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Summary. We study the role of preconditioning strategies recently devel-
oped for coercive problems in connection with a two-step iterative method,
based on the Hermitian skew-Hermitian splitting (HSS) of the coefficient
matrix, proposed by Bai, Golub and Ng for the solution of nonsymmetric
linear systems whose real part is coercive. As a model problem we consider
Finite Differences (FD) matrix sequences {An(a, p)}n discretizing the elliptic
(convection-diffusion) problem






−∇T [a(x)∇u(x)] + ∑d
j=1

∂
∂xj

(p(x)u(x)) = f (x), x ∈ �,

Dirichlet BC,

(1)

with � being a plurirectangle of Rd with a(x) being a uniformly positive
function and p(x) denoting the Reynolds function: here for plurirectangle we
mean a connected union of rectangles in d dimensions with edges parallel to
the axes. More precisely, in connection with preconditioned HSS/GMRES
like methods, we consider the preconditioning sequence {Pn(a)}n, Pn(a) :=
D

1/2
n (a)An(1, 0)D

1/2
n (a) where Dn(a) is the suitably scaled main diagonal
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of An(a, 0). If a(x) is positive and regular enough, then the preconditioned
sequence shows a strong clustering at unity so that the sequence {Pn(a)}n
turns out to be a superlinear preconditioning sequence for {An(a, 0)}n where
An(a, 0) represents a good approximation of Re(An(a, p)) namely the real
part of An(a, p).

The computational interest is due to the fact that the preconditioned HSS
method has a convergence behavior depending on the spectral properties of
{P −1

n (a)Re(An(a, p))}n ≈ {P −1
n (a)An(a, 0)}n: therefore the solution of a

linear system with coefficient matrix An(a, p) is reduced to computations
involving diagonals and to the use of fast Poisson solvers for {An(1, 0)}n.

Some numerical experimentations confirm the optimality of the discussed
proposal and its superiority with respect to existing techniques.

Mathematics Subject Classification (1991): 65F10, 65N22, 15A18, 15A12,
47B65

1 Introduction and description of the HSS method

Several applications in scientific computing lead to systems of linear equa-
tions

Anx = b, An ∈ Cn×n, nonsingular, and x, b ∈ Cn

where the coefficient matrix An is large and sparse and possesses a positive
definite real part. In particular, this is the case of the matrices related to the dis-
cretization important classes of time-dependent partial differential equations,
see [4,5]. This basic constraint suggested to Bai, Golub and Ng to use a nat-
ural splitting of An in terms of the Hermitian part and of the skew-Hermitian
part of An (see also [12,13] for related splittings). More precisely, for a given
matrix An, there exists a unique Hermitian/skew-Hermitian decomposition

An = Re(An) + i Im(An), i2 = −1,(2)

where

Re(An) := An + AH
n

2
and Im(An) := An − AH

n

2i
.

We are interested in the case where the real part Re(An), which is Hermi-
tian by definition, is positive definite as well. Following [2], the considered
Hermitian/skew-Hermitian splitting (HSS) can be related to a two-step iter-
ation (in the spirit of the ADI method) in the following way

{
(αI + Re(An)) xk+ 1

2 = (αI − i Im(An)) xk + b

(αI + i Im(An)) xk+1 = (αI − Re(An)) xk+ 1
2 + b

(3)
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with α positive parameter and x0 given initial guess: the related iterative
method is named HSS iteration or HSS method. It is interesting that the
above method can be reinterpreted as a stationary iterative procedure whose
iteration matrix

M(α) = (αI + i Im(An))
−1 (αI − Re(An))

× (αI + Re(An))
−1 (αI − i Im(An))(4)

is well defined: indeed the matrix αI + i Im(An) is invertible since α is
nonzero and i Im(An) is skew-Hermitian and αI + Re(An) is also invertible
due to the positivity of α and to the positive definiteness of Re(An) (the only
structural assumption that we use).

Moreover, Bai, Golub and Ng proved that the convergence is only related
to the spectral radius of the Hermitian matrix

(αI − Re(An)) (αI + Re(An))
−1

which is unconditionally bounded by 1 under the assumption of positivity of
α and of Re(An). However, a finer analysis in the case of a constant coefficient
PDE of the type (1) has shown that the best contraction factor is

1 − ch + O(h2)

where c is a positive fixed constant independent of n, h ∼ n−1/d is the
“discretization parameter” and d is the dimension of the space in which the
domain � lies.

This result can be unsatisfactory for large n and therefore we propose the
use of a preconditioning by means of a Hermitian positive definite matrix Pn.
Our analysis is developed in three main directions.
(A) First we consider the generic case by proving that (A.1) the uncondi-
tional convergence holds in the preconditioned version as well: in that case
the convergence factor is given by the spectral radius of

(
αI − P −1/2

n Re(An)P
−1/2
n

) (
αI + P −1/2

n Re(An)P
−1/2
n

)−1
(5)

where the optimal parameter α is the square root of the product of the extreme
eigenvalues of P −1

n Re(An); (A.2) the analysis can be refined in the case
of non-normal matrices and indeed, quite surprisingly, the skew-Hermitian
contributions in the iteration matrix can have a role in accelerating the con-
vergence and the explanation of this phenomenon falls in the theory of multi-
iterative methods [27]. We recall that basically a multi-iterative method is
an iterative method which is the composition of a finite number of simple
iterations whose main features are the following: each iterative technique is
cheap and potentially slowly convergent, the iterations have a complementary
spectral behavior in such a way that their composition is fast convergent. We
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recall that a classical example is the multigrid method for elliptic differential
problems where the smoother quickly converges in the space of low frequen-
cies (but is very slow in the high frequencies) and the coarse-grid correction
is not convergent at all, but is very fast in the high frequencies space (see e.g.
[18,8,31]).
(B) Second we consider the model problem and for that setting we introduce
preconditioning strategies that are optimal for the HSS method: we denote
by PHSS method the preconditioned HSS method.
(C) Under additional assumptions, the considered preconditioners are opti-
mal even when suitable iterative methods are used as inner iteration processes
at each step of the outer PHSS iterations. In this case, the convergence anal-
ysis is formally much more complicate; for instance the minimal condition
number among the eigenvector matrices comes into play. In [2] an analysis
based on generic inner iteration algorithms has been performed for the HSS
iterations.

More specifically, we define the preconditioning sequence {Pn(a)}n,

Pn(a) := D1/2
n (a)An(1, 0)D1/2

n (a)(6)

where Dn(a) is the suitably scaled main diagonal of An(a, 0): we just mention
that there exist other examples of preconditioners [4,5,11,15,22] whose defi-
nition comes from the discretization of simpler differential equations and/or
with different boundary conditions. Pn(a) is an approximate factorization of
An(a, 0) (and therefore of An(a, p) if the norm of ∇p is not too large, see
Subsection 3.4) in the sense that Pn(a) is the product of simpler matrices,
for which fast solvers are available, and An(a, 0) − Pn(a) has infinitesimal
spectral norm under the sole assumption of continuity of a. Moreover, if a(x)

is positive and regular enough, then

– the preconditioned sequence shows a strong clustering at unity,
– {Pn(a)}n is spectrally equivalent to {An(a, 0)}n

so that the sequence {Pn(a)}n turns out to be a superlinear preconditioning
sequence for {An(a, 0)}n. Since the whole convergence is driven by the matrix
in (5) and since An(a, 0) is a O(h2) spectral approximation of Re(An), it fol-
lows that the PHSS method converges in a very fast way within a constant
number of iterations independent of n under the mild assumption that ∇p(x)

is not too large in norm. Therefore, in order to obtain the solution within a
given accuracy, we essentially reduce the computation to a constant number
of matrix vector multiplications of sparse/diagonal type and to a constant
number of calls to a fast Poisson solver.

