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Abstract. The numerical solution of large and sparse nonsymmetric linear
systems of algebraic equations is usually the most time consuming part of
time-step integrators for differential equations based on implicit formulas.
Preconditioned Krylov subspace methods using Strang block circulant pre-
conditioners have been employed to solve such linear systems. However, it
has been observed that these block circulant preconditioners can be very ill-
conditioned or singular even when the underlying nonpreconditioned matrix
is well-conditioned. In this paper we propose the more general class of the
block {ω}-circulant preconditioners. For the underlying problems, ω can be
chosen so that the condition number of these preconditioners is much smaller
than that of the Strang block circulant preconditioner (which belongs to the
same class with ω = 1) and the related iterations can converge very quickly.

1 Introduction

In this paper, we consider a new class of preconditioners based on {ω}-
circulant matrices for the iterative solution of the linear equations arising in
the numerical solution of ordinary and time-dependent partial differential
equations. In particular, these preconditioners are designed for the schemes
which generate block-Toeplitz-like structures, i.e., that are small rank per-
turbations of block-Toeplitz matrices (see [3,4] for more detail).
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author was supported in part by Hong Kong Research Grants Council Grants Nos. HKU
7130/02P and HKU 7132/00P and UK/HK Joint Research Scheme Grant No. 20009819.



72 D. Bertaccini, M. K. Ng

We recall that an n × n matrix An = (aj,k) is said to be Toeplitz if
aj,k = αj−k, j, k = 1, . . . , n, i.e., An is constant along its diagonals. An
n×nmatrix Ăn is said to be circulant if it is Toeplitz and its diagonals satisfy
ăn−j = ă−j , j = 1, . . . , n− 1. The circulant matrices Ăn are diagonalized
by the Fourier matrix F = (Fj,k), Fj,k = e2π ijk/n/

√
n, j, k = 0, . . . , n−1,

where i is the imaginary unit (see [19,15] and their references).

Definition 1 W is an n× n {ω}-circulant matrix if there exists a number ω
such that

W =




a0 a1 · · · an−1

ωan−1 a0 · · · an−2

ωan−2 ωan−1 · · · an−3
...

... · · · ...

ωa1 ωa2 · · · a0



.

Moreover, we recall the following result (see [18]).

Theorem 1 Let ω = exp(iθ), −π < θ ≤ π , and W be an n × n {ω}-
circulant matrix. Then, the following decomposition holds:

W = �∗F ∗�F�, (1)

where� = diag(1, ω−1/n, . . . , ω−(n−1)/n),� is a diagonal matrix contain-
ing the eigenvalues of W and F is the Fourier matrix.

The numerical solution of an initial value problem (IVP) (or a boundary
value problem (BVP)) for ordinary differential equations (ODE) and for
time-dependent partial differential equations (PDE), either linear or nonlin-
ear, can be reduced, at each integration step, to the solution of a linear IVP
such as

y′(t) = Jmy(t)+ g(t), t ∈ (t0, T ], y(t0) = z, (2)

where y(t), g(t) : R → R
m, z ∈ R

m, and Jm ∈ R
m×m. Similarly, a nonlinear

BVP can be reduced to a linear BVP. We apply to (2) fully implicit methods
for differential equations based on linear multistep formulas in boundary
value form (see [1,9] and their references). These methods approximate the
solution of (2) by means of a discrete boundary value problem. We apply the
followingµ-step linear multistep formula over a uniform mesh tj = t0 +jh,
for j = 0, . . . , s, h = (T − t0)/s, to (2):

µ−ν∑
i=−ν

αi+νyn+i = h

µ−ν∑
i=−ν

βi+νfn+i , n = ν, . . . , s − µ+ ν. (3)
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Here, yn is the discrete approximation to y(tn), fn = Jmyn + gn and gn =
g(tn). The method in (3) should be used with ν initial conditions and µ− ν

final conditions. That is, we need the values y0, . . . , yν−1 and the values
ys−µ+ν+1, . . . , ys . For example, the initial condition in (2) provides us only
with one value, i.e., with y0. In order to obtain the other initial and final
values, we have to provide (µ − 1) additional equations. The coefficients
α
(j)

i and β(j)i of these equations can be chosen so that the truncation errors
for these initial and final conditions are of the same order as that in (3) (see
[9, p. 132]). By combining (3) with the additional methods, we obtain a
discrete boundary value problem. These equations can be restated to give
the following linear system of algebraic equations:

My ≡ (A⊗ Im − hB ⊗ Jm)y = e1 ⊗ z + h(B ⊗ Im)g ≡ b, (4)

where

e1 = (1, 0, · · · , 0)t ∈ R
(s+1), y = (y0, · · · , ys)t ∈ R

(s+1)m,

g = (g0, · · · , gs)t ∈ R
(s+1)m, and A and B are (s + 1)-by-(s + 1) matrices

given by

A =




1 · · · 0
α
(1)
0 · · · α(1)µ
...

