,

I α > α2.
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Such a preconditioner can be used to precondition matrices of the form A+ αI
where α ∈ (α1, α2).
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