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Abstract. In this paper, a recently introduced block circulant preconditioner for the linear
systems of the codes for ordinary differential equations (ODEs) is investigated. Most ODE codes
based on implicit formulas, at each integration step, need the solution of one or more unsymmetric
linear systems that are often large and sparse. Here, the boundary value methods, a class of implicit
methods for the numerical integration of ODEs based on linear multistep formulas, are considered
more in detail for initial value problems.

Theoretical and practical arguments are given to show that the block circulant preconditioner
can give fast preconditioned iterations for various classes of differential problems. Moreover, the
P-circulants, a recently introduced circulant approximation for unsymmetric Toeplitz matrices, are
shown to be more suitable sometimes than other circulant matrices for the underlying block precon-
ditioner.
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1. Introduction. The aim of this paper is to study a new class of block precon-
ditioners for the linear systems

Mx = b(1.1)

arising in the codes for the numerical integration of ordinary differential equations
(ODEs) based on linear multistep formulas (LMFs) (see, e.g., [18]). The solution
of the large and sparse system of equations, arising at each integration step, is one
of the crucial parts in a numerical integrator based on implicit formulas; see, e.g.,
[12, 4]. Here will be considered the linear systems arising in boundary value methods
(BVMs) (see [3] and references therein) or that can be reduced to those with some
transformation on (1.1). BVMs are a class of numerical methods based on LMFs
solving initial and boundary value problems for ordinary differential equations.

The underlying block preconditioner is based on the circulant approximation of
the (small rank perturbation of) band Toeplitz matrices arising in (1.1). To this end,
a new type of circulant approximation for Toeplitz matrices introduced in [1], the
P-circulant matrices, or P-circulants, can be effective. T. F. Chan’s optimal [5] and
Strang’s circulant [23] will also be considered. Other techniques for band Toeplitz
linear systems can be found, e.g., in [11, 6, 16], but they are effective only in the
symmetric case while, in general, matrices for (1.1) are not symmetric.

An n × n matrix T is said to be Toeplitz if its entries are constant along its
diagonals; an n × n matrix C is called circulant if it is a Toeplitz matrix with the
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following pattern:

C = circ(c0, . . . , cn−1) =











c0 c1 . . . cn−1

cn−1 c0 cn−2

...
...

. . .
...

c1 c2 . . . c0











.(1.2)

In the last decade, there has been intensive work on preconditioners for Toeplitz ma-
trices and their spectral properties; see, for instance, the survey [8], and the references
therein, and [11, 5, 6, 7, 14, 16, 21, 23, 24].

Consider for simplicity the linear initial value problem (IVP)

{

y′(t) = f(t, y(t)) := J y(t) + g(t), t ∈ (t0, T ],
y(t0) = η,

(1.3)

where y(t), g(t) : R → R
m, J ∈ R

m×m, η ∈ R
m. The matrix M (1.1) related to the

underlying LMF-based code, in general, can be written as

M = A⊗ Im − hB ⊗ J,(1.4)

where A, B are the matrices of the integration method, h is the integration stepsize,
and ⊗ is the Kronecker product (see, e.g., [19, Chapter 12]). A and B are usually
reducible to Toeplitz plus small rank perturbation pattern. M turns out to be large
and sparse when the Jacobian matrix of the underlying system of ODEs (and/or A
and B) is so. In that case, the solution of the linear system (1.1) via a direct method
is often computationally expensive and not easily parallelizable; therefore the use of
a preconditioned iterative method is preferable.

We stress that the proposed iterative technique can be naturally generalized to
the case of d-level structures arising in d-dimensional partial differential equations
(PDEs). In that case, the direct solvers become very expensive since they do not
exploit properly the multiple band structure (see section 5, Example 2).

It is interesting to observe that P-circulants preserve important properties occur-
ring in the matrices A, B in (1.4), such as

• invertibility,
• eigenvalues in the right half plane,
• almost the same sparsity pattern.

Moreover, our block preconditioner has interesting implementation potentialities, in
both a scalar and a parallel computing environment.

Under appropriate hypotheses, the results obtained here can be extended to the
case where the given ODE is nonlinear. Indeed, we can observe that the discrete
nonlinear problem corresponding to the approximation by an LMF can be solved
iteratively by considering, at each step, discrete problems such as (1.1). Notice that
there are several important additional topics to take into account in the nonlinear
case, such as the convergence of the modified Newton approach (see, e.g., [13]) and
the mesh selection strategy.

The paper is organized as follows. In section 2 we recall some classes of BVMs.
In section 3 we introduce the block circulant preconditioner and the circulant ap-
proximations. Section 4 contains some notes on the computational cost and on the
convergence of preconditioned iterations. Finally, section 5 contains some numerical
tests.
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2. BVMs and their matrix form. Recently, the class of BVMs for differential
equations has been introduced (see [3] and references therein). Such methods are
based on LMFs. In order to briefly describe them, suppose for simplicity that we
have the linear IVP (1.3). A BVM approximates the solution of (1.3) by means of
a discrete boundary value problem (BVP). The latter is obtained by using a k-step
linear multistep formula of order p over a uniform mesh tj = t0 + j h, j = 0, . . . , s,
h = (T − t0)/s:

k−ν
∑

i=−ν

αi+νyn+i = h

k−ν
∑

i=−ν

βi+νfn+i, n = ν, . . . , s− k + ν.(2.1)

As usual, yn is the discrete approximation to y(tn), fn = f(tn, yn) ≡ J yn + gn,
gn = g(tn), and the values

y0, . . . , yν−1, ys−k+ν+1, . . . , ys(2.2)

are given. We observe that the IVP (1.3) provides only the initial value y0. It is
possible to avoid supplying the other conditions in (2.2) by coupling the main method
(2.1) with other difference schemes of order p, called additional methods, which provide
the set of equations

k
∑

i=0

α
(j)
i yi = h

k
∑

i=0

β
(j)
i fi, j = 1, . . . , ν − 1,(2.3)

k
∑

i=0

α
(j)
k−iys−i = h

k
∑

i=0

β
(j)
k−ifs−i, j = s− k + ν + 1, . . . , s,(2.4)

independent of those in (2.1). For simplicity, such formulas are assumed to have the
same number of steps as the main method. The equations (2.1), (2.3), and (2.4) define
the use of a BVM on problem (1.3). The advantage in using BVMs, over the known
LMFs requiring only initial conditions, derives from their stability properties.

