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Abstract.

The solution of ordinary and partial differential equations using implicit linear multi-
step formulas (LMF) is considered. More precisely, boundary value methods (BVMs),
a class of methods based on implicit formulas will be taken into account in this pa-
per. These methods require the solution of large and sparse linear systems M̂x = b.
Block-circulant preconditioners have been proposed to solve these linear systems. By
investigating the spectral condition number of M̂ , we show that the conjugate gradient
method, when applied to solving the normalized preconditioned system, converges in
at most O(log s) steps, where the integration step size is O(1/s). Numerical results are
given to illustrate the effectiveness of the analysis.
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1 Introduction.

We consider the solution of ordinary differential equations (ODEs) by using
implicit linear multistep formulas (LMF). By applying the above formulas, the
solution to a given ODE is given by the solution of a linear system

M̂y = b,(1.1)

where M̂ depends on the LMF used. In this paper, we concentrate on the linear
initial value problem


dy(t)
dt

= Jy(t) + g(t), t ∈ (t0, T ],

y(t0) = z,

(1.2)
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where y(t), g(t) : R → R
m, z ∈ R

m, and J ∈ R
m×m. By applying BVMs on this

ODE, the matrix M̂ in (1.1) can be written as

M̂s = Âs ⊗ I − hB̂s ⊗ J,(1.3)

where Âs and B̂s are (s + 1)-by-(s+ 1) matrices with entries depending on the
LMF used, I is the m-by-m identity matrix and h = (T − t0)/s is the integration
step size. In this paper, we assume that m is fixed and independent of s. We
note that both Âs and B̂s can be reduced to a sum of a Toeplitz matrix plus a
low rank matrix. (A matrix is said to be Toeplitz if its entries are constant along
its diagonals.) The size of the matrix M̂s is very large when h is small and/or m
is large. If a direct method is used to solve the system, the operation count can
be too expensive and slow for practical, large scale applications.
In [4, 5], the first author proposed to use Krylov subspace methods such as the

GMRES method [22] to solve (1.1). In order to speed up the convergence rate
of Krylov subspace methods, he proposed circulant matrices as preconditioners.
The first preconditioner proposed in [4, 5] for the matrix M̂s in (1.1) is the well-
known T. Chan circulant preconditioner; see [13]. The second one proposed in
[4, 5] is a new preconditioner called the P -circulant preconditioner P . Moreover,
Bertaccini [4] and Chan et al. [15] proposed the Strang-type preconditioner for
(1.1). They showed that both the P -circulant and Strang-type preconditioned
systems converge very quickly. However, when the Jacobian matrix J has some
small (or zero) singular values (see, e.g., [4, 7, 8]), or if some eigenvalues have
imaginary part large in absolute value relative to the real part (see, e.g. [5]), the
Strang-type preconditioner can be very ill-conditioned or even singular. There-
fore, in this paper, we will focus on P -circulant preconditioners.
The main aim of this paper is to study the convergence rate of these normalized

block P -circulant preconditioned systems when we use the conjugate gradient
method. We will investigate the spectral condition number κ(M̂s) of M̂s, and
show that κ(M̂s) is at most O(s), where 1/s is integration step size. In [5] it has
been shown that the spectra of the P -circulant preconditioned matrices P−1M̂s

are clustered around one. From that we get a bound on the convergence rate of
the conjugate gradient method that depends on the spectral condition number of
M̂s. It follows that the number of iterations required for convergence is at most
O(log s). By noting that the number of operations per iteration of the conjugate
gradient method is of O(s log s), the total complexity of the algorithm is therefore
of O(s log2 s). In the case when M̂s is well-conditioned, the method converges in
O(1) steps. Hence the complexity is reduced to O(s log s).
The paper is organized as follows. In Section 2, we recall the general scheme

of BVMs. We study the condition numbers of matrices arising from BVMs in
Section 3. In Section 4, we introduce some circulant preconditioners and analyze
the convergence rate of the preconditioned matrices. Finally, numerical examples
and concluding remarks are given in Section 5.

2 Boundary value methods and their matrix forms.

The boundary value methods (BVMs) for differential equations are a general-
ization as a boundary value technique of the implicit linear multistep formulas



CONVERGENCE RATE OF PRECONDITIONED LMF-BASED ODE CODES 435

(see, e.g., [2, 11] and the references therein). In order to briefly describe them,
suppose for simplicity that we have the linear IVP (1.2). A BVM approximates
the solution of (1.2) by means of a discrete boundary value problem (BVP). The
latter is obtained by using a k-step linear multistep formula of order p over a
uniform mesh tj = t0 + j h, j = 0, . . . , s, h = (T − t0)/s:

k−ν∑
i=−ν

αi+νyn+i = h
k−ν∑
i=−ν

βi+νfn+i, n = ν, . . . , s− k + ν.(2.1)