From a computational point of view it is worth stressing that, in the case
of plurirectangular domain �, the computation of the solution of the original
linear system by the PCG method with preconditioner Pn(a, �) is reduced
to the computation of the numerical solution of diagonal and d-level banded
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(projected) Toeplitz linear systems with nonnegative generating functions.
We recall that the resolution of such a type of linear systems can be per-
formed within a linear arithmetic cost by means of fast Poisson solvers among
them we count classical (direct) Poisson solvers mainly based on the cyclic
reduction idea (see e.g. [9,14,37]) and several specialized multigrid algo-
rithms (see e.g. [18,31]). Therefore, the use of fast Poisson solvers (a = 1)
is enough for numerically solving nonconstant coefficient PDEs: we stress
that the clustering properties that hold in the elliptic case are observed in the
semi-elliptic setting as well even if there is a lack of an adequate theoretical
analysis.

We wish to emphasize that, by using the properties regarding the Hermi-
tian/skew-Hermitian splitting, our analysis can use the powerful spectral tools
derived from the Toeplitz theory [7,28,29]. On the other hand, the analysis
without these tools can be much more difficult, see, e.g., [4,5].

The paper is organized as follows: in Section 2 we illustrate how to include
preconditioning strategies in the HSS method. We derive new convergence
results for both the preconditioned and non preconditioned iterations. In par-
ticular, an interesting point is the “mixing up effect”: it is proved that, under
suitable assumptions of non-normality of An, the convergence rate is related
to a certain average of eigenvalue moduli of the iteration matrix instead of the
spectral radius. Therefore, in the case of clustering, the convergence accel-
eration is remarkable and we have a superlinear behavior. As a case study,
in Section 3 we consider the Finite Differences discretization of PDEs of the
form (1) and we show that previously developed preconditioning techniques
for purely elliptic operators give rise to optimally convergent PHSS methods.
Two final sections of numerical experiments and extensions (Section 4) and
conclusions (Section 5) end the paper.

2 Preconditioned HSS iteration

First we introduce some notations and definitions. The symbol ‖ · ‖ denotes
the spectral norm of a matrix that is the matrix norm induced by the Euclidean
vector norm ‖ · ‖. If X is an invertible matrix then the symbol ‖ · ‖X stands
for the X vector norm defined as ‖y‖X = ‖Xy‖, ∀y ∈ Cn. Therefore the
corresponding induced matrix norm is defined by

‖A‖X = sup
y �=0

‖Ay‖X

‖y‖X

.

A simple check shows that

‖A‖X = ‖XAX−1‖.
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A matrix is called normal if A and AH commute: we say that A is essen-
tially normal if it is similar to a normal matrix. As a consequence, each
diagonalizable matrix is essentially normal and vice-versa while “most” of
the diagonalizable matrices are not normal. The considered definition is of
interest in the context of stationary iterative methods since the spectral radius
of the iteration matrix exactly represents the convergence reduction factor
of the iteration (in a given norm ‖ · ‖X) if and only the iteration matrix is
essentially normal. We are now ready for analyzing the preconditioned HSS
(PHSS) method.

Let Pn be a Hermitian positive definite matrix and let us consider the
PHSS method, i.e., given a positive α and a initial guess x0, do the following

{(
αI + P −1

n Re(An)
)
xk+ 1

2 = (
αI − P −1

n i Im(An)
)
xk + P −1

n b
(
αI + P −1

n i Im(An)
)
xk+1 = (

αI − P −1
n Re(An)

)
xk+ 1

2 + P −1
n b

(7)

until convergence. A simple check shows that the iteration matrix is

M(α) = (
αI + i P −1

n Im(An)
)−1 (

αI − P −1
n Re(An)

) (
αI + P −1

n Re(An)
)−1

(
αI − i P −1

n Im(An)
)
.

It is clear that the above iteration cannot be interpreted as the HSS method
on the matrix P −1

n A simply because P −1
n Re(An) and P −1

n Im(An) are not the
Hermitian/skew-Hermitian splitting of P −1

n An. However, if Pn = LLH , then
the preceding claim is true for the symmetrized version since

Re(L−1AnL
−H) = L−1Re(An)L

−H , Im(L−1AnL
−H) = L−1Im(An)L

−H

with P −1
n An similar to L−1AnL

−H . Furthermore, another viewpoint (the
viewpoint of the implementation) is as follows: the method in (7) can be
interpreted as the original iteration (3) where the identity matrix is replaced
by the preconditioner Pn i.e.

{
(αPn + Re(An)) xk+ 1

2 = (αPn − i Im(An)) xk + b

(αPn + i Im(An)) xk+1 = (αPn − Re(An)) xk+ 1
2 + b

With the help of these simple observations we can prove the unconditional
convergence of the preconditioned HSS iteration.

Theorem 2.1 Let An ∈ Cn×n be a positive matrix, α be a positive parameter
and let Pn ∈ Cn×n be a Hermitian positive definite matrix. Then the iteration
matrix of the preconditioned HSS method is

M(α) = (
αI + i P −1

n Im(An)
)−1 (

αI − P −1
n Re(An)

)

(
αI + P −1

n Re(An)
)−1 (

αI − i P −1
n Im(An)

)
,
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its spectral radius is bounded by

σ(α) = max
λi∈λ(P −1

n Re(An))

∣
∣
∣
∣
α − λi

α + λi

∣
∣
∣
∣

where λ(X) denotes the set of the eigenvalues of a square matrix X. Therefore,
setting

T = (
αI + P −1/2

n i Im(An)P
−1/2
n

)
P 1/2

n ,

it holds that

ρ(M(α)) ≤ ‖M(α)‖T ≤ σ(α) < 1, ∀α > 0,

i.e., the preconditioned HSS iteration converges to the unique solution of
the system Anx = b. Moreover, setting λmin and λmax the extremal eigen-

values of P −1
n Re(An) and denoting by κ = λmax

λmin
the spectral condition num-

ber (namely the Euclidean (spectral) condition number of the symmetrized
matrix), the best α, that minimizes the quantity σ(α), is α∗ = √

λminλmax and

σ(α∗) =
√

κ − 1√
κ + 1

.

Proof. The expression of M(α) is known from (4).A simple algebraic manip-
ulation proves that

M(α) = T −1M̂(α)T

with

T = P 1/2
n

(
αI + P −1

n i Im(An)
) = (

αI + P −1/2
n i Im(An)P

−1/2
n

)
P 1/2

n ,

M̂(α) = R(α)U(α)

and where

R(α) = (
αI − P −1/2

n Re(An)P
−1/2
n

) (
αI + P −1/2

n Re(An)P
−1/2
n

)−1
,

U(α) = (
αI − i P −1/2

n Im(An)P
−1/2
n

) (
αI + i P −1/2

n Im(An)P
−1/2
n

)−1
.

Due to the relation‖·‖T = ‖T ·T −1‖, it follows that‖M(α)‖T = ‖M̂(α)‖
and therefore, due to the spectrum invariance under similarity transforma-
tions, we have

ρ(M(α)) = ρ(M̂(α))(8)

≤ ‖M̂(α)‖
= ‖M(α)‖T .
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For evaluating ‖M̂(α)‖, we now observe that

U(α)

is a rational function of a skew-Hermitian matrix and therefore is normal.
Moreover its eigenvalues are unitary by construction since

α − x

α + x

is unitary for real α and purely imaginary x. Therefore U(α) is a uni-
tary matrix and, more specifically, it represents the Cayley transform of
P

−1/2
n Im(An)P

−1/2
n . In addition the matrix

R(α)

is Hermitian since it is a rational function of a Hermitian matrix. Conse-
quently, denoting by ∼S the similarity relations among square matrices and
calling λi the eigenvalues of P

−1/2
n Re(An)P

−1/2
n ∼S P −1

n Re(An), we have

‖M̂(α)‖ ≤ ‖R(α)‖ ‖U(α)‖(9)

= ‖R(α)‖
= max

i=1,... ,n

∣
∣
∣
∣
α − λi

α + λi

∣
∣
∣
∣

= σ(α).