It is useful to cast BVMs in matrix form. This is done by introducing the matrices
A,B ∈ R

(s+1)×(s+1)

A =













































1 · · · 0

α
(1)
0 · · · α

(1)
k

...
...

...

α
(ν−1)
0 · · · α

(ν−1)
k

α0 · · · αk

α0 · · · αk

. . .
. . .

. . .

α0 · · · αk

α
(s−k+ν+1)
0 · · · α

(s−k+ν+1)
k

...
...

...

α
(s)
0 · · · α

(s)
k













































,(2.5)

and B similarly but with βj ’s instead of αj ’s and all zeros in its first row. The discrete
problem generated by the application of the BVM (2.1)–(2.4) to problem (1.3) is then
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given by

M Y = e1 ⊗ η + h (B ⊗ I)g,(2.6)

e1 = (1, 0, . . . , 0)T ∈ R
s+1 , Y = (y0, . . . , ys)

T , g = (g0, . . . , gs)
T ,

M = A⊗ Im − hB ⊗ J.

The matrix M in (2.6) turns out to be large and sparse when s≫ k and/or J is large
and sparse.

2.1. Some families of BVMs. Here we give the definitions of some families of
BVMs (see [3] for details). All considered methods are consistent, i.e., they satisfy
the conditions

ρ(1) = 0, ρ′(1) = σ(1),

where ρ(z) and σ(z) denote, as usual, the two characteristic polynomials associated
with the given method, i.e.,

ρ(z) = zν
k−ν
∑

j=−ν

αj+ν z
j , σ(z) = zν

k−ν
∑

j=−ν

βj+ν z
j .(2.7)

The generalized BDF, or GBDF, are a generalization of the backward differentiation
formulas (BDF) (see [13]). They can be written in the form

k−ν
∑

i=−ν

αi+ν yn+i = h fn, n = ν, . . . , s− k + ν,(2.8)

where the coefficients {αi} are uniquely determined by imposing that the method has
maximum order, i.e., k, for all k ≥ 1, with ν = (k+2)/2 if k is even and ν = (k+1)/2
if k is odd. Such methods are well suited for stiff problems. (See [3, Chapter 5] for
details.)

The generalized Adams methods (GAM) are a generalization of the Adams–
Moulton methods (see [13]). They can be written in the form

yn+ν − yn+ν−1 = h

k−ν
∑

i=−ν

βi+ν fn+i,(2.9)

where the coefficients {βi} are uniquely determined by imposing that the method has
maximum order, i.e., k + 1, for all k ≥ 1, with ν = k/2 if k is even and (k + 1)/2 if
k is odd. When k is odd, they are called extended trapezoidal rules (ETR), because
they share the same stability properties of the trapezoidal rule. Such methods turn
out to be well suited for approximating either Hamiltonian problems or continuous
BVPs. When k is even, GAM are well suited for stiff problems (see [3, Chapters 6
and 7] for details).

ETR2 are another generalization of the trapezoidal rule belonging to the class of
symmetric schemes:

ν−1
∑

i=−ν

αi+ν yn+i =
h

2
(fn + fn−1),(2.10)
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where k = 2ν−1 is odd and the coefficients {αi} are uniquely determined by imposing
that the method has maximum order, i.e., k + 1, k = 1, 3, 5, . . .. When ν = 1,
then k = 1 and the formulas (2.10), (2.9) become the trapezoidal rule. Indeed, all
such formulas can be regarded as generalizations of this method, sharing the same
stability properties. Such methods turn out to be well suited for approximating both
Hamiltonian problems and continuous BVPs (see [3, Chapter 7] for details).

3. Circulant approximations for the block preconditioner. LetM in (2.6)
be the small rank perturbation of a block Toeplitz matrix generated by a BVM as
in the previous section. A way to solve such large, sparse linear systems is through
an iterative method; see, e.g., [12, 4]. To accelerate convergence, a preconditioner P
should be chosen to approximate the matrix M while keeping the system

P x = c

cheap enough to solve with respect to the unpreconditioned iterations.
In order to obtain the preconditioner, let us consider the following approximation

of the matrix M :

P = Ă⊗ Im − h B̆ ⊗ Ĵ ,(3.1)

where Ĵ can be a suitable approximation of the Jacobian matrix of the ODE, or the
Jacobian itself. Ă, B̆ are circulant matrices the entries of which are derived from the
coefficients of the main method (2.1) as follows:

Ă = circ(α̃j), α̃j = cj,1(s)αj+ν + cj,2(s)αj+ν−(s+1),

B̆ = circ(β̃j), β̃j = cj,3(s)βj+ν + cj,4(s)βj+ν−(s+1), j = 0, . . . , s,(3.2)

where the cj,i(s), i = 1, . . . , 4, j = 0, . . . , s are linear in j. It is understood that αj

(βj) is zero for j < 0 or j > k in (3.2). The coefficients ci,j(s) in (3.2) are chosen in

such a way that Ă, B̆ are suitable approximations of A, B in (2.5), respectively.
The approximation of A, B with Chan’s optimal circulant (see [5]) requires that

cj,1(s) = cj,3(s) = 1 − j

s+ 1
, cj,2(s) = cj,4(s) =

j

s+ 1
, j = 0, . . . , s,(3.3)

while for Strang’s natural circulant (see [23])

cj,1(s) = cj,3(s) = 1, j = 0, . . . ,

⌊

s+ 1

2

⌋

,

cj,2(s) = cj,4(s) = 1, j =

⌊

s+ 1

2

⌋

+ 1, . . . , s, cr,j(s) = 0 otherwise.(3.4)

Let us observe that, for an (s + 1) × (s + 1) Toeplitz matrix T , Chan’s circulant
C = C(T ) is defined to be the minimizer of

‖T − C‖F(3.5)

over all (s+ 1) × (s+ 1) circulant matrices C; see [5]. (‖·‖F is the Frobenius norm.)
Consider, instead of (3.3), the following definition of the coefficients cj,i(s):

cj,1(s) = cj,3(s) = 1 +
j

s+ 1
, cj,2(s) = cj,4(s) =

j

s+ 1
, j = 0, . . . , s.(3.6)
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We will call P-circulants the circulant matrices defined in (3.2), (3.6). The definitions
(3.2), (3.3), (3.2), (3.4) and (3.2), (3.6) differ for a quantity that vanishes as s increases
for banded matrices, and (3.5) is not minimized for P-circulants. Despite this, the
P-circulant matrices Ă, B̆, defined as (3.2), (3.6), are nonsingular and appropriate
approximations of A, B given by (2.5), as observed in [2].