As usual, yn is the discrete approximation to y(tn), fn = J yn + gn, gn = g(tn),
and the values

y0, . . . ,yν−1, ys−k+ν+1, . . . ,ys(2.2)

are given. We observe that the IVP (1.2) provides only the initial value y0. It
is possible to avoid to supply the other conditions in (2.2) by coupling the main
method (2.1) with other difference schemes of order p1, where usually p1 = k,
called additional methods, which provide the following set of equations:

q1∑
i=0

α
(j)
i yi = h

q1∑
i=0

β
(j)
i fi, j = 1, . . . , ν − 1,(2.3)

q2∑
i=0

a
(j)
k−iys−i = h

q2∑
i=0

β
(j)
k−ifs−i, j = s− k + ν + 1, . . . , s,(2.4)

independent of those in (2.1) and where k ≤ q1, q2 ≤ s (e.g., q1 = q2 = k in the
methods considered in [4, 5]). The equations (2.1), (2.3), and (2.4) define the use
of a BVM on problem (1.2).
Let us cast BVMs in matrix form. This is done by introducing the matrices

Âs, B̂s ∈ R(s+1)×(s+1). If q1 = k, we have

Âs =




1 · · · 0
α
(1)
0 · · · α

(1)
k

...
...

...
α
(ν−1)
0 · · · α

(ν−1)
k

α0 · · · αk

α0 · · · αk

. . .
. . .

. . .
α0 · · · αk

α
(s−k+ν+1)
0 · · · α

(s−k+ν+1)
k

...
...

...
α
(s)
0 · · · α

(s)
k




,(2.5)

and B̂s similarly, but with βjs instead of αjs, and all zeros in its first row. The
discrete problem generated by the application of the BVM (2.1)–(2.4) to problem



436 D. BERTACCINI AND M. K. NG

(1.2) is then given by

M̂s y = e1 ⊗ η + h (B̂s ⊗ I)g, e1 = (1, 0, . . . , 0)∗ ∈ R
s+1,(2.6)

y = (y0, . . . ,ys)∗, g = (g0, . . . ,gs)∗,
M̂s = Âs ⊗ I − h B̂s ⊗ J.

The matrix M̂s in (2.6) turns out to be large and sparse when s � k, q1, q2
and/or J is large and sparse.

2.1 Some families of BVMs.

Here we give the definitions of some families of BVMs (see [11] for details). All
considered methods are consistent, i.e., they satisfy the conditions

ρ(1) = 0, ρ′(1) = σ(1),(2.7)

where ρ(z) and σ(z) denote, as usual, the two characteristic polynomials associ-
ated with the given method, i.e.,

ρ(z) = zν
k−ν∑

j=−ν

αj+ν z
j, σ(z) = zν

k−ν∑
j=−ν

βj+ν z
j.(2.8)

The generalized Adams methods, or GAM, are a generalization of the Adams–
Moulton methods (see [17]) as a boundary value technique. They can be written
in the following form:

yn+ν − yn+ν−1 = h
k−ν∑
i=−ν

βi+ν fn+i,(2.9)

where the coefficients {βi} are uniquely determined by imposing that the method
has maximum order, i.e., k + 1, for all k ≥ 1, with ν = k/2 if k is even, and
(k + 1)/2 if k is odd. When k is odd, they are called extended trapezoidal rule,
or ETR, because they share the same stability properties of the trapezoidal rule.
Such methods turns out to be well-suited either for approximating Hamiltonian
problems or continuous BVPs. When k is even, GAM are well suited for stiff
problems (see [11, Chapters 6 and 7] for details).
ETR2 are another generalization of the trapezoidal rule belonging to the class

of symmetric schemes:

ν−1∑
i=−ν

αi+ν yn+i =
h

2
(fn + fn−1),(2.10)

where k = 2ν − 1 is odd and the coefficients {αi} are uniquely determined by
imposing that the method has maximum order, i.e. k + 1, k = 1, 3, 5, . . . . When
ν = 1, then k = 1 and the formulas (2.9), (2.10) become the trapezoidal rule.
Indeed, all such formulas can be regarded as generalizations of this method,
sharing the same stability properties. Such methods turn out to be well-suited
both for approximating Hamiltonian problems and continuous BVPs (see [11,
Chapter 7] for details).
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3 Condition numbers of Toeplitz matrices.

As observed in the previous section, the matrix M̂s as in (2.6) has a block
quasi-Toeplitz pattern. The perturbation to the Toeplitz pattern is due to the
presence of the additional methods (2.3) and (2.4) in Âs as shown as in (2.5), and
similarly in B̂s. In our analysis, we will assume that the effect of the above will
be negligible. More precisely, we will consider only those formulas (2.3) and (2.4)
such that the condition numbers of the matrices M̂s and Ms behave similarly
with respect to their size s+ 1 (see, e.g., [11, Chapter 11]) where

Ms = As ⊗ Im − hBs ⊗ J(3.1)

is the block Toeplitz matrix obtained from the main formula (2.1). The matrix
As is a (s+ 1)× (s+ 1) banded Toeplitz matrix, i.e.,

As =




αν · · · αk−1 αk 0 · · · 0
... αν

. . . αk−1 αk
. . .