Due to the positivity of α and of the values λi , it follows that σ(α) < 1.
Following the same steps as in Corollary 2.3 in [2], it follows that the optimal
parameter α = α∗ with

α∗ =
√

λminλmax, λmin = min
i

λi, λmax = max
i

λi

and therefore, setting κ = λmax
λmin

and putting together inequalities (8) and (9),
we have

ρ(M(α∗)) ≤ ‖M(α∗)‖T ≤ σ(α∗) =
√

κ − 1√
κ + 1

.

��

2.1 Further features of the PHSS method

Some remarks can be useful for understanding important features of the
method and to discover relationships with other iterative techniques.
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2.1.1 PHSS and PCG method The upper bound for the convergence rate
of the preconditioned HSS method, with the choice of the optimal parame-
ter α = α∗, is the same as for the preconditioned conjugate gradient (PCG)
method applied to a linear system whose coefficient matrix is Re(An) with
preconditioner Pn. However, while the PCG method depends also on the dis-
tribution and clustering of the eigenvalues, this seems to be not the case for
the preconditioned HSS iteration since it is a classical stationary method: on
the other hand, in the following (Subsection 2.1.3) we will see that, under
certain circumstances, the preconditioned HSS can be substantially faster
when a spectral clustering occurs.

2.1.2 PHSS method, transient phase and asymptotic convergence A sub-
stantial drawback of measuring the convergence rate of stationary iterative
methods by the spectral radius of the iteration matrix is that this is an asymp-
totic measure and therefore it can be useless when the number of iterations is
small compared to n. In actuality, we are interested in optimal methods, i.e.,
iteration techniques converging to the solution, within a preassigned accuracy,
in a number of step constant and independent of n. Therefore the asymptotic
measure given by the spectral radius could be of little interest when the iter-
ation matrix is highly non-normal (due to transient effects [17]). We should
mention that this is not the case in our context: indeed the PHSS method is
a multi-iterative technique since the iteration matrix M(α) = T −1M̂(α)T is
composed by two distinct matrices:

T −1R(α)T

and

T −1U(α)T ,

with R(α)U(α) being the polar decomposition [16] of M̂(α). Hence the
global iteration matrix is not normal but it is the product of two matrices that
are similar, via the same transformation matrix T , to normal matrices where
the first is a positive definite contraction and the second is a unitary matrix (the
Cayley transform of P

−1/2
n Im(An)P

−1/2
n ). Consequently, the error in T norm

is preserved by T −1U(α)T and is reduced by T −1R(α)T without transient
effects which are typical for essentially non-normal iteration matrices.

2.1.3 PHSS method, non-normal matrices and multi-iterative methods The
above discussion in Subsection 2.1.2 gives the hint for a finer analysis. Indeed
the bound for the T norm of the error is exactly attained if and only if the
skew-Hermitian part and the Hermitian part of An have the same orthonor-
mal basis of eigenvectors. This is true if and only if the original matrix An

is normal. Therefore the normal case is the worst case: for non-normal An,
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in the light of the discussion in Subsection 2.1.2, it follows that the error is
reduced by a factor that is smaller than σ(α) and that could be much smaller.
The rest of the subsection is devoted to analyze this faster convergence of the
PHSS method in the case of non-normal coefficient matrix An.

Indeed the matrix R(α) is Hermitian and therefore can be written as
QRDRQH

R with DR = diag1≤i≤n(λ̃i),

λ̃i = α − λi

α + λi

, α > 0, λi > 0,

as in Theorem 2.1, and QR unitary. Therefore M̂(α) = QRDRV with V =
QH

R U(α) being unitary. By writing DR = |DR|S with S being a sign diagonal
matrix, it is clear that M̂(α) = QR|DR|W is “essentially” the singular value
decomposition [16] of M̂(α) since W = SV is unitary.

As observed before, the worst case occurs in the “maximally concen-
trated case” where the eigenspaces of R(α) and U(α) coincide, i.e., U(α) =
QRDUQH

R , DU = diag1≤i≤n(ui) with |ui | = 1: in that case M̂(α) =
QRDRDUQH

R and consequently the convergence rate is exactly determined
by

max
1≤i≤n

|λ̃iui | = max
1≤i≤n

|λ̃i | = σ(α).

On the other hand this result suggests that the “best case” occurs in the case
of “maximal dispersion”. Therefore, setting U(α) = QUDUQH

U for a given
unitary matrix QU , if the “maximally concentrated case” is represented by
the condition

QRU = QH
R U(α)QH

R = a phase matrix,

then the “maximally dispersed case” is represented by the condition

QRU = QH
R U(α)QH

R = an equimodular matrix,

i.e.,

∣
∣(QRU)i,j

∣
∣ = 1√

n
,

for every i, j ∈ {1, . . . , n}.
A very classical example of equimodular matrix is the celebrated Fourier

matrix. Quasi-equimodular matrices are the unitary matrices related to trig-
onometric transforms: we mention that the notion of “maximally dispersed
matrices” is the key point in several contexts and indeed has been used for
proving negative results on the preconditioning of multilevel structures by
matrix algebras [36] and for solving some extremal problems in matrix theory.
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In order to understand what happens in this situation, we suppose that
the eigenvalues λi of {P −1

n Re(An)}n are strongly clustered at 1 and α = 1
(for the notion of strong or proper cluster refer to Definition 3.1): therefore,
∀ε > 0, ∃q > 0 such that |λ̃i | < ε, i = 1, . . . , n − q and there exist q

outliers for which |λ̃i | ≤ c < 1, i = n − q + 1, . . . , n with c allowed to be
very close to 1.

We want to show that in this case the contraction factor is really smaller
than c and indeed is close to ε. First, observe that [M̂(α)]q coincides with

QRDRQH
R U(α)QRDRQH

R U(α) · · · QRDRQH
R U(α) =

QR[DRQRUDRQRU · · · QRUDR]QH
R U(α) = QRDR[QRUDR]q−1QH

R U(α).

Consequently the convergence behavior is determined by the contraction
factor of the matrix QRUDR where DR is maximally concentrated and QRU

is maximally dispersed. In the light of the theory of multi-iterative methods
[27], the strong complementarity of the two components makes the contrac-
tion factor of the product much smaller than the contraction factors of the
two components c and 1.

Let us substantiate this claim with some formal calculations. Let ek =∑n
j=1 αk

j ej be the error decomposition at step k with ej being the j -th vector
of the canonical basis. Then ek+1 = QRUDRek and consequently

ek+1 = QRU [DRek]

= QRU




n∑

j=1

αk
j λ̃j ej





= QRU




n−q∑

j=1

αk
j λ̃j ej



 + QRU




n∑

j=n−q+1

αk
j λ̃j ej





= (e[1])k+1 + (e[2])k+1.

It is clear that

‖(e[1])k+1‖ < ε‖ek‖,
while the study of the norm of (e[2])k+1 requires a more accurate analysis.
Calling qj the unitary equimodular columns of QRU , it follows that

(e[2])k+1 =
n∑

j=n−q+1

αk
j λ̃j qj

and consequently

ek+2 = QRUDRek+1 = QRUDR(e[1])k+1 + QRUDR(e[2])k+1

= QRUDR(e[1])k+1 + QRU

n∑

j=n−q+1

αk
j λ̃jDRqj .
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Now, the “complementarity” which is typical of fast multi-iterative proce-
dures comes into the play. In actuality, due to equimodularity, we observe
that DRqj has a Euclidean norm which is much smaller than ‖DR‖ = c and
than ‖qj‖ = 1 and, more specifically, the following inequality

‖DRqj‖ ≤ ε + c

√
q

n

is satisfied. Consequently ‖λ̃jDRqj‖ ≤ 2cε for n large enough, and

‖ek+2‖ ≤ c‖(e[1])k+1‖ + ‖
n∑

j=n−q+1

αk
j λ̃jDRqj‖

< cε‖ek‖ + 2cε

n∑

j=n−q+1

|αk
j |

≤ cε‖ek‖ + 2cε
√

q




n∑

j=n−q+1

|αk
j |2





1/2

≤ cε‖ek‖ + 2cε
√

q‖ek‖
which is bounded by (1 + 2

√
q)cε‖ek‖ for n large enough.

