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Abstract.
Nonsymmetric linear systems of algebraic equations which are small rank pertur-

bations of block band-Toeplitz matrices from discretization of time-dependent PDEs
are considered. With a combination of analytical and experimental results, we exam-
ine the convergence characteristics of the GMRES method with circulant-like block
preconditioning for solving these systems.
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1 Introduction.

The main aim of this work is to study the performance of a preconditioning
methodology destined for use with iterative Krylov subspace techniques to com-
pute the solution of the nonsymmetric linear systems arising from the numerical
solution of systems of time-dependent partial differential equations (PDEs). In
particular, some techniques to give a priori upper bounds for the number of
preconditioned GMRES iterations are considered.
To introduce the problem, let us consider the following PDE

∂u(x, t)
∂t

+ Lu(x, t) = g(x, t), x ∈ Ω̂, t ∈ [t0, T ],(1.1)

where Ω̂ is the spatial domain, u is a vector containing the solution functions,
L is the linear differential operator in space and g is the forcing term, with
suitable initial and boundary conditions. Semidiscretizing (1.1) by using finite
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differences or finite elements, we have a system of ordinary differential equations

dy(t)
dt

= f(t, y(t)) := Jy(t) + g(t), t0 ≤ t ≤ T,(1.2)

where y(t), g(t): R → R
m, J ∈ R

m×m, g is a smooth function and (1.2) is coupled
with suitable conditions. Here, the Jacobian matrix J of (1.2) is assumed to be
diagonalizable.
To approximate the solution of (1.1), and thus of (1.2), we consider a general-

ization of a linear multistep technique, i.e., linear multistep formulas but used in
boundary value form (see, e.g., [1], and the references therein). Those methods
approximate the solution of (1.2) by means of a discrete boundary value problem.
The latter is obtained by using a k-step linear multistep formula of order p over
a mesh that, for simplicity, can be supposed uniform, i.e., tj = t0 + jh with
j = 0, . . . , s and h = (T − t0)/s:

k∑
i=0

αiyn+i = h
k∑

i=0

βifn+i, n = 0, . . . , s− k,(1.3)

yn is the discrete approximation to y(tn), fn = f(tn, yn) ≡ Jyn + gn, gn =
g(tn), n = 0, . . . , s and the values y0, . . . , yν−1, ys−k+ν+1, . . . , ys should be given.
We observe that an initial value problem for (1.2) provides only the initial
value y0 or, e.g., a two-point boundary value problem provides the values y0
and ys. In general, the discrete problem based on (1.3) requires ν initial and
k − ν final conditions. The other conditions can be supplied by coupling (1.3)
with other schemes which lead to a set of difference equations independent of
those in (1.3); see [2] for details. The discrete problem generated by the appli-
cation to the problem (1.1) and thus (1.2) can be reduced to a linear system of
algebraic equations. For example, if (1.1) is a continuous initial value problem
with assigned initial conditions, thus such that y0 = η ∈ Rm in is given, the
discrete problem is then given by the following linear system

My = e1 ⊗ η + h(B ⊗ I)g,(1.4)

where

e1 = (1, 0, . . . , 0)T ∈ R
s+1; y = (y0, . . . , ys)T,

(1.5)
g = (g0, . . . , gs)T ∈ R

m(s+1), M = A⊗ I − hB ⊗ J,

and A,B ∈ R(s+1)×(s+1) are small rank perturbations of Toeplitz matrices that,
in general, are nonsymmetric and nonnormal. For more details, see [2].