...

α0
. . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . αk−1 αk

...
. . . . . . . . . . . . . . . αk−1

...
. . . . . . . . . . . . . . .

...
0 · · · · · · 0 α0 · · · αν




,(3.2)

and Bs has the similar pattern. The assumption on the behavior of the condition
number of M̂s and Ms is usually reasonable. This is the case of the families of
methods of Section 2.1 and those considered in [4, 5], at least up to a certain
number of step k (see, e.g., Chapter 11 in [11]).
Let us consider the Dahlquist test problem{

y′(t) = λy(t), t ∈ [0, T ]
y(t0) = η,

(3.3)

as an example. Here we choose J = λ in (1.2), where λ ∈ C is a scalar. It
is customary to consider the above scalar problem in the theory of methods for
ODEs (see, e.g., [20, 11]), where λ can be any one of the eigenvalues of the original
Jacobian matrix J , supposed diagonalizable.
In the tables below, we give an example of the 2-norm condition numbers of

As, Bs, Ms and of their small rank perturbations counterparts for the problem
(3.3), λ = −1 and λ = +1, h = 1/s, the coefficients of As, Bs are given in the
formulas (2.9) used with k = 3 (order four) and (2.10) used with k = 5 (order
six). As can be observed, they are of the same order of magnitude.
A similar behavior can be observed also for the other schemes described in

Section 2.1 and other values of λ, provided that h > 0 is chosen so that M̂s, Ms,
are nonsingular. More examples can be found in Tables 3.3 and 3.4 for wave and
heat equations, respectively, in the next subsection. However, notice that the
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Table 3.1: Condition numbers for different sizes of the underlying Toeplitz matrices and
their small rank perturbations counterparts, formula (2.9) with k = 4 for problem (3.3)
with λ = −1 and T = 1.

s κ(As) κ(Âs) κ(Bs) κ(B̂s) κ(Ms) κ(M̂s)

32 41.0 41.0 4.0 9.5 28.0 28.0
64 82.0 82.0 4.0 9.5 56.0 56.0
128 163.0 163.0 4.0 9.5 113.0 113.0
256 226.0 326.0 4.0 9.5 226.0 226.0

Table 3.2: Condition numbers for different sizes of the underlying Toeplitz matrices and
their small rank perturbations counterparts. Formula (2.10), k = 3 for problem (3.3)
with λ = +1 and T = 1.

s κ(As) κ(Âs) κ(Bs) κ(B̂s) κ(Ms) κ(M̂s)

32 41.3 31.6 31.3 118.8 65.4 52.4
64 82.1 59.3 61.8 180.1 129.5 96.0
128 163.6 114.7 123.0 280.4 257.5 183.1
256 326.6 225.5 245.2 459.2 513.5 357.2

matrices of the model problem (3.3) are representative for a general system of
ODEs (or PDEs by semidiscretization). Indeed, supposing J diagonalizable,

J = V DV −1, D = diag(λ1, . . . , λm),

M̂s = Âs ⊗ Im − hB̂s ⊗
(
V DV −1) = (Is ⊗ V )(Âs ⊗ Im − hB̂s ⊗D)(Is ⊗ V −1),

where Is is the (s+ 1)× (s+ 1) identity matrix. Thus,

κ2(Ms) ≤ κ2(V )κ2
(
Âs ⊗ Im − hB̂s ⊗D

)
= κ2(V ) max

1≤j≤m

{
κ2(Âs − hλjB̂s)

}
,

where κ2(V ) does not depend on s.
The condition number of the matrix M̂s as (2.6) is quite important for several

reasons. As an example, under suitable conditions, a bound can be given for the
global error of the methods based on LMF in term of κ(Ms); see Section 4.9.1
in [11]. For our purposes, the condition number will serve to give an estimate of
the rate of convergence of the preconditioned iterations of the conjugate gradient
method; see Section 4.1 in the sequel. In the following discussion, we made the
following assumption:
Assumption (A): The spectral condition number of M̂s is of the same order

as the spectral condition number of Ms, i.e., there exist two positive numbers c1
and c2 such that

c1κ(Ms) ≤ κ(M̂s) ≤ c2κ(Ms).
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We stress that properly chosen additional methods should obey the above as-
sumption to avoid an ill-conditioned linear system [11, Section 5.3]. In Sections
4.9.1, 5.4.1, and 11.4 of [11], Brugnano and Trigiante have used this assumption
to analyze the stability of boundary value methods. More examples can be found
in Tables 3.3 and 3.4 for the wave and the heat equations, respectively, in the
next subsection.