It is worth pointing out that the above bound implies that

ρ(M(α)) = ρ(DRQRU) <

√

(1 + 2
√

q)cε(10)

which is negligible with respect to

ρ(R(α)) = ρ(DR) = c

and to

ρ(U(α)) = ρ(QRU) = 1.

Furthermore, for a generic square matrix X we have

ρ(X) ≥



∏

λi∈λ(X)

|λi |




1/n

=



∏

σi∈	(X)

σi





1/n

with 	(X) denoting the set of the singular values of X. In our case the singular
values of M(α), DRQRU and DR coincide and, under the given assumption
of clustered spectrum, we have




∏

σi∈	(X)

σi





1/n

≤
(

cq

εq

)1/n

· ε.
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Therefore, the bound given in (10) (which is not tight and can be still im-
proved) is close to the square root of the geometric mean of the singular
values: we will call this welcome averaging a “mixing up effect”, since the
matrix DR reduces the error according to the values λ̃i in the direction ej and
the matrix QRU makes a equimodular mix of all the contributions in each
direction ei ; in this way the new matrix DR is ready to act on this mix with
an overall acceleration. Finally, we point out that the “mixing up effect”, in
presence of a clustering, justifies a superlinear-like behavior of the consid-
ered PHSS iteration. The good news is that the quoted result stands also in
the case of a weak clustering and this is somehow surprising since in the PCG
case a weak clustering is not enough for a superlinear/optimal convergence.

A numerical evidence A numerical evidence of the “mixing up effect” emerges
from the 4 Tables in Fig 5.2 of [2]: there the authors report a plot of σ(α)

and of ρ(M(α)) for various α in a neighborhood of the optimal value and
with regard to problem (1) where p = 1, 10, 100, 1000. The larger is p(x)

the more the discretized matrix An departs from normality and therefore we
have a stronger “mixing up effect”: a convincing explanation of this curi-
ous phenomenon is exactly the “mixing up effect”. The nice thing is that for
large p(x) = P , say 100, 1000, i.e., for a convection dominated problem,
the quantity σ(α) is close to 1 but ρ(M(α)) � σ(α) ≈ 1. Therefore the real
convergence behavior of the HSS method is much faster compared with the
forecasts of Theorem 2.1 with Pn = I . We point out that the results of this
subsection have an interesting meaning since they show that the HSS and
PHSS methods can be especially good for problems where most of the other
techniques fail or become very slow.

2.1.4 The case of Pn = Re(An): PHSS method and GMRES In the case
where Pn = Re(An) the optimal parameter α∗ is 1 and the contraction factor
σ(α∗) described in Theorem 2.1 is exactly zero. This means that we have
exactly one iteration where we have to solve two kinds of auxiliary linear
systems. The first type with coefficient matrix Pn = Re(An) and the second
with coefficient matrix I + i P −1

n Im(An). Therefore, we should have a fast
solver for systems of the form Pny = c and that the matrix I + i P −1

n Im(An)

should have eigenvalues with good localizing properties. Since i P −1
n Im(An)

is similar to a skew-Hermitian matrix, it follows that the eigenvalues are
purely imaginary and therefore the minimum among the absolute value of
the eigenvalues of I + i P −1

n Im(An) is 1. Thus, the linear system

(I + i P −1
n Im(An))y = P −1

n b(11)

is easily solvable, say by GMRES or Chebyshev iterations, if

P −1
n Im(An) = [Re(An)]

−1 Im(An)
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has a bounded spectrum, i.e., there exists a positive constant independent of n

which bounds from above the modulus of the eigenvalues of P −1
n Im(An). As

we will see in the following section, the case of the FD/FEM discretization
of PDEs of the form (1) leads to linear systems of equations for which we are
able to find superlinear PCG methods for the Hermitian part Pn = Re(An)

and for which we prove that the spectrum of

[Re(An)]
−1 Im(An)

is clustered to 0 and is bounded by a universal constant not depending on n.
The result is not trivial since all the matrices An, Re(An) and Im(An) show
a condition number exploding to infinity as n tends to infinity (see e.g. [1]).

However, in the case where the chosen preconditioner Pn is Re(An) and
the parameter α is equal to 1, it should be observed that the PHSS iteration
is equivalent to the direct use of the GMRES method on

P −1
n Anx = P −1

n b

since P −1
n An = I + i P −1

n Im(An).
Finally we remark that, in the case of our model problem (1) and when the

coefficient a(x) is constant, we possess an optimal solver for linear systems
whose coefficient matrix is Pn = Re(An). When a(x) is nonconstant we have
an approximate factorization of Re(An) in the sense discussed below equa-
tion (6): for more details see [30,34]. In that case we use this approximate
factorization as preconditioner.

3 A model problem with d = 2, 3 and plurirectangle Ω

We consider FD discretizations of differential problems of the form





−∇T [a(x)∇u(x)] + ∑d
j=1

∂
∂xj

(p(x)u(x)) = f (x) x ∈ �

Dirichlet BC
(12)

with � being a plurirectangle of Rd with d = 2, 3, a(x) being a uniformly
positive function and p(x) denoting the Reynolds function. The discretization
process is performed in divergence form so that the resulting approximation of
the operator −∇T [a(x)∇u(x)] is real symmetric positive definite. More pre-
cisely, the coefficient matrix is indicated as An(a, p) = An(a, p, m) where
m = (m1, m2, m3) and the parameter mj , j = 1, 2, 3 identifies the precision

order of the FD scheme used for approximating the operator
∂

∂xj

.

When the problem is purely elliptic, i.e., the parameter p(x) is equal to
zero, some very fast preconditioning techniques based on Poisson solvers and
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diagonal matrices were proposed. Both theoretical and practical comparisons
proved that the new proposal is more effective than classical techniques such
as matrix algebra preconditioning [10,19–21] or incomplete LU factorization
preconditioning [16,1] even in presence of high–order FD formulae for the
approximation of the quoted differential problems or in presence of semi-
ellipticity. We just mention that, in the past few years, semi-elliptic problems
have received increasing attention both from a numeric/modelistic and ana-
lytic point of view due to their occurrence in important applications: among
them we recall electromagnetic field problems [23] and models in Mathemat-
ical Finance [38] where we encounter PDEs with a coefficient a(x) either
exploding or vanishing at the boundary of the domain.

Here we combine these ideas with the PHSS method and we show that
the resulting method is optimal in the sense that the number of iteration can
be bounded by a constant independent of n, with a total arithmetic cost for
reaching the solution with a preassigned tolerance, which is asymptotically
linear with respect to the size n of the underlying matrices.

The rest of the section is organized in four steps: in the first step we report
some necessary tools and definitions concerning Toeplitz matrices and spec-
tral distribution and then, in the last three steps, we present an analysis of
increasing difficulty with respect to the model problem defined in (12).

3.1 Some tools from Toeplitz matrices and matrix sequences

Let f be a d-variate Lebesgue integrable function defined over the hypercube
T d , with T = (−π, π] and d ≥ 1. From the Fourier coefficients of f

aj = 1

(2π)d

∫

T d

f (z)e−i(j,z) dz, i2 = −1, j = (j1, . . . , jd) ∈ Zd

(13)

with (j, z) = ∑d
r=1 jrzr , one can build the sequence of Toeplitz matrices

{TN(f )}N , N = (N1, . . . , Nd), where TN(f ) ∈ Cn×n and n = ∏d
r=1 Nr . It

is clear that the Fourier coefficients aj are equal to zero definitely (for |j |
large enough) if f is a (multivariate) trigonometric polynomial and therefore
the corresponding Toeplitz matrix is multilevel and banded like in the case of
the classical d-level Laplacian discretized by minimal precision equispaced
FD formulae over a square region. In the latter case, for instance, we mention
that the corresponding generating function is the polynomial

d∑

j=1

(2 − 2 cos(zj )).
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The matrix TN(f ) is said to be the Toeplitz matrix of order N generated by f

and can be conveniently written in terms of Jordan blocks and of their powers
as follows

TN(f ) =
∑

|j |≤N−e

ajJ
[j ]
N =

∑

|j1|≤N1−1

· · ·
∑

|jd |≤Nd−1

a(j1,... ,jd )J
[j1]
N1

⊗ · · · ⊗ J
[jd ]
Nd

.