1.1 Block circulant and skew-circulant preconditioners.

In [2], the use of Krylov subspace methods with block-circulant preconditioners
was proposed to solve (1.4). The block preconditioner considered is given by

P = Ă⊗ Im − hB̆ ⊗ J,(1.6)
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where Ă, B̆ are suitable approximations of matrices A,B, respectively, while J
is the Jacobian matrix or a suitable approximation Ĵ . Two approximations for
A,B are considered here. The first one is based on the P -circulant matrices
introduced in [2]. It is defined as (1.6) where Ă and B̆ are P -circulant matrices,
or, for short, P -circulants, i.e., are circulant matrices whose entries of their first
rows α̃0, . . . , α̃s and β̃0, . . . , β̃s are given by

α̃j =
(
1 +

j

s+ 1

)
αj+ν +

j

s+ 1
αj+ν−(s+1), j = 0, 1, . . . , s,

β̃j =
(
1 +

j

s+ 1

)
βj+ν +

j

s+ 1
βj+ν−(s+1), j = 0, 1, . . . , s,

respectively.
Besides that preconditioner, the generalized Strang preconditioner for (1.4)

was considered in [2] and [7]. Unfortunately, such preconditioner can be ill-
conditioned. For example, when the Jacobian matrix whose eigenvalues have
real part being very small in modulus; see [2]. Thus, the second preconditioner
we consider here was introduced in [4, 5] and is based on (1.6) where Ă, B̆
are skew-circulant approximations for A and B in (1.5), respectively. In par-
ticular, Ă is a skew-circulant matrix whose first row and column are given by
(αν · · · αk 0 · · · 0− α0 · · · − αν−1) and (αν · · · α0 0 · · · 0 − αk · · · − αν+1)T,
respectively, and B̆ is defined similarly. Note that the underlying approximations
are the Strang-type skew-circulant preconditioners of A and B respectively;
see [6].
In [2, 4, 5] we observed that the preconditioners (1.6) can be effective for

several classes of problems. Preconditioners based on skew-circulant matrices
for Hermitian and skew Hermitian Toeplitz problems can be found, e.g., in [6],
and the references therein.

1.2 Rationale.

In a recent paper, we investigated the convergence rate of the conjugate
gradient method for the underlying preconditioned systems with the normal
equations approach; see [3]. In this paper, we examine the convergence properties
of GMRES for the left preconditioned linear systems in (1.4) using the block
preconditioners in (1.6). We stress that the arguments used in [3] cannot be
extended to be used here for GMRES.
Our main concerns here are to understand the behavior of the preconditioned

GMRES iterations for the underlying problem and the dependence on the step-
size h associated with the time discretization. More precisely, for the considered
problems, it is observed that the number of iterations required for convergence
typically increases at most with O(log s), where h = O(1/s). To this end, we
consider the field of values, the pseudospectra and, in more detail, the eigenval-
ues and the eigenvectors of the underlying matrices. Moreover, for the problem
considered we see that there is a tightly clustered set of eigenvalues contained in
a region whose boundaries are independent of s, together with a small number
of outlying eigenvalues that are independent of s.
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In Section 2, two model problems are introduced in order to study the per-
formances of the preconditioned GMRES iterative solver. In Section 3, the field
of values, pseudospectra and eigenvalues of these preconditioned matrices are
considered to give bounds for the number of iterations. However, for the last
approach, the nonnormality of the matrices involved is also considered through
the condition number of the matrices of the eigenvectors.

2 Model problems.

Before introducing the tools for convergence bounds, let us consider two simple
model problems. We stress that, e.g., in [2] two-dimensional PDE examples are
considered as well. In particular, the heat equation with constant and variable
diffusion coefficient were used as model problems. However, we observed experi-
mentally (see, e.g., [2]) the convergence behavior of GMRES which is very similar
to that observed here.

Problem 1. Heat equation

Let us consider the heat equation

∂u

∂t
− c∂

2u

∂x2
= 0,

u(0, t) = u(xmax, t) = 0, 0 ≤ t ≤ 2π,
u(x, 0) = x, 0 ≤ x ≤ π.

(2.1)

If we discretize the operator ∂2/∂x2 in (2.1) with centered differences and step-
size δx = π/(m+ 1), xj = jδx, the following system is obtained:{

y′(t) = Tmy(t), 0 ≤ t ≤ 2π,
y(0) = η, η = (x1 · · ·xm)T

(2.2)

and the m ×m Jacobian Tm is a symmetric tridiagonal Toeplitz matrix where
its stencil is given by (δx)−2[1,−2, 1]. As can be easily observed, the Jacobian
matrix has negative eigenvalues. A method based on the implicit midpoint rule
of order two (see, e.g., [1]) is applied in the sequel to solve (2.2).