...
... 0

α
(ν−1)
0 · · · α(ν−1)

µ

α0 · · · αµ
α0 · · · αµ

. . .
. . .

. . .

. . .
. . .

. . .

α0 · · · αµ
0 α

(s−µ+ν+1)
0 · · · α(s−µ+ν+1)

µ

...
...

...

α
(s)
0 · · · α(s)µ




and B defined similarly. The size of the matrix M can be very large when
s or m are large. If a direct method is used to solve the system (4), e.g.,
for a multidimensional partial differential equation, the operation count can
be much higher for practical applications than for that proposed (see the
comparisons with a sparse direct solver in [3]).

In [2,3], Krylov subspace methods such as GMRES (Saad et al. [29])
or BiCGStab (van der Vorst [31]), have been proposed to solve (4). In or-
der to speed up the convergence rate of Krylov subspace methods, circulant



74 D. Bertaccini, M. K. Ng

matrices as preconditioners were considered there. The first preconditioner
proposed in [2,3] for the matrixM in (4) is based on the well-known T. Chan
circulant approximation (see [15]). The second one proposed in [2,3] is
based on a new preconditioner called the P -circulant preconditioner. More-
over, in [3] and in [16,27] was the generalized Strang preconditioner for (4)
was proposed. In these papers, it was shown theoretically and numerically
that both the P -circulant and generalized Strang preconditioned iterations
can converge very quickly. However, when the Jacobian matrix Jm in (4) has
small or zero singular values, e.g., for differential problems with a constant
steady-state solution (see [2,5]), the Strang block circulant preconditioner
can be singular or severely ill-conditioned. To overcome these shortcomings,
a modification of Strang’s approximation was suggested in [4].

The main aim of this paper is to extend the preliminary results and the
analysis in [7], where we proposed block preconditioners for nonsymmetric
matrices based on skew-circulant matrices. In particular, here we propose the
more general class of block {ω}-circulant preconditioners for linear systems
in (4).

We stress that other techniques for banded Toeplitz linear systems can
be found, e.g., in [20,10,23,13] but they are very effective in the Hermitian
case whereas, in general, the underlying matrices are nonsymmetric.

The approach in [17] is based on T. Chan’s preconditioner. As observed
in [3,5], this approach can be suitable for certain schemes, but can give
ill-conditioned preconditioners even when the original matrices are well-
conditioned. The approach described in [25] is based on the application
of the preconditioner by using the normal equations. However, in [6] we
observed that the related conjugate gradient iterations can converge very
slowly.

The approaches in [11,24] are based on the factorization of generating
functions of Toeplitz matrices. These preconditioners are not circulant ma-
trices. Therefore, the corresponding preconditioners for the system (4) may
not be efficiently inverted.

The paper is organized as follows. In Sect. 2, we introduce and ana-
lyze the new class of block preconditioners. In Sect. 3, the convergence
of preconditioned iterations and the asymptotic computational cost of us-
ing various Krylov accelerators are discussed. Finally, numerical examples,
remarks and comparisons are given in Sect. 4.

2 Block {ω}-circulant preconditioners

In [2,3] and [16] the following generalized simple circulant (or Strang)
preconditioner for (4) was introduced:

S = s(A)⊗ Im − hs(B)⊗ Jm, (5)
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where s(A), s(B) were simple circulant (or Strang’s circulant) approxima-
tions for A and B, i.e., s(A) was given by

s(A) =




αν · · · αµ α0 · · · αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . α0
. . .

. . .
. . . 0

. . .
. . .

. . .

0
. . .

. . .
. . .

αµ
. . .

. . . αµ
...

. . .
. . .

. . .
...