(14)

In the above relation, ⊗ denotes tensor Kronecker product, J [l]
m denotes the

Jordan matrix of order m whose (s, t) entry equals 1 if s − t = l and equals
zero otherwise, while J

[j ]
N , where j and N are multi-indices, is the tensor

product of all J
[jr ]
Nr

for r = 1, . . . , d. More explicitly, the 2m − 1 matrices
J [l]

m , l = 0, ±1, . . . , ±(m − 1), are the canonical basis of the linear space of
m × m (one-level) Toeplitz matrices and the tensor notation emphasizes the
d-level Toeplitz structure of TN(f ). Indeed, the set {J [j ]

N }j is the canonical
basis of the linear space of the n × n d-level Toeplitz matrices.

The spectral properties of the sequence {TN(f )}N and of related precon-
ditioned sequences are completely understood and characterized in terms of
the underlying generating functions. For instance, it is a immediate check to
deduce that TN(f ) is Hermitian for any N if and only if f is real valued.
More sophisticate results are contained in the following theorem.

Theorem 3.1 [7,28] Let f and g two d variate Lebesgue integrable real val-
ued functions defined over T d and assume that g is nonnegative with positive
essential supremum. Then the following facts hold:

1. if f is not identically constant, then every eigenvalue of TN(f ) lies in
(m, M) where m =essinf f and M =esssup f ;

2. if we denote by λmin(TN(f )) and by λmax(TN(f )) the minimal and the
maximal eigenvalues of TN(f ), then

lim
N→∞

λmin(TN(f )) = m, lim
N→∞

λmax(TN(f )) = M

with N → ∞ meaning that Nj → ∞, for every j = 1, . . . , d;
3. moreover, if Ni ∼ Nj for any i and j , then λmin(TN(f ))−m ∼ n−α/d and

M − λmax(TN(f )) ∼ n−β/d where α is the maximum among the orders
of the zeros of f (z) − m and β is the maximum among the orders of the
zeros of M − f (z);

4. finally TN(g) is Hermitian positive definite and the eigenvalues of T −1
N (g)

TN(f ) are contained in (r, R) if r < R and r =essinf h, R =esssup h

with h = f

g
.

The following definition is also of interest in asymptotic (numerical) linear
algebra.
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Definition 3.1 Let {An}n be a sequence of matrices of increasing dimensions
n and let θ be a measurable function defined over a set K of finite Lebesgue
measure. We write that {An}n is distributed as the measurable function θ in
the sense of the eigenvalues, i.e., {An}n ∼λ θ if, for every F continuous, real
valued and with bounded support, we have

lim
n→∞

1

n

n∑

j=1

F
(
λj

(
An

)) = 1

m{K}
∫

K

F(θ(s)) ds,(15)

where λj (An), j = 1, . . . , n are the eigenvalues of An.
The sequence {An}n is clustered at 1 if it is distributed as the constant func-
tion 1. Finally, the sequence is properly (or strongly) clustered at 1 if for any
ε > 0 the number of the eigenvalues of An not belonging to (1 − ε, 1 + ε)

can be bounded by a pure constant eventually depending on ε but not on n.

As an example, we recall that the sequence {TN(f )}N is distributed as
the symbol f and furthermore, under the assumptions of part 4. of the above
theorem, the preconditioned sequence {T −1

N (g)TN(f )}N is distributed (see
[29]) as

h = f

g
.

We just mention that this kind of global spectral results play a key role to
prove precise asymptotic bounds on the convergence rate of (preconditioned)
conjugate gradients like algorithms as shown in recent works by Beckermann
and Kuijlaars [3].

3.2 The case of a = 1 and constant p(x)

Let us consider the problem (12) with d = 3, a = 1 and constant p(x), dis-
cretized by a seven-points FD formula where we use basic centered schemes
of precision order two both for the diffusive terms and the convective terms.
In the simple case where the domain is a cube Q containing �, following [2],
we get a linear system with coefficient matrix

An(Q) = TN ⊗ I ⊗ I + I ⊗ TN ⊗ I + I ⊗ I ⊗ TN + SN ⊗ I ⊗ I +
I ⊗ SN ⊗ I + I ⊗ I ⊗ SN

where the equispaced step-size h = 1
N+1 is used in the discretization on all

the three directions and the natural lexicographic ordering is employed in
the unknowns. Moreover, TN is the Toeplitz matrix of size N generated by
2 − 2 cos(z1), i.e., the usual one dimensional discrete Laplacian, SN is h

times the Toeplitz matrix of size N generated by pi sin(z1), and the global
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dimension n of the linear system is given by N3. Therefore, the Hermitian
part of An(Q) is exactly the discretization of the diffusion terms, i.e.,

Re(An(Q)) = TN ⊗ I ⊗ I + I ⊗ TN ⊗ I + I ⊗ I ⊗ TN

and the skew-Hermitian part of An(Q) is exactly the discretization of the
convection terms, i.e.,

i Im(An(Q)) = SN ⊗ I ⊗ I + I ⊗ SN ⊗ I + I ⊗ I ⊗ SN.

If we consider the same discretization scheme over the domain � then, fol-
lowing the results in [35], there exists a matrix  such that

An := An(�) = An(Q)T(16)

and therefore

Re(An) =  Re(An(Q)) T , Im(An) =  Im(An(Q)) T .

Here the matrix  has unitary rows and is obtained from the identity by delet-
ing all the rows of index j such that the j -th grid point of Q does not belong
to �: it is evident that T = I while T  is a orthogonal projector.

Notice that Re(An) is real symmetric positive definite but ill-conditioned
with a condition number asymptotic to h−2 [10]. We need preconditioning
and, in this case, due to the existence of fast Poisson solvers, we use Re(An)

as preconditioner. With the choice α∗ = 1, as observed in Subsection 2.1.4,
we know that the PHSS method converges in one step and the main point is
the solution of a system of the form

(
I + i [Re(An)]

−1 Im(An)
)
y = c,(17)

where c is a n sized vector. The key point is that the spectrum of [Re(An)]
−1

Im(An) is real and, more important, is bounded by a fixed constant inde-
pendent of n. Therefore the above system (17) could be easily solved by a
elementary Richardson technique in a optimal way with a linear arithmetic
cost. Furthermore we will also prove the spectrum of [Re(An)]

−1 Im(An) is
clustered at zero and consequently the application of a method like GMRES
or Chebyshev iterations would lead to superlinear convergence behavior.

Theorem 3.2 Let An := An(Q), An(�) ∈ Cn×n be the positive matrices
defined in Subsection 3.2. Then

Rn = [Re(An)]
−1 Im(An)

is spectrally bounded and properly clustered at zero.
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Proof. For the sake of notational simplicity, in all the subsequent steps we
assume p = 1. Therefore all the estimates on the extreme eigenvalues have
to be multiplied by p(x) = P .
Step1: we consider An(Q) in one dimension.
A) Spectral boundedness. In this basic context we have

Re(An) = TN(2 − 2 cos(z1)), Im(An)) = hTN(sin(z1)).

Since TN(2 − 2 cos(z1)) is symmetric positive definite, calling λmin and λmax

the extreme eigenvalues of Rn, it follows that

λmin = min
v �=0

vHhTN(sin(z1))v

vHTN(2 − 2 cos(z1))v
, λmax = max

v �=0

vHhTN(sin(z1))v

vHTN(2 − 2 cos(z1))v
.