Problem 2. Hyperbolic equation of first order

Let us consider the wave equation of first order with periodic boundary condi-
tions: 


∂u

∂t
− ∂u
∂x

= 0,

u(x, 0) = g(x) = x(π − x), 0 ≤ x ≤ π,
u(π, t) = u(0, t), 0 ≤ t ≤ 2π.

(2.3)

We discretize the partial derivative ∂/∂x with the central differences and step
size ∆x = π/m, xj = j∆x. The following systems are obtained:{

y′(t) = Lmy(t), t ∈ [0, 2π],
y(0) = η, η = (g(x0) · · · g(xm−1))T,

(2.4)



BAND-TOEPLITZ PRECONDITIONED GMRES ITERATIONS 905

Figure 2.1: Convergence history. Continuous line: s = 8, m = 10; dashed line: s = 32, m = 20
for skew-circulant preconditioned iterations; diamond line: s = 8, m = 10, star line: s = 32,
m = 20 without using preconditioner. (a) Problem 1 using the midpoint method; (b) Problem 2
using the fourth order generalized Adams-type method.

where the Jacobian matrix is Lm = (2∆x)−1Hm and Hm is a Toeplitz matrix
where its stencil is given by [1, 0, . . . , 0, 1, 0,−1, 0, . . . , 0,−1] (the underlined zero
is on the main diagonal). As can be easily observed, the eigenvalues of the
matrices {Lm} are complex conjugate. A linear multistep formula in boundary
form based on a fourth-order Adams formula with k = 3 is applied in the sequel
to solve (2.4); see [4] for more details.
We present two sets of experimental results on convergence. All the compu-

tations described in this paper were performed using Matlab. The initial guess
was identically zero, and the stopping criterion ‖rj‖2/‖r0‖2 < 10−6, where rj
is the residual vector at the jth iteration. Figure 2.1 shows the convergence
histories of the nonpreconditioned iterations and skew-circulant preconditioned
iterations for s = 8 and s = 32. These experiments clearly show that convergence
of preconditioned iterations is essentially independent of the time discretization
parameter.

3 Convergence bounds for GMRES.

In the following discussions, we consider the convergence process of the GM-
RES method in detail and determine some bounds on the number of iterations
required for convergence of these preconditioned systems.
Let the preconditioned system under consideration be denoted now byKx = b,

and let the residual at the jth iteration rj be given by rj = b−Kxj, where xj is
the j-step approximation of x. Recall that bounds for the GMRES method can
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Figure 3.1: The field of values (its boundary is denoted by a solid line) of the preconditioned
matrix for Problem 2 using a generalized Adam-type method with s = 16 and m = 10. The
‘×’ denotes the eigenvalues.

be determined by observing that (see, e.g., [11])

‖rj‖2 ≤ min
pj(0)=1

‖pj(K)‖2‖r0‖2,(3.1)

where the minimum is over all polynomials of degree j taking the value 1 at
the origin. Thus, to give bounds for min ‖pj(K)‖ in (3.1), and then to esti-
mate the number of iterations for GMRES, we consider the field of values, the
pseudospectra and, in more detail, the eigenvalues/eigenvectors approaches.
The approach based on the field of values can be very attractive since it

is not influenced by the conditioning of the eigensystem and estimates can be
obtained even for large matrices with a relatively moderate computational effort.
Unfortunately, we have experienced that, even for our simple model problems,
the field of values can severely overestimate the number of iterations required for
convergence. However, the more severe limitation on the use of the field of values
can be found in the fact that the related convex set can include the origin, even
if the eigenvalues are strictly contained in the right half plane, see Figure 3.1,
and thus the bound above cannot be used.
As suggested in [10], the pseudospectra of the matrix of the underlying linear

