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HOW TO DEDUCE A PROPER EIGENVALUE CLUSTER
FROM A PROPER SINGULAR VALUE CLUSTER

IN THE NONNORMAL CASE∗

STEFANO SERRA-CAPIZZANO† , DANIELE BERTACCINI‡ , AND GENE H. GOLUB§

Abstract. We consider a generic sequence of matrices (the nonnormal case is of interest)
showing a proper cluster at zero in the sense of the singular values. By a direct use of the notion of
majorizations, we show that the uniform spectral boundedness is sufficient for the proper clustering
at zero of the eigenvalues: if the assumption of boundedness is removed, then we can construct
sequences of matrices with a proper singular value clustering and having all the eigenvalues of an
arbitrarily big modulus. Applications to the preconditioning theory are discussed.
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1. The result. Let x be a generic real vector with entries xj , j = 1, . . . , s. We

define x↓ with entries x↓
j , j = 1, . . . , s, to be the nonincreasing ordering of x, i.e.,

x↓
1 ≥ x↓

2 ≥ · · · ≥ x↓
s

with x↓ = Px and P a suitable s-by-s permutation matrix. A vector a with real
entries aj , j = 1, . . . , s, is weakly majorized (see, e.g., [3]) by a vector b with real
entries bj , j = 1, . . . , s, if

k∑
j=1

a↓ ≤
k∑

j=1

b↓ ∀k = 1, . . . , s;

in that case, we write a ≺w b. Weyl’s majorant theorem (see, e.g., [3, Theorem
II.3.6]) establishes a fundamental majorization relation between the eigenvalues and
the singular values of a given matrix A ∈ Ms(C) (Ms(C) denotes the space of the
complex s-by-s matrices).

Theorem 1.1. Let A ∈ Ms(C), let σ1 ≥ σ2 ≥ · · · ≥ σs be the singular values of
A, and let |λ1| ≥ |λ2| ≥ · · · ≥ |λs| with λj, j = 1, . . . , s, being the eigenvalues of A.
Take φ : R+ → R+ such that φ(exp(t)) is convex and monotone nondecreasing. Then

φ(|λ|) ≺w φ(σ)

with φ(|λ|), φ(σ) real vectors of size s and whose jth entry, j = 1, . . . , s, is given by
φ(|λj |) and φ(σj), respectively.
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The former result is now used in a context of asymptotic linear algebra for deduc-
ing eigenvalue clustering from the singular value clustering: we recall that a sequence
An is properly clustered at α ∈ R if for every ε > 0 there exists a pure constant cε
such that

#{singular values of An /∈ (α− ε, α + ε)} ≤ cε (singular values proper clustering),

#{eigenvalues of An /∈ (α− ε, α + ε)} ≤ cε (eigenvalues proper clustering).

Theorem 1.2. Let An ∈ Mn(C) be a sequence of uniformly spectrally bounded
matrices such that the singular values are properly clustered at zero. Then the eigen-
values of An are properly clustered as well.

Proof. Let λn = (λ
(n)
1 , . . . , λ

(n)
n )T and σn = (σ

(n)
1 , . . . , σ

(n)
n )T be the (ordered)

vectors of the eigenvalues and singular values of An, respectively, where σ
(n)
1 ≥ σ

(n)
2 ≥

· · · ≥ σ
(n)
n and |λ(n)

1 | ≥ |λ(n)
2 | ≥ · · · ≥ |λ(n)

n |. From the assumptions we know that
there exists M a positive constant independent of n, and, for every ε > 0, there exists
n̄ = n̄ε such that

‖An‖ = σ
(n)
1 ≤ M ∀n (uniform boundedness),(1.1)

σ
(n)
n̄ < ε ∀n ≥ n̄ (singular value clustering at zero).(1.2)

Now we would like to prove the spectral clustering at zero of the eigenvalues. In the

normal case this is a trivial result since σ
(n)
j = |λ(n)

j |, j = 1, . . . , n, while, in the general
case, the essential tool is Weyl’s majorant theorem: Theorem 1.1 with φ(z) = z. In
such a way, for every k = 1, . . . , n, we have

k∑
j=1

|λ(n)
j | ≤

k∑
j=1

σ
(n)
j .(1.3)

By contradiction, we suppose that the eigenvalues of An are not properly clustered
at zero. Therefore there exists a sequence of positive integers αn monotonically going

to infinity, and there exists c > 0 (independent of n) such that |λ(n)
αn | > c at least for

a subsequence n = nq (where nq is a strictly increasing sequence of integers). As a
consequence, for every q large enough, we deduce

αnq∑
j=1

|λ(nq)
j | > cαnq

and, due to (1.1) and (1.2), simultaneously we have

αnq∑
j=1

σ
(nq)
j < Mn̄ + (αnq − n̄)ε, αnq > n̄.