αν+1 · · · αµ α0 · · · αν




,

and s(B)was defined similarly. Recall that the eigenvaluesφj , j = 0, . . . , s,
of a circulant matrix Ă can be written as linear combinations of the entries
α̃j , j = 0, . . . , s, of its first row (see Davis [19]):

φl =
s∑
j=0

α̃ju
jl, l = 0, . . . , s, u = exp

(
2π i
s + 1

)
. (6)

Notice that, due to the consistency condition
∑µ

j=0 αj = 0 on the coef-
ficients of (3) and to (6), s(A) is always singular. If, for simplicity, Jm is
diagonalizable, the eigenvalues of (5) are φj − hψjµr , where φj , ψj , µr
are the eigenvalues of s(A), s(B), Jm, respectively. Then, as observed in
[4], if Jm has a zero (very small) singular value, then the preconditioner
S is singular (can be severely ill-conditioned). In this case, the conver-
gence can be impossible (very slow). The P -circulant approximation was
proposed in [2,3] for the problems which have Jm as above and, in gen-
eral, for other problems generating a preconditioned matrix P−1M which
is ill-conditioned and/or which has the convex hull of the spectrum of the
eigenvalues enclosing the origin of the complex plane (see [3,5]). The P -
circulant preconditioner p(A) is a circulant matrix, the entries of whose first
row are given by p0, . . . , pn−1, where

pj = (s + 1 + j)αj+ν + jαj+ν−(s+1)

s + 1
, j = 0, . . . , s. (7)

In this paper, we propose the more general class of block {ω}-circulant
preconditioners for (4) to overcome the shortcoming mentioned above:

C = s̃(A)⊗ Im − hs̃(B)⊗ Jm, (8)
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where s̃(A), s̃(B) are {ω}-circulant matrices approximating A and B, re-
spectively.

The {ω}-circulant matrices are Toeplitz matrices whose first entry of a
row is given by multiplying the last entry of the preceding row by ω (see
Definition 1). Note that the {1}-circulant matrices (θ = 0) are just circulant
matrices, while {−1}-circulant matrices (θ = π ) are skew-circulant matri-
ces. For instance, the simple (or Strang-type) skew-circulant approximation
s̃(A) for A in (2) is given by

s̃(A) =




αν · · · αµ −α0 · · · −αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . −α0
. . .

. . .
. . . 0

. . .
. . .

. . .

0
. . .

. . .
. . .

−αµ . . .
. . . αµ

...
. . .

. . .
. . .

...

−αν+1 · · · −αµ α0 · · · αν




,

and s̃(B) defined similarly. The skew-circulant matrices as preconditioners
for Hermitian and skew-Hermitian Toeplitz systems were considered in [12,
22,14].

We observe that various trigonometric approximations can be combined.
For example, {ω}-P -circulant preconditioners can be defined by using (7)
to give the first row of the related {ω}-circulant approximation. A simi-
lar combination can be made by using T. Chan’s optimal circulant matri-
ces. However, for brevity, here we will focus mainly on Strang-type {ω}-
circulant preconditioners, giving some hints on extending the properties to
other approximations. Moreover, it is straightforward to observe that P -
circulant approximations can be seen as {ω}-circulant preconditioners with
ω = exp (iθ), θ = 0, whose entries are defined as in (7).

We prove that, under suitable assumptions on the formula (3), the block
{ω}-circulant preconditioner C in (8) is invertible.

The stability of a boundary value method is closely related to the two
characteristic polynomials

ρ(z) =
µ∑
j=0

αjz
j and σ(z) =

µ∑
j=0

βjz
j . (9)
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Note that they are polynomials of degree µ. A polynomial p(z) of degree µ
is an Nν,µ−ν-polynomial if

|z1| ≤ |z2| ≤ · · · ≤ |zν | ≤ 1 < |zν+1| ≤ · · · ≤ |zµ|,
and the roots zj on the unit circle |z| = 1 are simple.

Definition 2 [9] Consider the formula (3) with the characteristic polyno-
mial ρ(z) given by (9). The formula is said to be 0ν,µ−ν-stable if ρ(z) is an
Nν,µ−ν-polynomial.

Definition 3 [9] Consider the formula (3) with the characteristic polyno-
mials ρ(z) and σ(z) given by (9). The region

Dν,µ−ν = {q ∈ C : ρ(z)− qσ(z) has ν zeros inside |z| = 1

and µ− ν zeros outside |z| = 1}
is called the region ofAν,µ−ν-stability of the formula. Moreover, the method
is said to be Aν,µ−ν-stable if

C
− ≡ {q ∈ C : Re(q) < 0} ⊆ Dν,µ−ν.

It can be observed that the above definitions are a generalization of the
well-known definitions of 0-stability and ofA-stability for a linear multistep
formula (see, e.g., [26, Chapter 3]).