system (1.4) can give some useful bounds for the number of GMRES itera-
tions. For example, if the spectral condition number of the eigenvector matrix
diagonalizing the preconditioned matrix K is huge, because of some nearly-
defective eigenvalue of the Jacobian matrix J in (1.4), the use of pseudospectra
can give very useful insights in the convergence analysis, see [10]. Unfortunately,
an approach based on pseudospectra has to deal with three major difficulties in
our case. The first one is the presence of several outliers, that must be considered.
This can give misleading estimates because the outliers not too near to the
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Figure 3.2: The spectra of the eigenvalues (denoted by ‘+’) of the P-circulant preconditioned
matrices for Problem 1 and Problem 2, m = 10, s = 16. The ellipse enclosing the cluster and
some outliers is the boundary of the set Ω.

origin influence the convergence usually only introducing an initial delay without
affecting the asymptotic behavior, see, e.g., [8]. The second difficulty is the cost
for the pseudospectra computation, because the matrices considered here can be
huge. Finally, the theoretical analysis of pseudospectra is difficult to perform,
especially in the case of the underlying preconditioned matrices.
As observed in [2, 4, 7], the set of the eigenvalues of the matrixK can be mainly

divided into two subsets: a set of clustered and a set of outliers. Figure 3.2 gives
the spectra of the P -circulant preconditioned matrices for Problems 1 and 2.
We can see from these figures that the preconditioned matrix has an eigenvalue
distribution consisting of a set of clustered eigenvalues and a set of outliers.
Let us begin by restating a result that can be easily derived from (3.1). Assume

that the n× n preconditioned matrix K is diagonalizable, i.e.,

K = V ΛV −1,

and let σ(K) denote the set of eigenvalues of K. A popular bound on the
convergence of the GMRES method is given by (see [11])

‖rj‖2 ≤ κ2(V ) · min
pj(0)=1

max
λ∈σ(K)

|pj(λ)| · ‖r0‖2,(3.2)

where κ2(V ) is the spectral condition number of the matrix of the eigenvectors
of K,V chosen to minimize κ2(V ).
Let us consider the matrices K whose spectrum σ(K) is clustered, as is the

case of the underlying preconditioned matrices. It is natural to partition σ(K)
as follows

σ(K) = σc(K) ∪ σ0(K) ∪ σ1(K),
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where σc(K) denotes the clustered set of eigenvalues of K and σ0(K) ∪ σ1(K)
denotes the set of the outliers. Here we assume that the clustered set σc(K) of
eigenvalues is contained in a convex set Ω.
Now, let us consider in more detail the sets

σ0(K) = {λ̂1, λ̂2, . . . , λ̂j0} and σ1(K) = {λ̃1, λ̃2, . . . , λ̃j1}

denoting two sets of j0 and j1 outliers, respectively. The sets σ0 and σ1 are
defined such that, if λ̂j ∈ σ0(K), we have

1 <
∣∣∣∣1− z

λ̂j

∣∣∣∣ ≤ cj , ∀z ∈ Ω,

while, for λ̃j ∈ σ1(K),

0 <
∣∣∣∣1− z

λ̃j

∣∣∣∣ < 1, ∀z ∈ Ω,

respectively. For example, in Figure 3.2, we observed experimentally that j0 and
j1 are equal to 0 and 2 for the Problem 1, and j0 and j1 are equal to 12 and 8
for the Problem 2, respectively.
Under the above assumptions, we can state the following bound.

Theorem 3.1. The number of full GMRES iterations j needed to attain a
tolerance ε on the relative residual in the 2-norm ‖rj‖2/‖r0‖2 for the precon-
ditioned linear system Kx = b, where K is diagonalizable, is bounded above
by

min

{
j0 + j1 +

⌈
log(ε)− log(κ2(V ))

log(ρ)
−

j0∑
=1

log(c)
log(ρ)