3.1. Spectral properties of the block preconditioner. We observe that
positive stability is a sufficient condition for the invertibility of a matrix. Recall that
a square matrix A is said to be positive stable if its eigenvalues have positive real
part (see, e.g., [15]). The matrices A, B of the BVMs we consider here are assumed
to be positive stable. This assumption is a consequence of the stability properties of
the formulas; see [3]. It is interesting to observe that the P-circulant approximations
Ă, B̆ given by (3.2), (3.6) preserve positive stability for the methods described in
section 2.1 (see [2]). Let Ă = circ(α̃j) be a (s+ 1) × (s+ 1) circulant matrix defined
in (3.2), (3.6) from the first characteristic polynomial of the main method (2.1). The
eigenvalues φj , j = 0, . . . , s, of Ă can be written as linear combinations of the entries
of its first row (see [10]):

φl =

s
∑

j=0

α̃jǫ
jl, l = 0, . . . , s, ǫ = e2π i/(s+1),(3.7)

where i is the imaginary unit. From (3.2), (3.6) one obtains

φl =

s
∑

j=0

αj+ν

(

1 +
j

s+ 1

)

ǫjl +

s
∑

j=0

(

j

s+ 1
αj+ν−(s+1)

)

ǫjl,

which can be restated as

φl =

k−ν
∑

j=−ν

αj+ν

(

1 +
j

s+ 1

)

ǫjl, l = 0, . . . , s.(3.8)

A similar expression holds for the eigenvalues of B̆:

ψl =

k−ν
∑

j=−ν

βj+ν

(

1 +
j

s+ 1

)

ǫjl, l = 0, . . . , s.(3.9)

In [2] we have observed that, for some A-stable (Aν,k−ν-stable, a generalization of
A-stability for (2.1) if k > ν; see [3]) BVMs, the l2-norms of the P-circulant matrices
Ă, B̆ are uniformly bounded and the l2-norms of their inverses are bounded with
respect to the number of steps k of the method (2.1), i.e.,

‖Ă‖2 ≤ c1, ‖B̆‖2 ≤ c2, ‖Ă−1‖2 ≤ c3 · (s+ 1), ‖B̆−1‖2 ≤ c4 · (s+ 1),

(3.10)
where cj , j = 1, . . . , 4, are constants of the order of unity. Exceptions are the GBDF

(they have B̆ ≡ I) and the ETR2.
Notice that the circulant matrix Ă defined as the optimal circulant (3.2), (3.3),

may become severely ill-conditioned as k increases (see [2]).
We can give a sample of sufficient conditions for the block preconditioner (3.1) to

be positive stable. From here on, for simplicity, we will assume the Jacobian matrix
to be diagonalizable.
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Proposition 3.1. Suppose that the eigenvalues µr, r = 1, . . . ,m, of the approx-
imation of the Jacobian matrix J of the given ODE are in the left half plane, i.e.,
they have nonpositive real part. Each of the following conditions is sufficient for the
positive stability of the block preconditioner P given by (3.1):

1. Ă, B̆ are P-circulants and (2.1) belongs to GBDF;
2. Ă, B̆ are positive stable and B̆ is Hermitian;
3. Ă, B̆ are positive stable and, for j 6= 0, (s+ 1)/2, we have

|Im(µr)| <
(

Re(φj) − hRe(ψj)Re(µr)

h |Im(ψj)|

)

, r = 1, . . . ,m,(3.11)

where φj, ψj, j = 0, . . . , s, are the eigenvalues of Ă, B̆, respectively.
Proof. If J is the Jacobian matrix,

V −1JV = D = diag(µ1, . . . , µm).(3.12)

The circulant matrices Ă and B̆ are simultaneously diagonalized by the unitary Fourier
matrix F (see [10])

F = (F )j,r , (F )j,r =
1√
s+ 1

ǫjr, ǫ = e2π i/(s+1), 0 ≤ j, r ≤ s,(3.13)

i.e.,

F ĂF ∗ = ΛA = diag(φ0, . . . , φs), F B̆ F ∗ = ΛB = diag(ψ0, . . . , ψs).

We can write

P = (F ∗ ⊗ Im) (ΛA ⊗ Im − ΛB ⊗ hJ) (F ⊗ Im)(3.14)

= (F ∗ ⊗ V ) (ΛA ⊗ Im − ΛB ⊗ hD)
(

F ⊗ V −1
)

,

where ΛA, ΛB are nonsingular diagonal matrices of size s+ 1. Let

Λ̆ = ΛA ⊗ Im − ΛB ⊗ hD,(3.15)

Λ̆ = diag (φ0 − hψ0µ1, . . . , φ0 − hψ0µm, . . . ,

φs − hψsµ1, . . . , φs − hψsµm) .(3.16)

Λ̆ is diagonal and, if

Re(φj − hψjµr) > 0, j = 0, . . . , s, r = 1, . . . ,m,(3.17)

then Λ̆ (and P ) is also positive stable. If Ă, B̆ are P-circulants, or, more generally, for
all block preconditioners whose matrices Ă, B̆ are positive stable and B̆ is Hermitian,
we have that (3.17) holds true. Indeed, by the hypotheses, we have

Re(µr) ≤ 0, Re(φj),Re(ψj) > 0

and Im(ψj) = 0, j = 0, . . . , s, r = 1, . . . ,m.