We stress that the methods considered here are consistent, 0ν,µ−ν-stable,
Aν,µ−ν-stable and have as boundary locus a regular Jordan curve, where the
boundary locus 
 of an LMF is given by


 =
{
q ∈ C : q = ρ(z)

σ (z)
. |z| = 1

}
, (10)

ρ(z), σ(z) defined in (9) (see, e.g., [26, Sect. 3.8]). Methods which are
consistent, 0ν,µ−ν-stable, Aν,µ−ν-stable and which have as boundary locus
a regular Jordan curve, are such that ρ(z) has only the root z = 1 and σ(z)
has at most the root z = −1 on the unit circle |z| = 1 (see [9, Sect. 4.7]).

2.1 Boundary locus techniques for block circulant preconditioners

Recall that the eigenvalues of the underlying block preconditioner can be
written as

ε−ν
j

(
ρ̃(εj )− h λr(Jm)σ̃ (εj )

)
, r = 1, . . . , m, j = 0, . . . , s, (11)

where

ρ̃(z) =
µ∑
j=0

α̃j z
j , σ̃ (z) =

µ∑
j=0

β̃j z
j . (12)
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The coefficients of ρ̃(z), σ̃ (z) are derived from the characteristic polynomi-
als (9). The argument εj in (11), j = 0, . . . , s, is a point on the unit circle
|z| = 1. For example, when εj = uj , uj = uj , then circulant matrices, and
when εj = ũj ,

ũj = uj · exp

(
iθ
s + 1

)
= exp

(
i
θ + 2πj

s + 1

)
, j = 0, . . . , s,

then {ω}-circulant matrices are considered in the expression (11), respec-
tively. We also observe that the block skew-circulant and the simple circulant
preconditioners are considered for α̃j = αj , β̃j = βj , j = 0, . . . , µ, in (12).
On the other hand, an {ω}-P -circulant-based preconditioner can be defined
by taking coefficients as

α̃j = αj

(
1 + j − ν

s + 1

)
, β̃j = βj

(
1 + j − ν

s + 1

)
, j = 0, . . . , µ,

for the {ω}-circulant matrices and similarly for T. Chan’s optimal circulant
preconditioners.

According to (11), a block preconditioner

R = c(A)⊗ Im − h c(B)⊗ Jm, (13)

where c(G) is a {ω}-circulant approximation for the matrixG, is nonsingular
if the points h λr(Jm), r = 1, . . . , m, h > 0, do not belong to the set

� =
{
q ∈ C : q = ρ̃(z)

σ̃ (z)
, z = εj , j = 0, . . . , s

}
. (14)

We call the finite set � the discrete boundary locus of the underlying block
preconditioner. It is worth noting that the boundary locus 
 of formula (3) is
a continuous set in C. Thus� is a finite set of points in 
. The last property
does not hold for P -circulant and optimal circulant-based preconditioners.
However, there exist classes of LMF such that the set � is in C

+ = {z ∈
C : 
(z) ≥ 0} with 
(z) �= 0 for the P -circulant approximations of the
matrices A, B of their coefficients (see [5]).

We consider problems whose Jacobian matrices have their eigenvalues
in the left half-plane, including the imaginary axis.

Definition 4 AnA-stable (Aν,µ−ν-stable ifµ > ν) linear multistep formula
is AP -stable (APν,µ−ν-stable if µ > ν) for the preconditioner (13) if

� ⊆ C
+ and ρ̃(εj ) �= 0, j = 0, . . . , s.

Note that the AP -stability of formula (3) can be easily verified by drawing
the boundary locus � directly. A sample for generalized Adams methods
(see [9] for the coefficients) is shown in Fig. 1.
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Fig. 1. Boundary locus of skew-circulant (a) and P -circulant (b) block preconditioners for
generalized Adams method, µ = 2, 4, 6, 8, 10, s = 10. Note that the formulas above are
APν,µ−ν -stable for these preconditioners

Theorem 2 For problem (2) with 
(λr(Jm)) ≤ 0, r = 1, . . . , m, a block
preconditioner (13) for an APν,µ−ν-stable formula (3) is invertible for all
step-sizes h > 0.

Corollary 1 There exist noAPν,µ−ν-stable formulas (3) for the simple block
circulant preconditioner in (5).