⌉
, n

}
,(3.3)

where

ρk =
(a/d+

√
(a/d)2 − 1)k + (a/d+

√
(a/d)2 − 1)−k

(c/d+
√
(c/d)2 − 1)k + (c/d+

√
(c/d)2 − 1)−k

,(3.4)

and the set Ω ∈ C
+ is the ellipse with center c, focal distance d and major semi

axis a.
Proof. From (3.2), ‖rj‖2/‖r0‖2 ≤ ε (� 1) is satisfied (in the exact arith-

metic) if

κ2(V ) · min
pj(0)=1

max
λ∈σ(K)

|pj(λ)| ≤ ε,(3.5)

where σ(K) contains the set of eigenvalues of K and pj(z) is a j-degree polyno-
mial. We have:

min
pj(0)=1

max
z∈σ(K)

|pj(z)| ≤ max
z∈σ(K)

|p̂(z) · q(z) · p̃(z)|,(3.6)
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where

p̂(z) =
(
1− z

λ̂1

)
· · ·
(
1− z

λ̂j0

)
, p̃(z) =

(
1− z

λ̃1

)
· · ·
(
1− z

λ̃j1

)

are the polynomials whose roots are the outlying eigenvalues in σ0 ∪σ1 and q(z)
is a polynomial of degree at most j − j0 − j1 ≥ 0 such that q(0) = 1. Using the
notations above, we have

|p̂(z)| ≤
j0∏

=1

∣∣∣∣1− z

λ̂

∣∣∣∣ ≤
j0∏

=1

c

and

|p̃(z)| ≤
j1∏

=1

∣∣∣∣1− z

λ̃

∣∣∣∣ ≤
j1∏

=1

1 ≤ 1, ∀z ∈ Ω.

Therefore,

max
z∈σ(K)

|p̂(z) · q(z) · p̃(z)| ≤
(

j0∏
=1

c

)
max
z∈Ω

|q(z)|.(3.7)

The polynomial q(z) can be chosen to be the shifted and scaled complex Cheby-
shev polynomial q(z) = Ck((c − z)/d)/Ck(c/d) which is small on the set con-
taining σc(K). Indeed, by using results on Chebyshev polynomials (see [11,
Sections 6.11.2, 6.11.4]) we can derive the following bound

max
z∈Ω

|q(z)| = Ck(a/d)
|Ck(c/d)|

=
(a/d+

√
(a/d)2 − 1)k + (a/d+

√
(a/d)2 − 1)−k

(c/d+
√
(c/d)2 − 1)k + (c/d+

√
(c/d)2 − 1)−k

.(3.8)

An upper bound on j now easily follows from (3.6), (3.7), (3.8) and by observing
that, in exact arithmetics, GMRES converges in at most n iterations:

j − j0 − j1 =
⌈
log(ε)
log(ρ)

− log(κ2(V ))
log(ρ)

−
∑j0

=1 log(c)
log(ρ)

⌉

from which (3.3) follows. ✷
We stress that

ρ � p̃ = a+
√
a2 − d2

c+
√
c2 − d2

.

In particular, when the major axis is parallel to the imaginary axis, is centered
in (c, 0), c > 0, and has length 2a, while the minor axis 2b, respectively, we have
a ≥ b and

ρ̃ =
a+

√
a2 − |a2 − b2|

c+
√
c2 + |a2 − b2|

=
a+ b

c+
√
c2 + a2 − b2

,
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and we use this expression to approximate ρ in the bound (3.3) in practice for
our model problems.
According to Theorem 3.1, the outliers do not affect the asymptotic conver-

gence rate of the GMRES method, but rather they introduce a latency effect of
j0 + j1 iterations plus the term

∑j0
l=1 log(cl)/ log(ρ); see (3.3).

We stress that the condition number of V cannot be neglected in the above
bound, otherwise the eigenvalues alone can give highly misleading information
on the convergence process, see [9]. On the other hand, if V has a huge condition
number (e.g., growing exponentially with the size of the matrix), the underlying
bound is useless.