If B̆ is not Hermitian, the condition (3.17) is equivalent to

Re(φj) + h(Im(ψj)Im(µr) − Re(ψj)Re(µr)) > 0,(3.18)
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which can be restated as in (3.11).
Notice that P may not be positive stable for certain formulas, even if the Jacobian

matrix J has the spectrum in the left half plane.
Let us observe that, if the eigenvalues µr, r = 1, . . . ,m, of the matrix J of the

IVP are in the left half plane, then the block preconditioner’s matrix P is nonsingular
for all schemes whose matrices Ă, B̆ in (3.2) are such that

Re

(

φj
ψj

)

, j = 0, . . . , s,(3.19)

is positive. Indeed, P is singular if and only if there exists at least a couple j, r,
j ∈ {0, . . . , s}, r ∈ {1, . . . ,m}, such that (see Proposition 3.1 and (3.16))

φj − hψjµr = 0.

This cannot happen if Re(φj/ψj) is positive.
We have verified that this is the case of P-circulant matrices for the BVMs intro-

duced in section 2.1. Notice that for GBDF, this is a consequence of positive stability
of P-circulants.

Proposition 3.2. If Re(µr) < −δ, r = 1, . . . ,m, and δ > 0, the block precon-
ditioner P given by (3.1) which uses Strang’s approximation (3.2), (3.4) is invertible,
regardless of the stepsize h > 0, for all Aν,k−ν-stable methods such that their boundary
locus ρ(z)/σ(z), |z| = 1, is a regular Jordan curve.

Proof. Indeed, under the above hypotheses, we have

Re(ρ(z)/σ(z)) ≥ 0, |z| = 1

(see [3, Theorem 4.7.2]). By observing that Re(ρ(ǫj)/σ(ǫj)), j = 0, . . . , s, ǫ =
e2πi/(s+1), is the ratio (3.19) when Strang’s approximation is in use, it follows that
φj − hψjµr cannot be zero.

For more details on the boundary locus of an LMF, see [18] or [3].
Strang’s approximation (3.4) for our block preconditioner was considered also in

[9].

4. Using the preconditioner.

4.1. The computational cost. We have that the typical computational cost
of the block circulant preconditioner (3.1) for an iterative Krylov subspace method is
of the order of

(c1ms log s+ c2 c3χ1(J))n+ c3χ2(J)(4.1)

floating point operations. The ci, i = 1, 2, are constants of moderate size, c3 ≤ (s+1),
n is the number of iterations of the iterative method, and χi(J), i = 1, 2, are suitable
functions of the size and the structure of J , as explained in the sequel.

From (3.14), we can write P as

P = (F ∗ ⊗ Im)G(F ⊗ Im).(4.2)

G is a (s+ 1)-block diagonal matrix with m×m diagonal blocks,

Gj = φjIm − hψj J, j = 0, . . . , s,(4.3)
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that, under suitable assumptions (see, e.g., the previous section) are nonsingular
matrices. Thus, to solve the linear systems whose matrices are given by (3.1), we need
to apply FFTs of length s + 1 to suitable permutations of the vector ṽ (asymptotic
cost: O(ms log(s)) operations). After this, we have to solve the s + 1 linear systems
whose matrices are given by (4.3). Denote with χ2(J) the number of flops required for
the factorization of Gj and with χ1(J) the cost of the related back-substitution. We
have, as an example, χi(J) = O(m), i = 1, 2, if J has a few nonzero diagonal entries
(this is the case of the examples of section 5), or χ2(J) = O(m3), χ1(J) = O(m2), if
J is dense and unstructured, etc. The decompositions should be computed only once
and then stored.

If J is cheap enough to be diagonalized, and the condition number of V is mod-
erate, where D = V −1JV , the solution of the linear systems (2.6) can be found by
direct inversion. Unfortunately, such hypotheses are relatively infrequent, especially
for nonlinear problems. This is why we have not used the direct inversion for Examples
1 and 2 in section 5 even if possible (Example 3 has a nondiagonalizable Jacobian).

Notice that sometimes we do not need to solve all s + 1 linear systems (4.3).
Indeed, after the stepsize h has been chosen, we can check if (for those j = 0, . . . , s
such that φj 6= 0), the following condition is satisfied:

h

∣

∣

∣

∣

ψj

φj

∣

∣

∣

∣

‖J‖ < 1,(4.4)

where ψj , φj are the eigenvalues of B̆, Ă, respectively. For those j such that (4.4)
holds true, it can be observed that

G−1
j ≈ φ−1

j

(

Im + h
ψj

φj
J + h2

ψ2
j

φ2
j

J2 + · · · + hr
ψr
j

φrj
Jr

)

,(4.5)

where r ≥ 1 is an integer and ‖·‖ is any norm such that ‖I‖ = 1. We have experienced
that, truncating (4.5) to the linear term, we have a cheap and effective approximation
for G−1

j .
The condition (4.4) has proved useful also for stiff (nonlinear) problems. Indeed,

often there are several subintervals of integration where the condition (4.4) is satisfied
for some values of j ∈ {0, . . . , s}. As an example, this is the case of van der Pol’s
equation







y′1 = y2,
y′2 = −y1 + µy2(1 − y2

1), t ∈ [0, µ],
y1(0) = 2, y2(0) = 0.

(4.6)

If µ is large, (4.6) is stiff (see, e.g., [13]). However, we have experienced (up to
µ = 1000) that the condition (4.4) is satisfied in several mesh intervals for most of
the indexes j (except in the layer regions when µ is large). Notice that Rj = |ψj/φj |
is less than 1 for the BVMs considered here for several j, j ∈ {0, . . . , s}. See Figure
4.1.

The matrices Gj occur in conjugate pairs, and several other ideas are possible to
exploit their special structure; see [13, chapter IV.8].