Due to the monotonicity of the Toeplitz operator, it follows that

λmin ≥ min
v �=0

vHhTN(−| sin(z1)|)v
vHTN(2 − 2 cos(z1))v

,

λmax ≤ max
v �=0

vHhTN(| sin(z1)|)v
vHTN(2 − 2 cos(z1))v

,

and hence, using the linearity of the Toeplitz operator, we have

max{|λmin|, λmax} ≤ max
v �=0

vHhTN(| sin(z1)|)v
vHTN(2 − 2 cos(z1))v

.

The function h| sin(z1)| can be bounded from above by

sin2(z1) + h2Ch{t∈[−π,π ]: | sin(t)|≤h}(z1)

where ChX denotes the characteristic function of a set X. Moreover the Fou-
rier coefficients of the function h2Ch{t∈[−π,π ]: | sin(t)|≤h}(z1) are bounded by
h2

2π
m{t ∈ [−π, π ] : | sin(t)| ≤ h} and the latter quantity, for any ε > 0, is

bounded by

h3(1 + ε)

π
, for n large enough.

Therefore, the spectral norm of the corresponding Toeplitz matrix is bounded
by

h2(1 + ε)

π
, for n large enough.
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By using once again the linearity and the monotonicity of the Toeplitz oper-
ator and by invoking part 4. of Theorem 3.1, we have

max{|λmin|, λmax} ≤ max
v �=0

vH hTN(| sin(z1)|)v
vH TN(2 − 2 cos(z1))v

≤ max
v �=0

vH TN(sin2(z1) + h2Ch{t∈[−π,π ]: | sin(t)|≤h}(z1))v

vH TN(2 − 2 cos(z1))v

= max
v �=0

vH TN(sin2(z1))v + vH TN(h2Ch{t∈[−π,π ]: | sin(t)|≤h}(z1))v

vH TN(2 − 2 cos(z1))v

≤ max
v �=0

vH TN(sin2(z1))v

vH TN(2 − 2 cos(z1))v

+ max
v �=0

vH TN(h2Ch{t∈[−π,π ]: | sin(t)|≤h}(z1))v

vH TN(2 − 2 cos(z1))v

≤ λmax

(
T −1

N (2 − 2 cos(z1))TN(sin2(z1))
)

+maxv �=0 vH TN(h2Ch{t∈[−π,π ]: | sin(t)|≤h}(z1))v

minv �=0 vH TN(2 − 2 cos(z1))v

< part 4. of
Theorem 3.1

max
z1∈[−π,π ]

sin2(z1)

2 − 2 cos(z1)

+‖TN(h2Ch{t∈[−π,π ]: | sin(t)|≤h}(z1))‖
4 sin2

(
π

2(n+1)

)

< max
z1∈[−π,π ]

sin2(z1)

2 − 2 cos(z1)
+ h2(1 + ε)

4π sin2
(

π
2(n+1)

) ,

for n large enough. Finally, setting

C1 = max
z1∈[−π,π ]

sin2(z1)

2 − 2 cos(z1)

and

C2 = sup
n

h2(1 + ε)

4π sin2
(

π
2(n+1)

) ,

it follows that

max{|λmin|, λmax} < C := C1 + C2(18)

and the proof is over.
B) Proper clustering. We want to show that, for every ε > 0 there exists a
constant q = qε independent of h such that all the eigenvalues of Rn belong
to (1 − ε, 1 + ε) except, at most, q outliers. As in the part A) of the proof,
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the main idea is a delicate majorization of the function h| sin(z1)|. Set α(h)
an infinitesimal function and consider the following inequality

h| sin(z1)|≤h| sin(z1)|Ch{t∈[−π,π ]: | sin(t)|>α(h)}(z1) + hα(h)Ch{t∈[−π,π ]: | sin(t)|≤α(h)}(z1).

We observe that

sup
z1∈[−π,π ]

h| sin(z1)|Ch{t∈[−π,π ]: | sin(t)|>α(h)}(z1)

2 − 2 cos(z1)
∼ h

α(h)

and therefore, by choosing α(h) = h/ε, we have

h| sin(z1)| ≤ Cε(2 − 2 cos(z1)) + h2

ε
Ch{t∈[−π,π ]: | sin(t)|≤h/ε}(z1)

with C absolute constant. Passing to the Toeplitz representation and using
the Hermitian partial ordering notation, we have

[Re(An)]
−1/2 Im(An) [Re(An)]

−1/2 ≤ CεI + h2

ε
T −1

N (2 − 2 cos(z1))

and therefore the number of the eigenvalues exceeding (C +1)ε are bounded
by the number of eigenvalues of TN(2 − 2 cos(z1)) which are smaller than
(h/ε)2.A direct check on the eigenvalues of TN(2−2 cos(z1)), whose expres-

sion coincides with the quantities 4 sin2

(
jπh

2

)

, j = 1, . . . , N , shows that

this number can be bounded by an absolute constant times ε−1 since

4 sin2

(
jπh

2

)

≤ 4

(
jπh

2

)2

<

(
h

ε

)2

is satisfied for j < π−1ε−1. A similar result applies to the eigenvalues less
than −ε and therefore the proof of the existence of a proper cluster is con-
cluded with a constant q asymptotic to ε−1 but independent of n and h.
Step2: we consider An(�) in one dimension.
Since An(�) = An(Q)T , it follows

Re(An(�)) =  Re(An(Q)) T , Im(An(�)) =  Im(An(Q)) T ,

with  having unitary rows and more columns than rows. Therefore we
deduce that

λmin(�) = min
v �=0

vH Im(An(�))v

vH Re(An(�))v

= min
v �=0

vH Im(An(Q)) T v

vH Re(An(Q)) T v

= min
v �=0,w=T v

wH Im(An(Q))w

wH Re(An(Q)) w

≥ min
w �=0

wH Im(An(Q))w

wH Re(An(Q)) w
= λmin(Q)
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and

λmax(�) = max
v �=0

vH Im(An(�))v

vH Re(An(�))v

= max
v �=0

vH Im(An(Q)) T v

vH Re(An(Q)) T v

= max
v �=0,w=T v

wH Im(An(Q))w

wH Re(An(Q)) w

≤ max
w �=0

wH Im(An(Q))w

wH Re(An(Q)) w
= λmax(Q).

Consequently the claim is reduced to the one in Step1 since

max{|λmin(�)|, λmax(�)} ≤ max{|λmin(Q)|, λmax(Q)} < C

with C defined as in (18).
Finally, the use of relation (16) and the application of the Cauchy interlace

principle are sufficient to prove the spectral clustering in this case as well.
Step3: we consider An(Q) in d > 1 dimensions.
Make the same reasoning as in Step1: the proof is identical with the generat-
ing functions 2 − 2 cos(z1) and sin(z1) replaced by their d-level counterparts∑d

j=1(2 − 2 cos(zj )) and
∑d

j=1 sin(zj ).
Step4: we consider An(�) in d > 1 dimensions.
Make the same reasoning as in Step2 and reduce the claim to the one in
Step3. ��

It could be observed that the matrix Re(An(�)) is diagonalized by the
DST I transform (the most known sine transform, see e.g. [31]) and this
remark could lead to more information and to some simplification in the
above analysis. However, Im(An(�)) is not diagonalized by the same trans-
form. Moreover if we consider higher order FD discretization formulae, then
the analysis performed in the proof of Theorem 3.2 is still valid (indeed The-
orem 3.2 can be stated and proved identically), while the involved matrices
are no longer diagonalized by any known (fast) transform.