3.1 Eigenvector matrix.

Next we derive bounds on the condition number of the eigenvector matrix of
the underlying preconditioned matrix, i.e.,

K = (Ă⊗ I − hB̆ ⊗ J)−1(A⊗ I − hB ⊗ J),(3.9)

where Ă and B̆ can be, e.g., P -circulant preconditioners or skew-circulant pre-
conditioners for A and B, respectively, see Section 1.1.

Theorem 3.2. Assume that J is diagonalizable, i.e., J = UΣU−1. The con-
dition number κ2(V ) of the eigenvector matrix V of the preconditioned matrix K
is bounded by

κ2(U) · max
i=1,2,...,m

κ2(Wi),

where Wi is the eigenvector matrix of

M̃i = (Ă− hµiB̆)−1(A− hµiB)(3.10)

and µi is the ith eigenvalue of J, i = 1, 2, . . . ,m. Moreover, the eigenvalues of
the preconditioned matrix are given by

1 + σ((Ă − hµiB̆)−1((A− Ă)− hµi(B − B̆))), i = 1, 2, . . . ,m.(3.11)

Proof. We first note that

(Ă⊗ I − hB̆ ⊗ J)−1(A⊗ I − hB ⊗ J)
= (I ⊗ U)(Ă ⊗ I − hB̆ ⊗ Σ)−1(A⊗ I − hB ⊗ Σ)(I ⊗ U−1).

The matrix (Ă ⊗ I − hB̆ ⊗ Σ)−1(A ⊗ I − hB ⊗ Σ) can be permuted to be-
come the block-diagonal matrix (I ⊗ Ă − hΣ ⊗ B̆)−1(I ⊗ A − hΣ ⊗ B) whose
(s + 1) × (s + 1) diagonal blocks are given by (Ă − hµ1B̆)−1(A − hµ1B), . . . ,
(Ă − hµmB̆)−1(A − hµmB). Thus, we observe that the eigenvector matrix of
(I ⊗ Ă − hΣ ⊗ B̆)−1(I ⊗ A − hΣ ⊗ B) is also a block-diagonal matrix whose
diagonal blocks are W1, . . . ,Wm. Hence, the first result follows.
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Table 3.1: The values of maxi=1,...,m κ2(Wi) for the skew-circulant and
P -circulant preconditioned matrices computed by a (preconditioned and
rescaled) QR algorithm

Problem 1 Problem 2

m s Skew-circulant P -circulant Skew-circulant P -circulant

10 8 6.7× 101 1.0× 101 2.7× 101 1.1× 101
16 4.4× 101 1.5× 101 1.0× 102 1.9× 101
32 4.5× 101 2.8× 101 3.0× 102 2.1× 101
64 2.6× 102 5.6× 101 3.5× 102 4.5× 101
128 1.3× 102 1.2× 102 2.3× 102 7.2× 101
256 7.2× 102 2.4× 102 7.7× 102 1.2× 102
512 1.9× 102 5.1× 102 6.4× 102 2.0× 102
1024 1.3× 103 1.0× 103 9.6× 102 3.4× 102

20 8 4.4× 101 1.0× 101 2.4× 101 1.1× 101
16 3.5× 101 1.5× 101 8.1× 101 1.8× 101
32 7.5× 102 2.8× 101 3.4× 102 2.9× 101
64 3.8× 101 5.6× 101 3.8× 102 4.5× 101
128 5.9× 101 1.2× 102 6.1× 102 7.2× 101
256 9.6× 101 2.4× 102 8.5× 102 1.2× 102
512 1.9× 102 5.1× 102 9.1× 102 2.0× 102
1024 1.3× 103 1.1× 103 1.7× 103 3.4× 102

Moreover, since the set of the eigenvalues of the preconditioned matrix are
equal to the union of the sets of the eigenvalues of the matrices M̃i, i = 1, . . . ,m
(i.e., of the eigenvalues in each block) and