3.1 More examples.

It is interesting to observe that in the nonscalar case (i.e., when J ∈ Rm×m,
m > 1), we have that κ(Ms) (κ(M̂s)) can be independent of s or can grow at
most as O(s) (cf. Tables 3.1 and 3.2), at least if h is small enough, accordingly
to Theorem 3.1 stated above.
Let us consider the wave equation of first order with periodic boundary condi-

tions: 

ut − ux = 0,
u(x, 0) = x, x ∈ [0, π]
u(π, t) = u(0, t), t ∈ [0, 2π]

(3.4)

We discretize the partial derivative ∂/∂x with the central differences and step
size ∆x = π/m, xj = j∆x. We obtain a family of systems of ODEs{

y′(t) = Lmy(t), t ∈ [0, 2π]
y(0) = η, η = (g(x0) . . . g(xm−1))T ,

(3.5)

Lm =
1

2∆x




0 −1 −1

1
. . . . . .
. . . . . . . . .

. . . . . . −1
1 1 0



.(3.6)

The matrices Lm have the spectrum of eigenvalues on the imaginary axis. In
Table 3.3, we can see that the condition numbers of the matrices are related to
the underlying method. In this example, we find that the condition numbers of
Ms (M̂s) grow at most as O(log s) as s increases for each fixed m.
Let us consider the heat equation


ut − cuxx = 0,
u(0, t) = u(xmax, t) = 0, t ∈ (0, T ]
u(x, 0) = x(π − x), x ∈ [0, xmax].

(3.7)

If we discretize the operator ∂2/∂x2 in (3.7) with centered differences and stepsize
δx = xmax/(m+ 1), we obtain a system of m ODEs

{
y′(t) = Tmy(t), t ∈ [0, T ]
y(0) = η, η = (g(x1) . . . g(xm))T

(3.8)
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Table 3.3: Wave equation. Condition numbers for different sizes of the underlying
Toeplitz matrices and their small rank perturbations counterparts. Formula (2.9) with
k = 3 is used here.

m s κ(As) κ(Âs) κ(Bs) κ(B̂s) κ(Ms) κ(M̂s)

10 8 10.7 10.7 3.2 9.3 18.3 19.3
10 16 21.0 21.0 16.0 20.0 26.4 26.6
10 32 41.3 41.0 31.3 35.4 44.8 45.0
20 8 10.7 10.7 3.2 9.3 29.7 31.3
20 16 21.0 21.0 16.0 20.0 36.2 36.6
20 32 41.3 41.0 31.3 35.4 52.1 52.3

and the Jacobian matrix Tm is symmetric tridiagonal:

Tm =
c

(∆x)2




−2 1

1
. . . . . .

. . . 1
1 −2


 .(3.9)

Table 3.4 shows the condition numbers of the matrices related to the underlying
method. In this example, we find that the condition numbers of Ms (M̂s) are
independent of s for each fixed m.

Table 3.4: Heat equation. Condition numbers for different sizes of the underlying
Toeplitz matrices and their small rank perturbations counterparts. Formula (2.9) with
k = 4 is used here.

m s κ(As) κ(Âs) κ(Bs) κ(B̂s) κ(Ms) κ(M̂s)

10 8 10.6 10.7 3.2 9.3 44.6 49.0
10 16 21.0 21.0 3.7 9.5 44.5 48.0
10 32 41.3 41.0 3.9 9.5 44.1 48.0
20 8 10.6 10.7 3.2 9.3 164.2 181.0
20 16 21.0 21.0 3.7 9.5 163.8 179.0
20 32 41.3 41.0 3.9 9.5 163.6 178.0

3.2 Condition numbers of Ms.

In our simplifying assumptions, we will consider the Toeplitz matricesMs, As,
Bs, where Ms is given by (3.1). Let us associate to the matrix Ms the two
following functions: the symbol

gMs(z, q) =
k−ν∑

j=−ν

(αj+ν − qβj+ν) zj , z ∈ C,(3.10)
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and the characteristic polynomial of Ms, i.e.,

p(z, q) = zνgMs(z, q), z ∈ C,(3.11)

where q = hλ ∈ C. In 1963, Dahlquist introduced the definition of A-stability
for an initial value method: a method is said to be A-stable if

Dk,0 ⊇ {q ∈ C : Re(q) < 0},

where, for linear multistep formulas, Dk,0 ≡ Dk is the region of C where p(z, q)
has roots inside the unit circle (see, e.g., [20, pp. 70, 224]).
The methods (2.1) (i.e., the Toeplitz matrices Ms) we are interested in are

Aν,k−ν -stable. A BVM is called Aν,k−ν-stable (see [11]) if the left half complex
plane is contained in the set

Dν,k−ν = {q ∈ C : p(z, q) has ν, k − ν roots in and out |z| = 1, respectively} .