Proof It is enough to observe that, in (5), we have ρ̃(1) = ρ(1) = 0. 
�
Theorem 3 An Aν,µ−ν-stable formula (3), whose boundary locus 
 in (10)
is a regular Jordan curve, is APν,µ−ν-stable for block {ω}–(simple)–circul-
ant preconditioners, ω = exp(iθ) and θ �= 2nπ , n an integer.

Proof An Aν,µ−ν-stable LMF whose boundary locus is a regular Jordan
curve is such that
 ∈ C

+ (see [9]). Therefore,� ∈ C
+ for {ω}-circulant pre-

conditioners based on the simple circulant matrices. However, if λk(Jm) = 0
for some k, then minr 
(λr(C)) > 0. Indeed, expressions of the eigenvalues
of the block preconditioner based on the {ω}-circulant matrixC as in (8) are
given (see (6) and (1)) by

ũ−ν
j

(
ρ(ũj )− h λk(Jm)σ (ũj )

)
, j = 0, . . . , s, k = 1, . . . , m, (15)
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i.e., they are equal to the values assumed by the rational function

1

zν
(ρ(z)− h λk(Jm)σ (z))

evaluated at

z = ũj = uj · exp

(
iθ
s + 1

)
= exp

(
i
θ + 2πj

s + 1

)
, j = 0, . . . , s,

whereω = exp(iθ). We note that, by arguments similar to those for the block
preconditioner based on Strang’s circulant as in [16], if hλk(Jm) ∈ Dν,µ−ν ,
then the polynomial

p(z) = ρ(z)− h λk(Jm)σ (z)

of degreeµ has no roots on the unit circle |z| = 1. Therefore, the expressions
(15), i.e., the eigenvalues of the block preconditioner C, cannot be zero.
Note that, if 
(λk(Jm)) < 0, then hλk(Jm) ∈ Dν,µ−ν , and the {ω}-circulant
preconditioner is nonsingular.

If λk(Jm) = 0 for some k, then (15) gives

1

ũνj
ρ(ũj ), j = 0, . . . , s.

From the hypotheses, the only zero ofρ(z)of unit modulus for the underlying
methods is at z = 1, but ũj �= 1 for all j if θ �= 0, −π < θ ≤ π . Therefore,
(15) cannot be zero if the Jacobian matrix Jm is such that 
(λk(Jm)) ≤ 0,
k = 1, . . . , m. 
�

Similar results can be stated forP -circulant preconditioners by using the
results on the eigenvalues of P -circulant matrices that can be found in [5]
by observing that the minimum eigenvalue of an {ω}-P -circulant matrix is
now such that

ρ̃(1) ≥
∑

α̃j ≥ 1

s + 1
> 0,

i.e., can be bounded below independently of θ . Note that a similar bound
for {ω}–(simple)–circulant matrices cannot be stated.

2.2 The choice of ω

Remark 1 We observe that the {ω}-circulant simple approximation which
gives the “best” block preconditioners (8) has ω = −1, i.e., θ = π (see
Definition 1 and Theorem 1) and then is skew-circulant.
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Indeed, a good ({ω}-circulant) preconditioner using a certain ({ω}-circu-
lant) approximation an(T ) for ann×n (small rank perturbation of a) Toeplitz
matrix Tn can be expected if an(T ) has the following properties:

1) there exist matricesE,R such that an(T )−Tn = E+R, rank(E) = e is
small with respect to n, independent of n and ||R|| = δ, δ � ||an(T )||,
where || · || is a p-norm or the Frobenius norm (note that e = e(ω) and
δ = δ(ω) for {ω}-circulant matrices);

2) an(T ) is nonsingular and well-conditioned;
3) an(T ) is easy and cheap to compute from T and the linear system
an(T )v = v̂ is easy and cheap to solve.

The above claims are well-known for circulant matrices and, more generally,
for trigonometric preconditioners (see [30,3,4]), and can be easily adapted
for {ω}-circulant matrices. A more detailed discussion can be found in [5].

We observe that the conditions 1) and 3) above can be satisfied by any
choice of θ ∈ (−π, π ] for ω = exp(iθ) (recall Definition 1 and Theorem 1).
To this end, if c1, . . . , cn are the entries of the first row of the matrix F ∗�F
in (8) and t0, . . . , tn1 , t0, . . . , t−n2 , n1, n2 < �n/2�, are the entries of the
first row and column of T , respectively, the following conditions must be
satisfied:

c1 = t0, c2ω
−1/n = t2, . . . , cn1ω

−(n1−1)/n = tn1,

cnω
1/n = t−1, cn−1ω

2/n = t−2, . . . , cn−n2+1ω
n2/n = t−n2 .