(Ă− hµiB̆)−1(A− hµiB) = I + (Ă− hµiB̆)−1((A− Ă)− hµi(B − B̆)),

the formula (3.11) follows. ✷
The above results can give useful insights for many problems when the Ja-

cobian matrix J is diagonalizable. For example, J is symmetric in Problem 1
and skew-symmetric in Problem 2, so U can be chosen orthogonal and therefore
κ2(U) is equal to 1. However, if J is nonnormal and κ2(U) is very large, a
bound based on pseudospectra should be used instead. In Table 3.1, we list
maxi=1,2,...,m κ2(Wi), where we recall that the size of the matrices Wi is (s +
1) × (s + 1). We see from Table 3.1, by using Theorem 3.2, that the condition
number of the eigenvector matrix V of (3.9) grows as O(s) for the P -circulant
preconditioners and faster for the skew-circulant. Thus, by using Theorem 3.1,
it is worth noting that the number of the iteration grows at most with O(log s)
for the above mentioned examples. On the other hand, the condition number
of the matrices of the eigenvectors for the nonpreconditioned matrix M in (1.4)
can grow very fast with s, i.e., much faster than in the preconditioned case.
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Table 3.2: Estimated and actual P -circulant preconditioned GMRES iterations for
Problem 1

m s maxi κ2(Wi) j0 j1 ρ α est-it act-it

10 8 1.0× 101 0 2 0.153 8.6 10.6 7

10 16 1.5× 101 0 2 0.198 10.2 12.2 9

10 32 2.8× 101 0 3 0.227 11.6 14.6 10

20 8 1.0× 101 0 1 0.223 10.7 11.7 7

20 16 1.5× 101 0 2 0.225 11.1 13.1 9

20 32 2.8× 101 0 3 0.242 12.1 15.1 10

Table 3.3: Estimated and actual skew-circulant preconditioned GMRES iterations for
Problem 1

m s maxi κ2(Wi) j0 j1 ρ α est-it act-it

10 8 6.7× 101 0 3 0.0332 5.3 8.3 6

10 16 4.4× 101 0 3 0.0537 6.0 9.0 6

10 32 4.5× 101 0 3 0.0996 7.6 10.6 8

20 8 4.4× 101 0 2 0.044 5.6 7.6 6

20 16 3.5× 101 0 3 0.050 5.8 8.8 6

20 32 7.5× 102 0 3 0.093 8.6 11.6 7

Table 3.4: Estimated and actual P -circulant preconditioned GMRES iterations for
Problem 2

m s maxi κ2(Wi) j0 j1 ρ α χ est-it act-it

10 8 1.1× 101 6 6 0.188 9.7 2.97 24.7 16

10 16 1.9× 101 6 4 0.214 10.9 2.28 23.2 16

10 32 2.1× 101 6 4 0.194 10.3 2.33 22.6 16

20 8 1.1× 101 12 2 0.229 11.0 6.67 31.7 22

20 16 1.9× 101 16 4 0.178 9.7 4.97 34.7 21

20 32 2.9× 101 12 2 0.224 11.5 4.90 30.4 19

3.2 Estimates of the number of iterations.

We have applied GMRES to solve the block (left) preconditioned systemKx =
b for the problems in Section 2 by using P -circulant and skew-circulant block
preconditioners. Tables 3.2, 3.3, 3.4 and 3.5 show the comparisons between the
estimate of the number of iterations (est-it) using the bound given in (3.3) and
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Table 3.5: Estimated and actual skew-circulant preconditioned GMRES iterations for
Problem 2

m s maxi κ2(Wi) j0 j1 ρ α χ est-it act-it

10 8 2.8× 101 8 4 0.595 6.1 1.90 20.0 13

10 16 1.0× 102 10 4 0.158 10.0 0.58 24.6 11

10 32 3.1× 102 10 4 0.058 6.9 0.12 21.2 9

20 8 2.4× 101 20 16 0.064 6.2 2.87 45.1 18

20 16 8.1× 101 20 8 0.027 5.1 2.87 36.0 13

20 32 3.4× 102 20 8 0.115 9.1 1.40 38.5 14

the number of actual GMRES iterations (act-it) to attain a residual rj such that
‖rj‖2/‖r0‖2 ≤ 10−6. The columns labeled j0 and j1 are the cardinality of the
sets σ0(K) and σ1(K), respectively. Recall that these sets contain the outlying
eigenvalues. We note that, for Problem 1, we can choose the sets σc, σ0 and σ1