Thus, by putting together (1.3) with k = αnq
and the latter two inequalities, we find

cαnq < Mn̄+(αnq
− n̄)ε for every q large enough. Finally, by dividing by αnq

and by
making the limit as q tends to infinity (αnq will go to infinity as well), we conclude
that for every ε > 0, there exists n̄ = n̄ε (independent of n = nq and therefore of q)
such that c ≤ ε. Since c is a pure positive constant and ε > 0 is arbitrary, the choice
of ε = c/2 leads to c ≤ c/2 with c > 0, which is a contradiction, and the proof is
complete.
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2. Discussion and applications. The first observation concerns the essential-
ity of the assumptions of Theorem 1.2. If the singular values of An are not properly
clustered at zero and the matrices An are definitely normal, then the eigenvalues can-
not be properly clustered at zero since the singular values coincide with the absolute
value of the eigenvalues. More interestingly, we will see that the hypothesis of the
spectral boundedness is also essential. Let εn be a sequence of positive numbers and
let Bn be the sequence of matrices given by

Bn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ε1 0 . . . 0
...

. . .
. . .

. . .
...

. . .
. . . 0

...
. . . εn−1

0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, 1 ≥ ε1 ≥ ε2 ≥ · · · ≥ εk > 0 ∀k ≥ 2, lim
k→∞

εk = 0.

A simple check shows that this sequence is spectrally clustered to zero in the sense

of the eigenvalues (λ
(n)
j = 0 for every j = 1, . . . , n) and in the sense of the singular

(since σ
(n)
1 = ε1 ≥ σ

(n)
2 = ε2 ≥ · · · ≥ σ

(n)
n−1 = εn−1 > σ

(n)
n = 0). Now we consider a

rank one perturbation of Bn having an exploding norm. More precisely we define An

as

An = Bn + ψnene
T
1 ,

where ek is the kth vector of the canonical basis of Cn and ψn > 0 such that

lim
n→∞

[
ψn

[
n−1∏
k=1

εk

]]1/n

= ∞.

By the Cauchy interlace theorem (see, e.g., [4]) applied to the singular values, we
deduce immediately that the singular values of An are also properly clustered to zero
(because the singular values of Bn are properly clustered to zero and An is a one-
rank modification of Bn; see [8]). However, a direct computation proves that the
characteristic polynomial of An coincides with

pAn(λ) = (−λ)n − ψn

[
n−1∏
k=1

εk

]

and therefore the eigenvalues of An have all the same modulus, which is given by

[
ψn

[
n−1∏
k=1

εk

]]1/n

.

Since the latter tends to infinity as n tends to infinity, we have that the eigenvalues
of Bn not only are not clustered at zero in the proper sense but are also clustered
at infinity in the modulus. The responsibility for this very pathological behavior
is the huge norm of the one-rank correction and the high nonnormality of Bn: the
combination of these two ingredient gives (as is well known to numerical analysts)
a great sensitivity to the eigenvalues, whose global distribution shows a dramatic
change, i.e., from a proper clustering to zero for Bn to a proper clustering to infinity for
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An (see [5, section 7] for an illustration of the numerical difficulties related to similar
examples).

The next step is to show some consequences of Theorem 1.2, and a very natural
and important application is the study of the convergence behavior of Krylov methods
when nonnormal iteration matrices are involved. In [2] we considered the precondi-
tioning of non-Hermitian (but positive definite) matrices coming from convection-
diffusion equations. If Bn denotes the sequence of the discretized problems and Pn

is the sequence of preconditioners (Hermitian and positive definite), setting Bn =
Re(Bn) + iIm(Bn), i2 = −1, Re(Bn), Im(Bn) Hermitian matrices (the real and the
imaginary part of Bn, i.e., Re(Bn) = (Bn + B∗

n)/2, Im(Bn) = (Bn − B∗
n)/(2i)), we

have proved the following:
F1 P−1

n Re(Bn) has eigenvalues properly clustered to 1 and lying in a strictly
positive uniformly bounded interval.