Note that, if θ = 0 or if θ = π , T is a banded matrix and the {ω}-circulant
approximation is of generalized Strang-type, then the parameters character-
izing an(T ) need not be computed each time we change n (i.e., for (3), the
time-step discretization), n ≥ µ+ 1. However, condition 2) above requires
that θ �= 0 (i.e., ω �= 1, as otherwise an(T ) is the standard Strang’s circulant
approximation of T ). Finally, if −π < θ ≤ π ,

min
θ=π σj (an(T )) > min

θ �=π σj (an(T )) ≥ 0, (16)

where the σj (·), j = 1, . . . , n, are the singular values of the underlying
matrix, i.e., the absolute values of its eigenvalues (because An in our case
is normal). Therefore, the condition number of An is minimum for θ = π

and for that value we have experienced the better performances. However,
property (16) can have a moderate influence on the behavior of the precon-
ditioned iterations if the Jacobian matrix in (4) does not have small singular
values or eigenvalues whose imaginary parts are much greater than their
real parts (see the numerical experiments in [3,16,27]). Finally, note that a
different choice of θ could yield more convenient values for e = e(ω) and
δ = δ(ω), improving the convergence rate.
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3 Convergence of preconditioned iterations

The spectrum of the preconditioned system is clustered around (1, 0) ∈ C

and hence the convergence of a Krylov subspace method can be faster if the
underlying preconditioner is used. By using arguments similar to those used
in [3, Theorem 4.2], we obtain the following result.

Theorem 4 If the block {ω}-circulant preconditioner C is such that ω =
exp(iθ), −π < θ ≤ π , θ �= 0 and 
(λr(Jm)) ≤ 0, r = 1, . . . , m, then the
eigenvalues of the preconditioned matrix C−1M are equal to 1 ∈ C except
for at most 2mµ outliers.

Proof Let E = M − C; by (8),

E = ((A− s̃(A))⊗ Im)− h(B − s̃(B))⊗ Jm) = LA ⊗ Im − hLB ⊗ Jm.

It is easy to check that LA and LB are (s + 1)-by-(s + 1) matrices with
nonzero entries at most in the following four corners: a ν-by-(µ+ 1) block
in the upper left; a ν-by-ν block in the upper right; a (µ − ν)-by-(µ + 1)
block in the lower right; and a (µ− ν)-by-(µ− ν) block in the lower left.
Since µ > ν, rank(LA) ≤ µ and rank(LB) ≤ µ. Thus, we have

rank(LA ⊗ Im) ≤ mµ and rank(LB ⊗ Jm) ≤ mµ.

The result follows. 
�
We remark that often the pattern of the matrices A, s̃(A), B and s̃(B) is

such that the rank of E is mµ. Therefore, in these cases, there are at most
mµ outliers for the eigenvalues of C−1M . For example, consider the linear
multistep formulas used in boundary value form such that B = s̃(B) =
s(B) = I . The generalized backward differentiation formulas or those for
the midpoint method used in boundary value form as in [9] belong to this
class. In that case, it is straightforward to observe that LA⊗ Im has rankmµ
and LB is the null matrix. Therefore, for these classes of formula, the rank
of E is mµ.

As a consequence of Theorem 4, for the formulas (3) such that C−1M

is diagonalizable and nonsingular, GMRES converges (in infinite precision
arithmetic) in at most 2mµ + 1 iterations, independently of s (mµ + 1
iterations for suitable patterns of the above mentioned matrices). However,
this result need not be very useful, e.g., in the case of semidiscretization of
PDEs. Indeed, we observe that m can be very large there and the number
of preconditioned iterations can be (approximately) equal to a constant,
usually much lower than 2mµ (see Sect. 4 (numerical experiments and
related remarks) and [3,4]). Indeed, there are many classes of PDEs which,
after semidiscretization, lead to a preconditioned spectrum whose outliers
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are clustered into a few clusters outside the main one in (1, 0) ∈ C, as
the spatial discretization is refined (see, e.g., [5]). Therefore, in these cases,
a sharper analysis as in [8] may give more detailed information on the
convergence process (see [5] also).