such that σ0(K) is empty. On the contrary, for Problem 2 some outliers are on
the left-hand side of the clustered set of eigenvalues (cf. Figure 3.2) to avoid σc

artificially stretched or including the origin of the complex plane. Otherwise, the
bound (3.3) can be not sharp or not applicable at all.
The values of the factor ρ related to the underlying Ω (see Theorem 3.1) for

the skew-circulant and for the Strang and modified Strang-type approximations
are usually much smaller than those related to P -circulants. Recall that Ω is
the convex set which contains the clustered eigenvalues. This implies that the
spectra of the skew-circulant preconditioned are more clustered than those of the
P -circulant preconditioned matrices. Therefore, the proposed bound can describe
the performances for skew-circulant preconditioners only in a qualitative sense.
By putting the computed parameters maxi κ2(Wi) as the upper bound of

κ2(V ), j0, j1 and ρ in (3.3), we estimate the number of full GMRES iterations
required for convergence for the underlying model problems.
In Tables 3.2–3.4, we also list upper bounds for the condition numbers of the

eigenvector matrices V forK in (3.9). We can observe that the condition numbers
of the eigenvector matrices for the P -circulant preconditioned matrices are usu-
ally lower than those related to the skew-circulants. This behavior is even more
pronounced if the eigenvectors are computed without suitably preprocessing the
preconditioned matrix K in (3.9). We experienced that the related eigenvectors
are ill-conditioned, i.e. they have a condition number that can increase fast
with s.
The preconditioned matrices related to the skew-circulant case (and similarly

for Strang and others modified Strang-type approximations) have a (nondefec-
tive) eigenvalue 1 whose multiplicity is O(m(s− k)) (k is the number of steps of
the LMF formula (1.3)).

Theorem 3.3. Let the preconditioner as in (1.6) be based on skew-circulant
approximations for Ă, B̆. Moreover, let µ1, . . . , µm, the eigenvalues of J , be such
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that Re(µr) ≤ 0, r = 1, . . . ,m. Then, the eigenvalues of the preconditioned matrix
are equal to (1, 0) ∈ C+ except for at most 2mk outliers.

Proof. Apply [5, Theorem 10] with θ = π. ✷
On the other side, P -circulant preconditioned matrices have a tight cluster of

(complex conjugate) eigenvalues which are usually simple or with multiplicity
at most r if, e.g., µi = 0, i = 1, . . . , r ≤ m, centered in 1 + δ̂, where δ̂ is
a small real number (see [2] for details). In this case, we observed that the
condition number of the matrix of the eigenvectors is usually lower than in the
first case and depends linearly on s, even if the eigenvalue problem was not
suitably preprocessed.
Finally, we found that the estimate for the number of iterations is quite in

agreement with the behavior of the actual number of iterations. The discrepancy
can be ascribed to the use of the worst-case style estimate (3.2) (see, e.g., the
effect of the condition number of K on the bound mentioned above) and to the
latency effect given by the outlying eigenvalues.
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ODE codes, in L. Vulkov, J. Waśniewski and P. Yalamov (eds.), Numerical Analysis
and Its Applications, Lecture Notes in Comput. Sci. 1988, Springer, New York, 2001,
pp. 93–101.

5. D. Bertaccini and M. K. Ng, Block {ω}-circulant preconditioners for the systems of
differential equations, Calcolo, 40(2) (2003), pp. 71–90.

6. R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev.,
38(3) (1996), pp. 427–482.

7. R. H. Chan, M. K. Ng, and X. Jin, Circulant preconditioners for solving ordinary
differential equations, IMA J. Numer. Anal., 21 (2001), pp. 451–462.

8. T. A. Driscoll, K. C. Toh, and L. N. Trefethen, From potential theory to matrix iterations
in six steps, SIAM Rev., 40(3) (1998), pp. 547–578.
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