F2 P−1
n Im(Bn) has eigenvalues properly clustered to 0 and lying in a uniformly

bounded interval.
From these two items we prove the proper clustering at 1 of the eigenvalues of

P−1
n Bn by using Theorem 1.2.

Proposition 2.1. With the previously given notation, and taking into account
F1 and F2, we deduce that both the singular values and the eigenvalues of P−1

n Bn are
properly clustered at 1. Moreover, all the eigenvalues of P−1

n Bn belong to a uniformly
bounded rectangle with positive real part well separated from zero.

Proof. We first observe that the matrices P
−1/2
n Re(Bn)P

−1/2
n , P

−1/2
n Im(Bn)P

−1/2
n

are both Hermitian since Pn is Hermitian positive definite (so that by the Schur
canonical decomposition, its square root exists and is Hermitian positive definite)
and Re(Bn), Im(Bn) are Hermitian by construction. Moreover, P−1

n Re(Bn) is similar

to P
−1/2
n Re(Bn)P

−1/2
n and P−1

n Im(Bn) is similar to P
−1/2
n Im(Bn)P

−1/2
n : as a conse-

quence both the statements contained in F1 and F2 are true for P
−1/2
n Re(Bn)P

−1/2
n

and P
−1/2
n Im(Bn)P

−1/2
n , respectively. Therefore we can deduce properties on the

singular values since the involved matrices are Hermitian (and a fortiori normal);

more precisely, both P
−1/2
n Re(Bn)P

−1/2
n − In and P

−1/2
n Im(Bn)P

−1/2
n are spectrally

uniformly bounded and properly clustered to zero in the singular value sense. From
this, by using the field of values notion (see [4]), and since (by F1) the eigenvalues of

P
−1/2
n Re(Bn)P

−1/2
n belong to a strictly positive uniformly bounded interval, all the

eigenvalues of P−1
n Bn lie in a uniformly bounded rectangle with positive real part well

separated from zero. Moreover, by a direct SVD inspection, we see that the sequence

P−1/2
n Re(Bn)P−1/2

n − In + iP−1/2
n Im(Bn)P−1/2

n

is spectrally uniformly bounded and properly clustered to zero in the singular value
sense. As a consequence, all the assumptions of Theorem 1.2 are fulfilled with An =

P
−1/2
n Re(Bn)P

−1/2
n − In + iP

−1/2
n Im(Bn)P

−1/2
n , and thus the sequence An is also

properly clustered to zero in the sense of the eigenvalues. Finally, we complete the
proof by noticing that An + In is properly clustered to 1 in the eigenvalue sense and

P−1
n Bn = P−1/2

n (An + In)P 1/2
n (a similarity transformation).

The conclusions are in some sense contained in the former proposition: the dis-
cussed result could be the key to proving eigenvalue clustering when the preconditioner
is Hermitian positive definite but the original problem is nonnormal. Some of these
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situations occur when dealing with partial differential equations and structured ma-
trices (see, e.g., [2, 7]); in particular, concerning the aforementioned applications, we
stress that there exist many tools for proving the singular value clustering in the non-
normal case [8, 6, 7], but not so many for dealing with the eigenvalues: in this direction
we must mention [9], where deep and beautiful results are proven with regard to the
notion of general clustering, i.e., up to o(n) outliers; unfortunately, from the view-
point of a fine convergence analysis of Krylov methods, we remark that often only the
proper clustering studied in this note is of interest. Indeed, the weak clustering can be
useful only when there is an estimate of the number of outliers which is described by
a mildly growing function (for instance, a poly-logarithm of n). Furthermore, in both
the cases (proper clustering or poly-logarithmic number of outlying eigenvalues) and
for practical purposes, attention has to be paid to the multiplicative constants: as a
matter of fact, the practical dependency on ε > 0 is such that it usually appears in a
denominator, and this represents a delicate point in a convergence analysis especially
in the partial differential equations context where ε can be a function of the finesse
parameter and therefore of n. Finally, we conclude by observing that future work
should investigate the direction of providing specific tools in the case where the pre-
conditioning sequence is constituted by nonnormal matrices (an attempt is contained
in Theorem 4.3 of [1]).
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