The Aν,k−ν -stability is thus a generalization of the notion of the A-stability for
the initial value linear multistep formulas, i.e. for k > ν. Notice that, for us,
Aν,k−ν stability means also that the roots of the characteristic polynomial ofMs

cannot move into, on or outside the unit circle |z| = 1 as q = hλ varies in the
complex left half plane. Conversely, we can have that at most one root of p(z)
can leave the interior of the unit circle for the exterior, in a certain region of the
positive half plane; see [11, Chapter 4] for details.
We stress that the methods in Section 2.1 have the above properties and that

the condition number of Ms (of M̂s) depends on q; see [3, 11].
In the style of the proofs in [3, 11], we can give a bound for the spectral

condition number of Ms. To this end, we consider a sequence of initial value
problems in (1.2) with s being increased or h being decreased. Correspondingly,
we have two sequences of Toeplitz matrices {As}∞s=1 and {Bs}∞s=1, where the
(j, l)-th entries of As and Bs are given by

[As]j,l =
{
αν+l−j , −ν ≤ l − j ≤ k − ν,
0, otherwise.

and

[Bs]j,l =
{
βν+l−j , −ν ≤ l − j ≤ k − ν,
0, otherwise,

respectively. In this case, as we increase s, the influence of the matrix Bs (i.e.,
of the matrix B̂s) in Ms (in M̂s as in (2.6)) decreases up to disappear, e.g., if J
is scalar, we have

lim
s→∞

Ms = As, lim
s→∞

M̂s = Âs.(3.12)

Below we will show that, for a given differential problem, the condition number
of Ms is at most O(s).

Theorem 3.1. Consider a family of nonsingular Toeplitz matrices {Ms} de-
fined as (3.1), where h = T/s, T > 0, an A-stable (Aν,k−ν-stable) formula (2.1)
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whose boundary locus is a regular Jordan curve. If the Jacobian matrix J has
eigenvalues whose real part is non-positive, i.e., λ(J) ∈ C−, there exist a1, a2
and a3 (independent of s) such that

‖Ms‖2 ≤ a1, ‖M−1
s ‖2 ≤ a2(s+ 1),(3.13)

and, consequently,

κ(Ms) = ‖M−1
s ‖2‖Ms‖2 ≤ a3(s+ 1),(3.14)

Proof. We note that

‖Ms‖∞ ≤ m‖As‖∞ + hm‖J‖∞‖Bs‖∞ ≤ m
k−ν∑
i=−ν

|αi+ν |+ hm‖J‖∞
k−ν∑
i=−ν

|βi+ν |.

Since m and J are fixed and independent of s, ‖Ms‖∞ is uniformly bounded from
above by a positive constant independent of s. By using the similar argument,
the result also holds for ‖Ms‖1. By using the inequality,

‖Ms‖2 ≤
√
‖Ms‖∞‖Ms‖1 ≤ a1,

we obtain the result.
Without loss of generality, we assume now that J = λ ∈ C

−. The underlying
banded Toeplitz matrix Ms = As − qBs, where q = hλ, has the characteristic
polynomial p(z, q) defined as (3.11). From the hypotheses, the formula (2.1) is
A-stable (Aν,k−ν -stable). Then, the number of the zeros of the polynomial in,
on and outside |z| = 1, respectively, cannot change while varying h > 0 (or s).
More precisely, if λ �= 0, we have that q = hλ ∈ Dν,k−ν and then p(z, q) has ν,
k− ν roots in and out the unit circle, respectively. Otherwise, if λ is zero, p(z, q)
has ν − 1, 1 and k − ν roots in, on and outside |z| = 1, respectively. Indeed, the
boundary locus of the polynomial is a regular Jordan curve and one of the roots
inside |z| = 1 reaches the unit circle as a simple root as q approaches zero for the
consistency conditions (2.7).
Using Theorem 4 in [3], we have that the following bound holds true for the

inverse of Ms:
|M−1

s | ≤ α
(
I + C +∆T

)
,(3.15)

where C and ∆ are (s+ 1)× (s+ 1) matrices given by

C =



0
1 0
...

...
. . .

1 · · · 1 0


 , ∆ =




0
γ 0
...

...
. . .