The computational cost of the underlying block circulant preconditioners can be
reduced defining ad hoc methods for differential equations. Indeed, the coefficients
αj , βj , j = 0, . . . , k, for the LMF (2.1) can be chosen such that the following ratio is



776 D. BERTACCINI

0 50 100

10
−1

10
0

ETR2, k=7, s=128

j

Rj

0 50 100

10
−1

10
0

ETR, k=7, s=128

j

Rj

0 50 100

10
0

GBDF, k=8, s=128

j

Rj

0 50 100
10

−1

10
0

GAM, k=8, s=128

j

Rj

Fig. 4.1. Rj = |ψj/φj |, j = 0, . . . , s, for k = 7, 8 (GBDF, GAM, ETR, ETR2 formulas).

kept constant:

ψj

φj
= λ, j = 0, . . . , s,

where φj , ψj are, respectively, the eigenvalues of the P-circulant matrices Ă, B̆. Using
those methods, we need only one factorization of an m×m matrix which has (almost)
the same sparsity pattern of the Jacobian matrix of the underlying ODE. Notice that
this process has some analogy with the diagonally implicit Runge–Kutta methods (see
[13]).

An alternative approach to the direct solution of the linear systems (4.3) can be
effective for particular problems. This is the case of the systems of time-dependent
partial differential equations; see [14] and references therein. We will pursue a similar
approach for our block preconditioner in a future work.

Finally, the block preconditioner is inherently parallel. The s + 1 linear systems
(4.3) are independent and can be solved in parallel.

4.2. Convergence of the preconditioned iterations. We expect fast conver-
gence of preconditioned iterations if the spectrum of the block preconditioned matrix
is clustered around (1, 0) ∈ C. To this end, notice that P−1M , where P is the block
P-circulant or the block Strang’s preconditioner, can be written as the sum of the
identity, a low rank and a small norm matrix.

Theorem 4.1. Let M be the matrix of the linear system (2.6) for the schemes
described in section 2.1, and let P be its block P-circulant preconditioner as (3.1).
Then, for fixed δ > 0, there exist Cδ ≥ 0, sδ ≥ k such that, for all s ≥ sδ (s+ 1 is the
size of A, B),

P−1M = I +M
(1)
δ +M

(2)
δ ,(4.7)
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where rank(M
(2)
δ ) ≤ m [2(k + 1) + Cδ] and ‖M (1)

δ ‖2 ≤ δ cJ , where cJ does not depend
on s.

If P is defined as Strang’s circulant, Cδ = ‖M (1)
δ ‖ = 0.

Proof. Let E = M − P ,

E = (A− Ă) ⊗ Im − h(B − B̆) ⊗ J

= EA ⊗ Im − hEB ⊗ J

= (E
(1)
A + E

(2)
A ) ⊗ Im − h(E

(1)
B + E

(2)
B ) ⊗ J.(4.8)

Here E
(1)
A is an (s + 1) × (s + 1) Toeplitz matrix with bandwidth m(k + 1) defined

from the coefficients αj of the main method (2.1)

E
(1)
A = (e

(1)
A,rl), e

(1)
A,rl = e

(1)
A,r−l = e

(1)
A,j , j = −s, . . . , s,

and, for P-circulants and optimal circulants,

e
(1)
A,j =















−j
s+ 1αj+ν , j = −ν, . . . , k − ν (P-circulant),

|j|
s+ 1αj+ν , j = −ν, . . . , k − ν (optimal circulant),

0 otherwise.

(4.9)

The entries of E
(1)
B are defined similarly to (4.9), but with βj instead of αj . For

Strang’s natural circulant it is easy to check that E
(1)
A , E

(1)
B are the null matrix; see

(3.2), (3.4).
From the previous equations, we have

P−1M = I + P−1E = I + P−1(E
(1)
A ⊗ Im − hE

(1)
B ⊗ J)

+ P−1(E
(2)
A ⊗ Im − hE

(2)
B ⊗ J) = I + M̃ (1) + M̃ (2),(4.10)

where E
(2)
A , E

(2)
B are (s+ 1) × (s+ 1) matrices whose entries are nonzero at most in

the following four corners:
1. ν × (k + 1) in the upper left;
2. ν × ν, upper right;
3. (k − ν) × (k + 1), lower right;
4. (k − ν) × (k − ν), lower left.

From the above arguments, we have that

rank(E
(2)
A ) ≤ k + 1, rank(E

(2)
B ) ≤ k + 1,

and, if P−1 is well defined,

rank(M̃ (2)) ≤ 2m (k + 1),

independently on the size of Ă, B̆. Thus, if Ă, B̆ are the Strang’s circulants as (3.2),

(3.4), the thesis follows by setting M
(2)
δ = M̃ (2) and by observing that Cδ = ‖M (1)

δ ‖
= 0.
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Let us consider M̃ (1) when Ă, B̆ are P-circulant matrices. From (4.10) we have

M̃ (1) =
1

s+ 1
P−1

(

Ê
(1)
A ⊗ Im − h Ê

(1)
B ⊗ J

)

,(4.11)

where Ê
(1)
A = (s + 1)E

(1)
A , Ê

(1)
B = (s + 1)E

(1)
B are banded Toeplitz matrices whose

infinity norm is constant with respect to their dimension s+ 1.
We are interested in the behavior of P−1M for s → ∞ (and then for h → 0,

h = (T − t0)/s; see section 2.1). To this end, for the spectral properties of the P-
circulant matrices Ă, B̆ (see [2] and section 3.1), M̃ (1) in (4.10) can be written as
the sum of a small rank and a small l2-norm matrix. Indeed, as in the proofs of [21,
Theorems 3.2, 3.4], let us fix δ > 0 and consider the cardinality Cδ of the set

{

l ∈ {0, . . . , s} : |λl(Ă)| ≤ 1

δ

1

s+ 1

}

,

where λl(Ă) are the s + 1 distinct eigenvalues of Ă. For (3.8), λl(Ă) = φk(xl),
xl = 2πl/(s+ 1), l = 0, . . . , s, where

φk(x) =

k−ν
∑

j=−ν

αj+ν

(

1 +
j

s+ 1

)

eijx.(4.12)