We observe that the underlying block preconditioner can also be applied
to a normal equation approach to solve (4). However, we have found that
GMRES usually gives better results (see [6]). The analysis of the conver-
gence rate for the conjugate gradients for the normal equation can be easily
adapted for {ω}-circulant preconditioners from [6]. It is worth noting that the
computational cost of the various preconditioners described in the previous
sections is O(ms log s) if J is banded, say. Details on the implementation
and the computational complexity of using block circulant preconditioners
can be found in [3]. Finally, it is worth mentioning that most of the results in
the previous sections can be easily adapted for the numerical integration of
(multi) delay differential equations, boundary value problems, differential
algebraic equations (see [27]) and the other classes of problem described in
[9].

4 Numerical tests

In this section, we consider differential problems originating from the semi-
discretization of model problems from partial differential equations. We
compare the number of iterations needed to converge for GMRES for dif-
ferent preconditioners. The initial guess for the iterative solver is the zero
vector. The stopping criterion is ‖rj‖2 < 10−6‖b‖2, rj being the true resid-
ual after j iterations. All experiments are performed in MATLAB.

In [3,4] it was observed that a high condition number for the (precon-
ditioner) matrix can give an ineffective delayed convergence of the Krylov
accelerator (see [21] also). To this end, we list a lower bound for the con-
dition number of the matrices of the underlying linear systems and for the
related preconditioners by the LINPACK estimated 1-norm procedure. We
see that the condition numbers of the original system, P -circulant, modi-
fied Strang as in [4] (denoted by “MS-circ” in the tables) and {ω}-circulant
based on Strang’s (i.e., using a skew-circulant approximation for A and B)
preconditioners, are often comparable, in contrast to what happens for the
preconditioner based on the Strang approximation. We observe that the un-
derlying nonpreconditioned matrices are well-conditioned (see [6]), but this
property is lost if the preconditioner chosen is ill-conditioned. Therefore, the
convergence of preconditioned GMRES iterations gets slower. As expected,
this is confirmed by all the numerical experiments as well.
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Example 1 We consider the advection equation of first order with periodic
boundary conditions:




∂u

∂t
− ∂u

∂x
= 0,

u(x, 0) = x(π − x), x ∈ [0, 3],
u(π, t) = u(0, t), t ∈ [0, 6].

We discretize the partial derivative ∂/∂x using central differences and step
size δx = 3/m. We obtain a family of systems of initial value problem with
the m×m Jacobian matrix

Jm = 1

2δx




0 −1 −1

1
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . −1
1 1 0



.

Note that Jm has pure imaginary eigenvalues and the underlying discretiza-
tion gives a stable scheme (see, e.g., [28]). The generalized Adams method
with µ = 3 (order 4, see [9] for the coefficients), is used to solve the above
differential equation. The numbers of matrix-vector products required to
solve the related linear system are given in Table 1. The unpreconditioned
and preconditioned spectrum of eigenvalues ofM are displayed in Fig. 2 (ex-
cept for two outliers that are in quite a “safe” region in the right half plane).

Table 1. Advection equation (Example 1). Number of matrix-vector multiplications required
for convergence of full GMRES. The ∗ denotes that the preconditioner cannot be used and
its condition number is undefined.

No precond. Strang-circ P -circ Skew-circ MS-circ

m s It. Cond. It. Cond. It. Cond. It. Cond. It. Cond.

25 8 157 170 * * 23 130 30 150 26 1900

16 136 280 * * 22 200 28 1700 24 6300

32 98 480 * * 21 340 21 840 23 9600

50 8 301 330 23 5700 20 230 36 570 23 5750

16 327 530 28 40000 23 340 30 7900 28 39000

32 233 770 34 69000 28 580 24 2500 34 69000

75 8 >500 450 * * 20 330 38 9100 27 6800

16 >500 660 * * 25 500 31 590 51 65000

32 430 1200 * * 26 780 43 3400 42 156300
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Fig. 2. Advection equation (Example 1). Eigenvalue distribution of the matrixM before and
after skew-circulant preconditioning (s = 16, m = 25)

The spectrum of the P -circulant preconditioned matrix for Example 1 can
be found in Fig. 4(a).

It can be observed that the skew-circulant-based block preconditioned
iterations usually converge fast, while the Strang-based one cannot be used
for odd m because the Jacobian matrix has an eigenvalue equal to zero. For
even values of m, the above preconditioner is nonsingular but can be very
ill-conditioned. Notice that, form odd, the condition number of the precon-
ditioner based on the modified Strang approximation can be greater with
respect to the P -circulant and to the skew-circulant block preconditioners.