γs · · · γ 0


 ,(3.16)

respectively. Here α > 0 and 0 < γ < 1 are independent of s. The absolute value
symbol | · | in the left hand of (3.15), i.e. used for a matrix, should be intended
componentwise. At this point, it is straightforward to check that

‖M−1
s ‖∞ ≤ α1(s+ 1), ‖M−1

s ‖1 ≤ α2(s+ 1),(3.17)
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where α1, α2 are positive constants independent of s. Hence, if a2 = max{α1,
α2} and a3 = a1 a2, the result follows.
The above claims are confirmed also by the results in Tables 3.1 and 3.2. For

the first table, q = hλ ∈ Dν,k−ν , while for the other, q ∈ C\Dν,k−ν . Notice that,
for each member of the family of formulas as (2.9) with k even, Dν,k−ν includes
C−, while each member of the family of formulas as (2.9) and as (2.10) with k
odd, Dν,k−ν coincides with C−.
Theorem 3.1 can be proved by using the more general approach of [9, 10]. The

latest approach is based on the analysis of the generating function of Ms, i.e.
(3.10), of the underlying Toeplitz matrix. To this end, the proof may use the
results on the generating functions of the matrices As and Bs that can be found
in [6]. However, the arguments used in the proof of Theorem 3.1 and in [3] can
be useful to focus on the assumption (A), i.e. on the condition numbers of the
matrices Âs, B̂s, as claimed in the sequel.

4 Block circulant preconditioners.

Let M̂s in (2.6) be the low rank perturbation of a block-Toeplitz matrix gen-
erated by a BVM as in Section 2. A way to solve such large and sparse linear
systems is to use an iterative method; see for instance [16, 12]. To speed up
the convergence of the iterative method, a preconditioner Ps should be chosen to
approximate the matrix Ms while keeping the system Psx = c cheap to solve.
In order to obtain the preconditioner, let us consider the following approxima-

tion of the matrix M̂s:

Ps = Ăs ⊗ Im − hB̆s ⊗ J̆m(4.1)

where J̆m is a suitable approximation of the Jacobian matrix or the Jacobian
itself. Ăs, B̆s, are circulant matrices the entries of which are derived from the
coefficients of the main method (2.1) as follows:

Ăs = circ (α̃j), α̃j = cj,1(s)αj+ν + cj,2(s)αj+ν−(s+1),

B̆s = circ (β̃j), β̃j = cj,3(s)βj+ν + cj,4(s)βj+ν−(s+1), j = 0, . . . , s.(4.2)

where the cj,i(s), i = 1, . . . , 4, j = 0, . . . , s are linear in j. It is understood that
αj (βj) is zero for j < 0 or j > k in (4.2). The coefficients ci,j(s) in (4.2) are
chosen in such a way that Ăs, B̆s are suitable approximations of As, Bs in (2.5),
respectively.
The approximation of A, B with T. Chan’s optimal circulant (see [13]) requires

that

cj,1(s) = cj,3(s) = 1−
j

s+ 1
,(4.3)

cj,2(s) = cj,4(s) =
j

s+ 1
, j = 0, . . . , s,
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while for Strang’s natural circulant (see [23])

cj,1(s) = cj,3(s) = 1, j = 0, . . . ,
⌊
s+ 1
2

⌋
,

cj,2(s) = cj,4(s) = 1, j =
⌊
s+ 1
2

⌋
+ 1, . . . , s, cr,j(s) = 0 otherwise.

Consider, instead of (4.3), the following definition of the coefficients cj,i(s):

cj,1(s) = cj,3(s) = 1 +
j

s+ 1
, cj,2(s) = cj,4(s) =

j

s+ 1
, j = 0, . . . , s.(4.4)

We will call P-circulants the circulant matrices defined in (4.2) with (4.4). We
remark that the T. Chan preconditioners may be singular or very ill-conditioned
for some BVMs; see [4]. Bertaccini [4] and Chan et al. [15] showed that both
the P -circulant and generalized Strang preconditioned systems can converge very
quickly. However, when the Jacobian matrix J has some small (or zero) eigen-
values (for instance in some ODEs; see, e.g. [4, 7, 8]), the Strang preconditioner
can be severely ill-conditioned or even singular. Therefore, we will focus on
P -circulant preconditioners in the following discussion.

4.1 Convergence rate of the preconditioned iterations.

In this subsection, we analyze the convergence rate of the conjugate gradient
method when applied to solve the preconditioned normal system

(P−1
s M̂s)∗(P−1

s M̂s)x = (P−1
s M̂s)∗P−1

s b.(4.5)

We show that the method converges in at most O(log s) steps where the spectral
condition number M̂s under Assumption (A) is O(s). We begin by the following
theorem (see [5] for the proof).