The expression φk(x) is a trigonometric polynomial and, as observed in [2], for the
formulas in (2.1),

lim
s→∞

φk(x0) = lim
s→∞

φk(0) = 0, φ′k(x0) 6= 0, lim
s→∞

φ′k(x0) 6= 0,(4.13)

i.e., x0 is a simple zero for lims→∞ φk(x) and

c1
s+ 1

≤ |φk(x)| ≤ c2, Re (φk(x)) > 0, x ∈ R,(4.14)

where c1, c2 are constants of the order of unity. The matrix Ă is normal (because it
is circulant), thus |λl(Ă)| = |φk(xl)| is a singular value. Moreover, for (4.13), (4.14),
and (4.12), if l is small with respect to s,

|φk(xl)| ≥ ĉ
l

s+ 1
,

and, as a consequence,

Cδ ≤ #

{

l : ĉ
l

s+ 1
≤ 1

δ

1

s+ 1

}

≤
⌈

1

δ ĉ

⌉

,(4.15)

which does not depend on s since ĉ is a constant.
Recalling that the circulant matrices are simultaneously diagonalized by the ma-

trix F in (3.13) (see [10]), consider the following splitting:

1

s+ 1
Ă−1 = Θ̂1 + Θ̂2,(4.16)

where the s+ 1 singular values of the circulant matrices Θ̂2, Θ̂1 are

{a0, . . . , aCδ−1, 0, . . . , 0} , {0, . . . , 0, aCδ
, . . . , as} ,(4.17)
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respectively, and δ < aj , j = 0, . . . , Cδ − 1; aj < δ, j = Cδ, . . . , s, aj ≥ ai ≥ 0 if
0 ≤ j < i ≤ s.

Thus, from (4.11) and (4.16) we can set M̃ (1) as

M̃ (1) =
(

Is+1 ⊗ Im − hĂ−1B̆ ⊗ J
)−1 (

(Θ̂1 + Θ̂2) ⊗ Im

)(

Ê
(1)
A ⊗ Im − hÊ

(1)
B ⊗ J

)

,

i.e., we can split the above matrix as

M̃ (1) = M
(1)
δ + M̃

(2)
δ ,

where the products containing Θ̂2 are collected in M̃
(2)
δ , while those containing Θ̂1

are in M
(1)
δ . As a consequence of the above arguments and of (4.10), (4.11), fixed

δ > 0, we can find sδ such that, for all s ≥ sδ,

M̃ (1) = M
(1)
δ + M̃

(2)
δ , rank(M̃

(2)
δ ) ≤ mCδ, ‖Θ̂1Ê

(1)
A ‖2 ≤ δ c, ‖Θ̂1Ê

(1)
B ‖2 ≤ δ c,

where c does not depend on s and usually is of the order of unity. If we define M
(2)
δ =

M̃ (2) + M̃
(2)
δ , the first half of the thesis follows. To check that M

(1)
δ is a small norm

matrix, we can transform M
(1)
δ by the matrices (F ⊗ V −1), (F ∗ ⊗ V ), J = V DV −1.

(We suppose for simplicity that the Jacobian matrix J is diagonalizable.) Thus, if

N = (F ⊗ V −1)M
(1)
δ (F ∗ ⊗ V ), we have

N =
(

Is+1 ⊗ Im − hΛ−1
A ΛB ⊗D

)−1
(F ⊗ Im)

· (Θ̂1 ⊗ Im)
(

Ê
(1)
A ⊗ Im − hÊ

(1)
B ⊗D

)

(F ∗ ⊗ Im)

=
(

Is+1 ⊗ Im − hΛ−1
A ΛB ⊗D

)−1
(Λ1 F ⊗ Im)

·
(

Ê
(1)
A ⊗ Im − hÊ

(1)
B ⊗D

)

(F ∗ ⊗ Im) ,(4.18)

where Θ̂1 = F ∗Λ1F , Ă = F ∗ΛAF , B̆ = F ∗ΛBF , and Λ1, ΛA, ΛB are diagonal
matrices. From (4.18) and the above arguments we have the following bound:

‖N‖2 ≤ ‖
(

Is+1 ⊗ Im − hΛ−1
A ΛB ⊗D

)−1 ‖2‖F Θ̂1E
(1)
A F ∗ ⊗ Im‖2

+ max
r

‖(Is+1 ⊗ Im − hµrΛ
−1
A ΛB)−1(hµrΛ1 F Ê

(1)
B F ∗)‖2

≤ ‖F Θ̂1Ê
(1)
A F ∗‖

minj,r

∣

∣

∣

∣

1 + h(−µr)
ψj

φj

∣

∣

∣

∣

+
‖Λ1FÊ

(1)
B F ∗‖2

minj,r

∣

∣

∣

∣

1
h(−µr)

+
ψj

φj

∣

∣

∣

∣

≤ ‖Θ̂1Ê
(1)
A ‖2

cJ,1
+

‖Θ̂1Ê
(1)
B ‖2

cJ,2
≤ δ ĉJ .(4.19)

Excluding the trivial case µr = 0, we have that Re(1/(h(−µr))) ≥ 0 if the Jacobian
matrix J has eigenvalues whose real parts are nonpositive, and cJ,1, cJ,2 in the above
expression can be bounded uniformly in s if Re(ψj/φj) ≥ ǫ > 0.We have verified that
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this holds, e.g., for the methods of section 2.1. Thus, ĉJ , cJ and then the bound for

‖M (1)
δ ‖2 are independent from s.
Notice that when hµr is small, such as in the nonstiff case, we have simply that

‖M (1)
δ ‖2 ≤ c2‖Θ̂1Ê

(1)
A ‖2 ≤ δ c c2,

where c2 is a constant.
Unfortunately, we cannot state a similar result for the block preconditioner (3.1)

based on the optimal circulants because of the ill-conditioning arising when k is large
(see [2]). Nonetheless, if (4.14) hold true, for fixed k suitably small, similar arguments
to those used for P-circulants can be used to prove convergence.