We remark that the performance of other block {ω}-circulant precondi-
tioners is about the same as that of block skew-circulant preconditioners,
but deteriorates when |θ | is small. In particular, this happens when there
exist eigenvalues of the Jacobian matrix Jm that are zero (or very small in
modulus), positive or complex such that the convex hull of the spectrum
of the preconditioned matrix encloses the origin of the complex plane (see
[5]). Therefore, we only present the results of block skew-circulant precon-
ditioners in the paper.
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Example 2 We consider the diffusion equation in a rectangular domain with
a variable diffusion coefficient:




∂u

∂t
= ∇(c∇u), (x, y) ∈ R = [0, 3] × [0, 3],

u((x, y), t) = 0, (x, y) ∈ ∂R, t ∈ [0, 6],
u((x, y), 0) = x y, (x, y) ∈ R,

where c = c(x, y) is a suitable smooth function. If we discretize the dif-
ferential operator with centered differences and step-size δx = 3/(m+ 1),
we obtain a system of m2 ordinary differential equations whose m2 × m2

Jacobian matrix Jm is block tridiagonal (Toeplitz if and only if c(x, y) is
constant). Here we assume that

c(x, y) = exp(−xβ − yβ), β ≥ 0. (17)

We note that the underlying Jacobian matrix has real and strictly negative
eigenvalues.

The generalized Adams method with µ = 4 (order 5, see [9] for the
coefficients) is used to solve the above differential problem.

The numbers of matrix-vector products needed to solve the related lin-
ear system, when β = 3, are given in Table 2. The unpreconditioned and
skew-circulant preconditioned spectrums of eigenvalues ofM are displayed
in Fig. 3; compare this with the block preconditioner using P -circulant ma-
trices (see Fig. 4(b)).

Table 2. Diffusion equation (Example 2), β = 3 in (17). Number of matrix-vector multipli-
cations required for the convergence of full GMRES. The † denotes that the preconditioner
cannot be used because severely ill-conditioned and its condition number is greater than
1030

No precond. Strang-circ P -circ Skew-circ MS-circ

m s It. Cond. It. Cond. It. Cond. It. Cond. It. Cond.

8 8 56 500 51 1021 13 400 9 200 12 340

16 67 500 51 1021 13 400 9 200 13 340

24 75 500 52 1021 14 400 9 200 13 340

16 8 161 2500 >300 1024 13 1600 9 1100 13 1660

16 182 2500 >300 1024 14 1600 9 1100 13 1660

24 190 2500 >300 1024 14 1600 9 1100 13 1660

24 8 >300 5600 † † 13 3900 10 2700 13 3900

16 >300 5600 † † 14 3900 9 2700 13 3900

24 >300 5600 † † 14 3900 9 2700 14 3900
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Fig. 3. Diffusion equation (Example 2), β = 3 in (17). Eigenvalue distribution of the matrix
M before and after skew-circulant preconditioning (s = 8, m = 16)

We observe that the Strang preconditioner and {ω}-circulant precondi-
tioners with ω = exp(iθ) and |θ | small, can be safely used only if β is
between 0 and 1 and the width of the spatial grid is not too small. For in-
stance, when β = 1 or β = 2, the number of iterations of GMRES using the
preconditioner based on Strang’s circulant matrices increases significantly
whenm increases. Moreover, we find that the ill-conditioning of the Strang
approximation (i.e., θ = 0) can already give polluted numerical results when
m is of the order of 50 and β < 3. For β ≥ 3, the Strang block precon-
ditioner (and then {ω}-circulant preconditioners with small |θ |) cannot be
used at all because it is severely ill-conditioned (see Table 2). However, the
new skew-circulant preconditioner for this example performs well, slightly
faster than the MS-circulant, independently of how large m is.

We have observed that {ω}-P -circulant preconditioners perform simi-
larly to the P -circulant for the two model problems considered in this sec-
tion. However, the former can be useful when, e.g., Jm is ill-conditioned and
the given formula (3) is not APν,µ−ν-stable for {ω}-circulant precondition-
ers, while it is APν,µ−ν-stable for the {ω}-P -circulant preconditioners.
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Fig. 4. Eigenvalue distribution of the preconditioned matrix but using the preconditioner
based on P -circulant matrices. (a): Parameter as in Fig. 2(b); (b): parameter as in Fig. 3(b)

It is worth noting that the solution of the linear system (4) related to
Example 2 with s = 24 and m = 16 (see Table 2) by MATLAB’s built-in
sparse direct solver (P -circulant or MS-circulant preconditioners for GM-
RES) requires roughly more than 20 (1.5) times more flops than using the
skew-circulant preconditioned GMRES.
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