3.3 The case of nonconstant a(x) and p(x) constant

Consider he problem (12) with d = 3, nonconstant a = a(x) > 0 and
constant p(x). We use again the same seven-points FD formula based on
centered schemes of precision order two both for the diffusive terms and the
convective terms. In the simple case where the domain is a cube Q containing
�, we obtain a linear system with coefficient matrix

An(a, Q) = �n(a, Q) + SN ⊗ I ⊗ I + I ⊗ SN ⊗ I + I ⊗ I ⊗ SN
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where the same constant step-size h = 1
N+1 is used in the discretization on

all the three directions and the natural lexicographic ordering is employed
in the unknowns. The matrix �n(a, Q) is the discretization of the diffusion
term and the “central” entries of its generic row are
(
−ai,j,k̃, 0, −ai,j̃ ,k, 0, −aĩ,j,k, Ai,j,k, −aĩ+1,j,k, 0, −ai,j̃+1,k, 0, −ai,j,k̃+1

)
,

with Ai,j,k equal to the sum of the absolute values of the non-diagonal entries
of the related row, the “internal” 0 being a null vector of size N − 2, the
“external” 0 being a null vector of size (N − 2)N + N − 1, and

as,t,u = a (sh, th, uh) , r̃ = r − 1/2, r = 1, . . . , N.

In the case where a = 1, we observe that the matrix �n(a, Q) coincides with
the usual three dimensional discrete Laplacian described by the three-level
Toeplitz structure

�n(1, Q) = TN ⊗ I ⊗ I + I ⊗ TN ⊗ I + I ⊗ I ⊗ TN.

As in the previous subsection, SN is h times the Toeplitz matrix of size N gen-
erated by pi sin(z1), and the global dimension n of the linear system is given
by N3. Therefore, the Hermitian part of An(Q) is exactly the discretization
of the diffusion terms, i.e.,

Re(An(a, Q)) = �n(a, Q)

and the skew-Hermitian part of An(a, Q) is exactly the discretization of the
convection terms, i.e.,

i Im(An(a, Q)) = SN ⊗ I ⊗ I + I ⊗ SN ⊗ I + I ⊗ I ⊗ SN.

If we consider the same discretization scheme over the domain � then, fol-
lowing the results in [35], there exists a matrix  depending only on � and
Q (the same as in Subsection 3.2) such that

An := An(a, �) = An(a, Q)T

and

Re(An) =  Re(An(a, Q)) T , Im(An) =  Im(An(a, Q)) T .

Similarly to the case in Section 3.2, Re(An) is real symmetric positive
definite but ill-conditioned with a condition number asymptotic to h−2. We
need preconditioning and indeed we use an approximation strategy analyzed
in [30,34]. More specifically, we consider a Poisson solver based precondi-
tioner for Re(An(a, �)) defined as

Pn := Pn(a, �) = D1/2
n (a)�n(1, �)D1/2

n (a),
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whereDn(a)= 1
6 diag (�n(a, �)) is a suitably scaled diagonal of�n(a, �).

The features of this preconditioning sequence have been analyzed in detail.
Here we report the useful properties.

Theorem 3.3 [30,35] Let An := An(a, Q), An(a, �) ∈ Cn×n be the positive
matrices previously defined. If the coefficient a(x) is strictly positive and
belongs to C2(�), then for every ε > 0, there exist a N̄ and a constant q

such that for any N = (N1, . . . , Nd) > N̄ = (N̄1, . . . , N̄d) (with respect to
the partial ordering of Nd), n − q eigenvalues of the preconditioned matrix
P −1

n Re(An) belong to the open interval (1 − ε, 1 + ε) [Proper Clustering].
Moreover all the eigenvalues belong to an interval [c, C] well separated from
zero [Spectral equivalence]

With the choice α∗ = 1, as observed in Subsection 2.1.3, we know that
the PHSS method converges “superlinearly” if the skew-Hermitian part is big
enough (substantial departure from normality). Otherwise, due to the spectral
equivalence, it will be optimally convergent (linearly but with a convergence
rate independent of the mesh size h).

Now the critical point is the solution of a system of the form (17):
(
I + i P −1

n Im(An)
)
y = c.(19)

The key statement is that the spectrum of P −1
n Im(An) is real and, more impor-

tant, is bounded by a fixed constant independent of n. Therefore the above
system (19) could be easily solved by a elementary Richardson technique
in a optimal way with a linear arithmetic cost. Furthermore, the spectrum of
P −1

n Im(An) is clustered at zero and consequently the application of a method
like GMRES or Chebyshev iterations would lead to superlinear convergence
behavior.

Theorem 3.4 Let An := An(a, Q), An(a, �) ∈ Cn×n be the positive matri-
ces previously defined with a(x) being strictly positive and belonging to
C2(�). Then

Rn = P −1
n Im(An)

is spectrally bounded and properly clustered at zero.

Proof. Due to the positivity and to the regularity of a(x), by Theorem 3.3,
we have

cPn ≤ Re(An) ≤ CPn, An = An(a, �),

where the positive interval [c, C] is exactly the one of Theorem 3.3 and
where the ordering relation is the one of the Hermitian matrices. Moreover
the operator Re(An(·, �)) is linear and positive (see [35]) and therefore

min
�

a(x) Re(An(1, �)) ≤ Re(An(a, �)) ≤ max
�

a(x) Re(An(1, �))



Preconditioned HSS methods for the solution of non-Hermitian 465

with strictly positive constants min� a(x) and max� a(x). Combining the
two sets of matrix inequalities, we conclude that

c

max� a(x)
Zn ≤ P −1/2

n Im(An)P
−1/2
n ≤ C

min� a(x)
Zn,(20)

with

Zn = [An(1, �)]−1/2 Im(An) [An(1, �)]−1/2 .

Finally we observe that Rn is similar to P
−1/2
n Im(An)P

−1/2
n and so they share

the spectrum; moreover the matrix sequence
{
Zn = [An(1, �)]−1/2 Im(An) [An(1, �)]−1/2}

n

is spectrally bounded and properly clustered to zero (since Zn is similar to
the matrix Rn considered in Theorem 3.2): as a consequence of (20), the
sequence {Rn}n considered in the present theorem is also spectrally bounded
and properly clustered to zero and so the proof is over. ��

3.4 The general case

We consider problem (12) with d = 3, nonconstant a = a(x) > 0, noncon-
stant p(x) and we make use of the discretization process as in the former
subsections. In the simplest case where the domain is a square Q containing
� we obtain a linear system with coefficient matrix

An(a, p, Q) = �n(a, Q) + �n(p, Q).

The matrix �n(a, Q) is the discretization of the diffusion term and the matrix
�n(p, Q) is the discretization of the convection term. In the case where p(x)

is constant, we observe that the matrix �n(p, Q) coincides with a three-level
Toeplitz structure

SN ⊗ I ⊗ I + I ⊗ SN ⊗ I + I ⊗ I ⊗ SN.

A crucial difference with respect to the preceding cases is that the Hermitian
part of An(a, p, Q) is not exactly the discretization of the diffusion terms
�n(a, Q) and the skew-Hermitian part of An(a, p, Q) is not exactly the
discretization of the convection terms �n(p, Q).

Theorem 3.5 Let An := An(a, p, Q), An(a, p, �) ∈ Cn×n be the positive
matrices previously defined and let us assume that the coefficient p(x) has
bounded first derivative. Then

Re(An(a, p)) = �n(a) + En,

i Im(An(a, p)) = �n(p) − En
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where

En = �n(p) + �H
n (p)

2

with ‖En‖ ≤ ch2 and c = 6‖∇p‖∞ absolute constant only depending on
p(x).

Proof. Since the discretization of the diffusion term �n(a) is Hermitian (see
Subsection 3.3), it follows that �n(a) does not contribute to the skew-Her-
mitian part of An and consequently

Re(An(a, p)) = �n(a) + En,

i Im(An(a, p)) = �n(p) − En,

En = �n(p) + �H
n (p)

2
.

To evaluate the spectral norm of En we observe that the matrix �n(p) has a
symmetric pattern with 6 nonzero diagonals. Therefore �H

n (p) and En have
an identical pattern and therefore

‖En‖ ≤ 6 max
(s,t)∈pattern(�n(p))

∣
∣(En)s,t

∣
∣ .