Despite the fact that ‖M (1)
δ ‖ and Cδ are zero for P given by (3.1) using Strang’s

approximations, we have observed that such a preconditioner is often less suitable than
others. Indeed, as an example, the Strang’s circulants can be severely ill-conditioned
or even singular, e.g., for problems such that some of the eigenvalues of their Jacobian
matrix have zero or small modulus real part (or imaginary part large in absolute value
with respect to the real part). Unfortunately, this is not infrequent, e.g., for stiff
problems; see Example 1 and the remarks in the next section.

5. Numerical results. To show the effectiveness of our block preconditioner,
we will integrate some test problems with the formulas (2.9), a generalization of
Adams–Moulton methods. Such formulas have been found to be quite effective (see
[17]).

Further numerical examples using other formulas can be found in [1].
We will compare the number of matrix-vector products needed to converge for

Bi-CGSTAB [25] (Bi-CGSTAB(2) [22] for Example 1 because Bi-CGSTAB has shown
much more erratic unpreconditioned convergence) and GMRES [20].

The initial guess for the iterative solvers is always zero. The stopping criterion
is ‖rk‖ < 10−6‖b‖, rk true residual. The stability properties of the LMF considered
here (see [3]) allow an application without stepsize restriction. Hence, we will use a
constant stepsize h. All calculations are done in Matlab.

In the columns labeled Is, Ps, Cs and Ss in the tables below, we will give the
number of matrix-vector products needed to the convergence of the unpreconditioned
iterations, preconditioned iterations using P-circulants, and Chan’s and Strang’s ap-
proximations, respectively. A “−” means that convergence was not attained.

The column labeled “rfp” gives a rough estimate of the ratio of the floating
points operations required for, respectively, the P-circulant preconditioned and the
unpreconditioned GMRES.

Example 1. Wave equation.
Let us consider the wave equation







utt − cuxx = 0,
u(x, 0) = g1(x), ut(x, 0) = g2(x), x ∈ [0, π],
u(0, t) = u(π, t) = 0, t ∈ [0, T ].

(5.1)

Approximating the operator ∂2/∂x2 in (5.1) with centered differences and reducing
the obtained IVP to the first order gives the system of 2N ODEs:

{

y′(t) = H2Ny(t), t ∈ [0, T ],
y(0) = η, η = (g1(x1) · · · g1(xN )g2(xN+1) · · · g2(x2N ))T .

(5.2)
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Table 5.1

Wave equation (5.1). Number of matrix-vector products, GAM with k = 3.

GMRES BiCGstab(2)
N s h Is Ps Cs Ss Is Ps Cs Ss rfp

20 8 π/4 298 31 32 31 >1000 40 44 64 .4e-1
50 8 π/4 776 34 35 45 - 45 52 81 .7e-3
100 8 π/4 >1000 34 37 71 - 48 52 109 .2e-3
20 16 π/8 311 36 38 40 609 45 49 104 .5e-1
50 16 π/8 >1000 42 46 62 - 52 60 206 .6e-4
100 16 π/8 >1000 42 45 60 - 52 56 197 -
20 32 π/16 203 35 37 42 744 44 49 125 .1
50 32 π/16 764 44 48 66 - 49 60 333 .1e-1
100 32 π/16 >1000 45 50 80 - 52 60 588 -

0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)  Re

Im

−1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

(a)  Re

Im

Fig. 5.1. Wave equation (5.1). Spectrum of eigenvalues of the matrix M (2.6) before and
after P-circulant preconditioning. (c = 1, GAM with k = 3, s = 16, N = 20, T = 2π.)

The matrix H2N is a Hamiltonian definite one:

H2N =

(

0 IN
TN 0

)

2N×2N

.(5.3)

The matrix H2N has the spectrum of eigenvalues on the imaginary axis. In Table
5.1, we can see the effect of the block preconditioner on the number of iterations
needed to solve the IVP (5.2) using the fourth order GAM (k = 3), T = 2π, g1(x) = 0,
g2(x) = x. In Figures 5.1 and 5.2 we can see the effect on the spectrum of eigenvalues
of the matrix M .

Notice that the block preconditioner based on the Strang’s circulants does not

show the best preconditioned behavior, despite the fact that M
(1)
δ , the small norm

matrix in (4.7), is zero; see also Table 5.2. To this end, see also the remarks at the
end of this section.
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Fig. 5.2. Wave equation (5.1). Spectrum of eigenvalues of the matrix P−1M as in Figure
5.1(b) but after block preconditioning using (a) Chan’s and (b) Strang’s circulants.

Table 5.2

Wave equation (5.1), same parameters as Table 5.1. Comparison of the computational
costs related to the block preconditioner using Strang’s approximations.

GMRES BiCGstab(2)
N s size Ps Cs Ss Ps Cs Ss

20 8 320 1 1.04 1 .63 .7 1
50 8 800 .71 .73 1 .57 .66 1
100 8 1600 .4 .43 1 .45 .49 1
20 16 640 .87 .94 1 .43 .48 1
50 16 1600 .6 .68 1 .24 .28 1
100 16 3200 .27 .29 1 .63 .69 1
20 32 1280 .8 .85 1 .35 .39 1
50 32 3200 .15 .188 1 .59 .66 1
100 32 6400 .089 .1 1 .47 .57 1

Example 2. Heat equation in a rectangle.
Consider the two-dimensional heat equation defined in a rectangular domain:







ut − (uxx + uyy) = 0, (x, y) ∈ Ω = [0, π] × [0, π],
u((x, y), 0) = g(x, y), (x, y) ∈ Ω,
u((x, y), t) = 0, (x, y) ∈ ∂Ω, 0 ≤ t ≤ T.

(5.4)

Using centered differences to approximate the Laplacian operator in the rectangle Ω
with a uniform grid

∆x = ∆y = ∆, ∆ = π/(N + 1)

gives the IVP
{

y′(t) = 1
∆2 L̂Ny(t), t ∈ [0, T ],

y(0) = η, η = (g(x1, y1)), . . . , g(xN , yN )T ,
(5.5)
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Table 5.3

Heat equation (5.4). Number of matrix-vector products, GAM with k = 4.