Theorem 4.1. Let M̂s be the matrix of the linear system (2.6) for the schemes
described in Section 2.1 using an Aν,k−ν-stable formula, and Ps its block P-
circulant preconditioner as (4.1). Then, Ps is invertible for all s ≥ k and there
exists a positive number c′ independent of s such that ‖P−1

s ‖2 < c′ for all s.
Moreover, for any given δ > 0, there exists a positive number r0 (independent of
s) and s0 ≥ µ such that, for all s ≥ s0, we have

P−1
s M̂s = I + Lr0 + Vδ(4.6)

where rank(Lr0) ≤ r0 and ‖Vδ‖2 ≤ δ.
Next we derive a lower bound for the singular values of P−1

s M̂s.
Lemma 4.2. Let Assumption (A) be satisfied. There exists a constant c̃ > 0

independent of s such that
‖M̂s‖2 > c̃.(4.7)

Hence we have

‖M̂−1
s Ps‖2 ≤

‖Ps‖2
‖M̂s‖2

κ(M̂s) ≤ cs(4.8)
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for some constant c > 0.
Proof. We note from (1.3), (3.1) and (3.2) that

M̂s −Ms = Lk

where rank(Lk) ≤ k. It follows that

M̂∗
s M̂s−M∗

sMs = (M̂s−Ms)∗(M̂s−Ms)+M∗
s (M̂s−Ms)+(M̂s−Ms)∗Ms = L3k,

where rank(L3k) ≤ 3k. By using Weyl’s theorem [19, p. 184], we have

λmax(M̂∗
s M̂s) ≥ λ(s+1)m−3k(M∗

sMs).

Since the eigenvalues of M∗
sMs are equal to the square of the singular values of

Ms, and the singular values of Ms are distributed as |p(eiθ, q)| for θ ∈ [0, 2π)
(see, e.g., [24]), for sufficiently large s, we establish the inequality (4.7). Indeed,
we can reduce the analysis to the scalar case (see Section 3) and thus Ms is a
Toeplitz matrix whose related polynomial and symbol are p(z, q) and z−νp(z, q),
respectively. By Theorem 4.1, ‖Ps‖2 is uniformly bounded above by a constant
independent of s. By Assumption (A) and using Theorem 3.1, we establish the
inequality (4.8).
As for the convergence rate of the preconditioned conjugate gradient method

for the normal equations, we will show that the method will converge in at most
O(log s) steps when the spectral condition number of M̂s is of the order of O(s).
We begin by noting the following error estimate of the conjugate gradient method
(see [1]).

Theorem 4.3. Let x be the solution of the system (4.5) and x(j) be the j-th
iterant of the ordinary conjugate gradient method applied to (4.5). If the eigen-
values {λk} of (P−1

s Ms)∗(P−1
s Ms) are such that

0 < λ1 ≤ · · · ≤ λp ≤ b1 ≤ λp+1 ≤ · · · ≤ λ(s+1)m−q ≤ b2
≤ λ(s+1)m−q+1 ≤ · · · ≤ λ(s+1)m,

then

||(P−1
s Ms)(x− x(j))||2

||(P−1
s Ms)(x− x(0))||2

≤ 2
(
b− 1
b+ 1

)j−p−q

· max
λ∈[b1,b2]

{
p∏

k=1

(
λ− λk

λk

)}
.(4.9)

Here b := (b2/b1)
1
2 ≥ 1.

For the preconditioned system (4.5), the iteration matrix is given by

(P−1
s Ms)∗(P−1

s Ms).

Theorem 4.1 implies that we can choose b1 = 1− δ and b2 = 1+ δ, and therefore
(b − 1)/(b + 1) < δ. Then, p and q are constants that are independent of s. In
order to use (4.9), we need a lower bound for λk, 1 ≤ k ≤ p. It follows by Lemma
4.2 that

λk ≥ min
�
λ� =

1
‖(P−1

s Ms)∗(P−1
s Ms)‖22

≥ 1
c2s2

,
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for 1 ≤ k ≤ n, where c is a positive constant. Thus, for 1 ≤ k ≤ p and
λ ∈ [1− δ, 1 + δ], we have that

0 ≤ λ− λk

λk
≤ c2s2.

Hence, (4.9) becomes

||(P−1
s Ms)(x − x(j))||2

||(P−1
s Ms)(x − x(0))||2

< c2ps2pδj−p−q .

Given arbitrary tolerance ε > 0, an upper bound for the number of iterations
required to make

||P−1
s Ms(y − yj)||2

||P−1
s Ms(y − y0)||2

< ε

is therefore given by

j0 := p+ q −
2p log c+ 2p log s− log ε

log δ
= O(log s).

Since each preconditioned conjugate gradient iteration requires O(s log s) opera-
tions, the total complexity of the preconditioned conjugate gradient method is at
most O(s log2 s). We note that when the condition number of M̂s is of the order
of O(1), the number of iterations required for convergence will also be constant
and hence the total number operations for solving (1.1) will be of the order of
O(s log s).