GMRES BiCGstab
N s h Is Ps Cs Ss Is Ps Cs Ss rfp

4 8 π/4 51 8 8 7 74 14 14 12 .3
8 8 π/4 121 8 8 7 216 14 14 12 .4
20 8 π/4 368 7 7 6 631 14 16 12 .5e-1
4 16 π/8 53 7 7 6 72 12 10 10 .3
8 16 π/8 126 7 7 6 175 12 10 10 .5
20 16 π/8 376 6 6 6 648 12 10 10 .5e-1
4 24 π/12 45 7 7 7 61 10 10 10 .6
8 24 π/12 107 7 7 7 154 12 12 10 .2
20 24 π/12 320 6 6 6 518 12 12 10 .7e-1
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Fig. 5.3. Heat equation (5.4). Spectrum of the eigenvalues of the matrix M (2.6) before
and after P-circulant block preconditioning. (GAM, k = 4, s = 16, N = 20.)

where L̂N is a N2 ×N2 block tridiagonal matrix:

L̂N =













T̂N IN

IN
. . .

. . .

. . .
. . . IN
IN T̂N













, T̂N =













−4 1

1
. . .

. . .

. . .
. . . 1
1 −4













(5.6)

and xi, yj , i, j = 1, . . . , N , in (5.5) are defined accordingly. In Table 5.3, we can see
the effect of the block preconditioner on the number of iterations needed to solve the
IVP (5.5) using fifth order GAM (k = 4), T = 2π, g(x, y) = x y. In Figure 5.3 we can
see the effect on the spectrum of eigenvalues of the matrix M .

As an example, notice that the built-in Matlab sparse direct solver for the linear
system (2.6) used for Example 2 with N = 20, s = 8 (N = 20, s = 16) needs 6
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(18) times more flops than the P-circulant block preconditioned GMRES. In general,
we can save flops provided that M in (2.6) is large enough and the convergence of
preconditioned iterations is achieved in a moderate number of iterations.

Example 3. Wave equation of first order.






ut − ux = 0,
u(x, 0) = g(x), x ∈ [0, π],
u(π, t) = 0, t ∈ [0, 2π].

(5.7)

We discretize the partial derivative ∂/∂x with the first order forward difference and
stepsize ∆x = π/N , xj = j∆x (upwind discretization). We obtain the system of N
ODEs

{

y′(t) = LNy(t), t ∈ [0, 2π],
y(0) = η, η = (g(x0) · · · g(xN−1))

T ,
(5.8)

LN =
1

∆x













−1 1
. . .

. . .

. . . 1
−1













N×N

.

In Table 5.4, we can see the effect of the block preconditioner on the number of
iterations needed to solve the IVP (5.7) using fifth order GAM (k = 4), T = 2π,
g(x) =

√

x(π − x). In Figure 5.4 we can see the effect on the spectrum of eigenvalues
of the matrix M .

As expected, the block preconditioner (3.1) is effective for those classes of differen-
tial problems for which the preconditioned matrix P−1M , M in (2.6), has a clustered

spectrum. For Theorem 4.1, this is true if M
(1)
δ in (4.7) either is zero (as is the case

of Strang’s circulants) or is a suitable perturbation of the null matrix (e.g., has eigen-
values clustered around the origin of the complex plane, as is the case of P-circulants)

and P is not ill-conditioned. Moreover, the small rank matrix M
(2)
δ should have few

and possibly clustered outliers (i.e., the eigenvalues outside the multiple eigenvalue in
the origin of C).

Notice that the above properties may not hold if the preconditioner is ill-condi-
tioned, e.g., because Ă or B̆ are ill-conditioned or even singular. As an example, see
Example 1 for the block preconditioner using Strang’s or Chan’s approximations. A
similar behavior can be observed for Example 2 if a fast decaying diffusion coefficient
is considered. The effect of the ill-conditioning on the convergence of preconditioned
iterations can be reduced significantly if special initial conditions for the underlying
partial differential equations are considered; see the numerical tests in [9]. More
details and analysis of the rate of convergence of preconditioned iterations will be
given in a forthcoming paper.

In this section, we have considered methods based on the formula (2.9). In general,
the same behavior can be observed also for the other formulas of section 2.1, e.g., (2.10)
for Example 1 and (2.8) for Examples 2 and 3.

6. Concluding remarks. In this work we have considered a block circulant
preconditioner we introduced in [1] for the linear systems of certain codes for ordi-
nary differential equations. Such preconditioners are used here implicitly with it-
erative Krylov subspace methods for nonsymmetric systems such as Bi-CGSTAB,
Bi-CGSTAB(2) and GMRES.
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Table 5.4

Wave equation of first order (5.7). Number of matrix-vector products, GAM with k = 4.

GMRES BiCGstab
N s h Is Ps Cs Ss Is Ps Cs Ss rfp

20 8 π/4 38 10 9 10 88 10 10 10 .2
50 8 π/4 100 12 11 12 - 12 12 13 .7e-1
100 8 π/4 239 13 12 13 - 18 16 18 .1e-1
20 16 π/8 28 9 8 8 49 10 10 10 .7
50 16 π/8 87 10 9 9 - 12 12 12 .7e-1
100 16 π/8 222 10 10 10 - 12 14 12 .1e-1
20 32 π/16 36 7 7 7 41 8 8 9 .3
50 32 π/16 70 8 8 8 179 9 9 9 .1
100 32 π/16 176 9 9 9 - 10 12 10 .2e-1
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Fig. 5.4. Wave equation of first order (5.7). Spectrum of the eigenvalues of the matrix
M (2.6) before and after P-circulant preconditioning. (GAM, k = 3, s = 16, N = 20.)

It has been observed that, for some classes of differential problems, the precondi-
tioned iterations are almost independent from the discretization.

Moreover, a recently introduced circulant approximation, called P-circulant, has
been found to be promising in comparison to optimal approximations, in the sense
of the norm (see, e.g., [8, p. 432–434]), such as Strang’s and Chan’s. This has been
confirmed by the analysis in [2].

Despite the fast convergence, the above block preconditioner has a moderate
theoretical parallel complexity and an interesting serial computational cost for the
classes of differential problems such that the spectrum of the block preconditioned
matrix P−1M is clustered.
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