5 Numerical results.

To show the effectiveness of our analysis, we will integrate some test problems
already considered in Section 3. Further numerical examples using other formulas
can be found in [4, 5, 7, 8, 15].
The initial guess for the iterative solvers is always zero. The stopping criterion

is ‖rk‖ < 10−6‖b‖, where rk is the residual b− M̂sx. All calculations are done
in Matlab.
We compare three different iterative algorithms: the conjugate gradient method

for the normal system (CGN) [18], the BiCGStab [25] and GMRES [22] methods.
More precisely, we apply the BICGStab and (unrestarted) GMRES methods to
solving the linear system

P−1
s M̂sx = P−1

s b(5.1)

and conjugate gradient method to solving the system of normal equations

(P−1
s M̂s)∗(P−1

s M̂s)x = (P−1
s M̂s)∗P−1

s b.(5.2)

Here Ps is the identity matrix when we consider unpreconditioned iterations (the
columns “I” in the tables), otherwise Ps is the block circulant preconditioner
(4.1). In the tests, we use P-circulant approximations considered in Section 4 (the
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columns “P” in the tables) and also the skew circulant approximations introduced
in [8] (the column “S” in the tables). The latter one has been found to be more
competitive with respect to Strang’s and T. Chan’s circulant preconditioners,
that can be severely ill-conditioned or singular even when the matrix M̂s (2.6)
is well-conditioned (see [5, 7, 6, 8]). A “−” means that convergence was not
attained.
We stress that each iteration of the BiCGStab and conjugate gradient method

requires two matrix vector products, while one is required for the GMRES method
(but the latter has a computational cost that increases with the number of it-
erations until restarting; see [22] for details). The computational cost of each
preconditioned iteration is of O(ms log s) + O(ms) flops, where m = 1 for the
scalar test problems, while m is the size of the sparse Jacobian matrices (3.6),
(3.9) for the others. For more details on the computational cost and the imple-
mentation; see [5].

Table 5.1: Number of iterations, formula (2.9) with k = 4 for problem (3.3) with λ = −1
and T = 1.

CGN BiCGStab GMRES
s I P S I P I P

32 32 6 4 28 5 32 7
64 64 6 4 54 5 64 7
128 128 7 4 101 4 128 7
256 256 7 4 188 4 256 7
512 512 7 4 − 4 512 7

Table 5.2: Number of iterations, formula (2.10), k = 3 for problem (3.3) with λ = +1
and T = 1.

CGN BiCGStab GMRES
s I P S I P I P

32 32 8 4 46 7 32 7
64 64 8 4 − 6 64 7
128 128 9 4 − 6 123 7
256 256 9 4 − 6 235 7
512 512 10 4 − 6 512 7

Notice that the Strang-type circulant preconditioner is singular for all odd m
for the wave equation problem. We observe that the convergence of the conjugate
gradient method depends on the eigenvalues of the preconditioned normal system
(5.2). These eigenvalues are the singular values squared. More precisely, if the
condition number κ(Ms) (κ(M̂s)) does not depend on s, the same is true for
the number of preconditioned iterations (cf. the heat equation example in Table
5.4). On the contrary, if κ(Ms) (κ(M̂s)) is (at most) of O(s), the number of the
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Table 5.3: Number of iterations for the wave equation problem. Formula (2.9) with
k = 3 is used here.

CGN BiCGStab GMRES
m s I P S I P I P

10 8 25 14 15 79 11 45 16
10 16 51 15 14 88 12 44 16
10 32 79 15 15 96 12 55 16
20 8 47 20 21 − 16 86 22
20 16 98 24 21 − 16 88 21
20 32 135 24 25 − 12 77 19

Table 5.4: Number of iterations for the heat equation problem. Formula (2.9) with
k = 4 is used here.

CGN BiCGStab GMRES
m s I P S I P I P

10 8 128 24 26 51 7 63 9
10 16 171 23 23 63 7 79 8
10 32 186 20 20 70 8 89 8
20 8 439 28 29 130 7 130 8
20 16 613 31 37 162 6 173 8
20 32 679 29 31 184 6 207 8

preconditioned iterations may increase as O(log s) (cf. the examples in Tables
5.1, 5.2 and 5.3).
The convergence of the BiCGStab and GMRESmethods depends on the (pseudo)

eigenvalues of the (preconditioned) matrix of the system in (5.1); see for instance,
[21]. Thus, the analysis of Section 4 cannot be applied to the BiCGStab and
GMRES methods. Nonetheless, it can be observed that usually their rates of
convergence behavior are similar to the conjugate gradient method. We can also
see from the tables that the number of the GMRES and BiCGStab iterations re-
quired for convergence stays constant for increasing s whenm is fixed. A detailed
analysis of the convergence behavior of the GMRES iterations for the underlying
class of block circulant preconditioners will be shown in a forthcoming paper.
In summary, we have found that Krylov subspace methods in combination with

the block circulant preconditioners can be efficient methods for solving ODEs and
PDEs with BVMs; see [4, 5, 8, 15]. By studying the spectral condition number
of M̂s, we have shown in this paper that the conjugate gradient method, when
applied to solving the normalized preconditioned system, converges in at most
O(log s) steps.
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