The “central” entries of the generic row of �n(p) are given by

h

2

(−pi,j,k−1, 0, −pi,j−1,k, 0, −pi−1,j,k, 0, pi+1,j,k, 0, pi,j+1,k, 0, pi,j,k+1
)
,

with the “internal” 0 being a null vector of size N − 2 and the “external” 0
being a null vector of size (N − 2)N +N − 1. As a consequence, we directly
infer that the “central” entries of the generic row of the correction matrix En

are defined as
h
2

(−pi,j,k−1 + pi,j,k, 0, −pi,j−1,k + pi,j,k, 0, −pi−1,j,k + pi,j,k, 0,

pi+1,j,k − pi,j,k, 0, pi,j+1,k − pi,j,k, 0, pi,j,k+1 − pi,j,k

)
,

and finally

∣
∣(En)s,t

∣
∣ ≤ h2 max

1≤v≤3

∥
∥
∥
∥

∂

∂xv

p

∥
∥
∥
∥

∞
= h2‖∇p‖∞.

��
Remark 3.1 If we consider the same discretization scheme over the domain
� then we have

An := An(a, p, �) = An(a, p, Q)T

and

Re(An) =  Re(An(a, p, Q)) T , Im(An) =  Im(An(a, p, Q)) T

with  defined as in the preceding subsections.
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Under the assumption that ‖∇p‖∞ is smaller than a positive suitable con-
stant, we prove that Re(An) is real symmetric positive definite but ill-condi-
tioned with a condition number asymptotic to h−2. We need preconditioning
and indeed we use an approximation strategy analyzed in [30,34]. More spe-
cifically, we consider a Poisson solver based preconditioner for Re(An(a, �))

defined as

Pn := Pn(a, �) = D1/2
n (a)�n(1, �)D1/2

n (a),

whereDn(a)= 1
6 diag (�n(a, �)) is a suitably scaled diagonal of�n(a, �).

The following result holds.

Theorem 3.6 Let An := An(a, p, Q), An(a, p, �) ∈ Cn×n be the positive
matrices previously defined. If ‖∇p‖∞ ≤ π2c(�) min� a with c(�) > 0,
c(Q) = 1, and if the coefficient a(x) is strictly positive and belongs to
C2(�), then for every ε > 0, there exist a N̄ and a constant q such that for
any N = (N1, . . . , Nd) > N̄ = (N̄1, . . . , N̄d) (with respect to the partial
ordering of Nd), n− q eigenvalues of the preconditioned matrix P −1

n Re(An)

belong to the open interval (1−ε, 1+ε) [Proper Clustering]. Moreover all the
eigenvalues belong to an interval [c, C] well separated from zero [Spectral
equivalence]

Proof. By Theorem 3.5 we have

Re(An(a, p)) = �n(a) + En, ‖En‖ ≤ 6‖∇p‖∞h2.

Moreover, from spectral results given in [35], we know that

λmin(�n(a)) ≥
[

c(�)3π2 min
�

a

]

h2

with c(�) > 0 and c(Q) = 1. Therefore, it is clear that En does not change
the positive definiteness and the asymptotic ill conditioning of �n(a) if

‖∇p‖∞ <
π2

2
c(�) min

�

a.

Concerning the spectral results on the sequence {P −1
n Re(An)}n we recall

that the claimed thesis is true for {P −1
n �n(a)}n by Theorem 3.3. Moreover

Pn has minimal eigenvalue going to zero as h2, is spectrally distributed as
a(x)

∑d
j=1(2 − 2 cos(zj )) (see e.g. [32]), and Re(An) − �n(a) = En with

‖En‖ ≤ 6‖∇p‖∞h2. Therefore a simple reasoning allows one to conclude
that the same relations (with possibly different constants) are satisfied for
{P −1

n Re(An)}n as well. •
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With the choice α∗ = 1, as observed in Subsection 2.1.4, we know that
the PHSS method converges “superlinearly” if the skew-Hermitian part is
big enough. Otherwise, due to the spectral equivalence, it will be optimally
convergent (linearly but with a convergence rate independent of the mesh
size h).

Again, the critical point is the solution of a system of the form (17):
(
I + i P −1

n Im(An)
)
y = c,(21)

and, similarly to the previous case, the spectrum of P −1
n Im(An) is real and,

more important, is bounded by a fixed constant independent of n. Therefore
the above system (21) could be easily solved by a elementary Richardson
technique in an optimal way with a linear arithmetic cost. Moreover, the
spectrum of P −1

n Im(An) is clustered at zero in this case as well and, conse-
quently, the application of a method like GMRES or Chebyshev would lead
to superlinear convergence behavior.

Theorem 3.7 Let An := An(a, p, Q), An(a, p, �) ∈ Cn×n be the positive
matrices previously defined. Then

Rn = P −1
n Im(An)

is spectrally bounded and properly clustered at zero.

Proof. From Theorem 3.5 we have

P −1
n Im(An) = −i P −1

n (�n(p) − En)

= − i

2
P −1

n

(
�n(p) − �H

n (p)
)

where the “central” entries of the generic row of the matrix Xn(p) = �n(p)−
�H

n (p) are defined as

h
2

(−pi,j,k−1 − pi,j,k, 0, −pi,j−1,k − pi,j,k, 0, −pi−1,j,k − pi,j,k, 0,

pi+1,j,k + pi,j,k, 0, pi,j+1,k + pi,j,k, 0, pi,j,k+1 + pi,j,k

)
.

Consequently the Hermitian matrix − i
2Xn(p) has the following dyadic rep-

resentation

− i

2
Xn(p)= h

4

∑

i,j,k

pi,j,k(eke
T
k )⊗(ej e

T
j ) ⊗ [T3(−2 sin(z))](i)+

(eke
T
k )⊗[T3(−2 sin(z))](j)⊗(eie

T
i )+[T3(−2 sin(z))](k) ⊗ (ej e

T
j )⊗(eie

T
i ),

where the symbol [T3(g(z))](s) denotes a null matrix of size N except for
a 3 by 3 block coinciding with T3(g(z)) and having the entry (T3(g(z)))2,2

(the center of T3(g(z))) in position (s, s), s = 1, . . . , N . Of course if s = 1
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or s = N the considered nonzero block reduces to a 2 by 2 block since we
simply ignore the extra-dimensional terms. Moreover [T3(−2 sin(z))](j) =
[T2(−2 sin(z))](j−1) + [T2(−2 sin(z))](j) with [T2(g(z))](s) being a null ma-
trix except for a 2 by 2 block coinciding with T2(g(z)) and having the entry
(T2(g(z)))1,1 in position (s, s), s = 0, . . . , N . If s = 0 or s = N the consid-
ered nonzero block reduces to a single element (the extra-dimensional entries
are disregarded again). Now we observe that

[T2(2 sin(z))](i) ≤ w[T2(1 + ĥ2 − 2 cos(z))](i)(22)

provided that w ≥ ĥ−1√
2+ĥ2

: indeed the only nonzero block of [T2(2 sin(z))](i)

is
[

0 −i
i 0

]

and the (corresponding) only nonzero block of w[T2(1 + ĥ2 − 2 cos(z))](i) is

w

[
1 + ĥ2 −1

−1 1 + ĥ2

]

.

Consequently relation (22) is equivalent to check the nonnegative definiteness
of the matrix

[
w(1 + ĥ2) i − w

−i − w w(1 + ĥ2)

]

whose trace is given by 2w(1+ĥ2) and whose determinant is given by w2(1+
ĥ2)2 −1−w2. In conclusion relation (22) holds if and only if 2w(1+ĥ2) ≥ 0,

w2(1 + ĥ2)2 − 1 − w2 ≥ 0

i.e., w ≥ ĥ−1/
√

2 + ĥ2. We notice that it is sufficient to choose

w = ĥ−1.

As a consequence, by linearity and positivity, we deduce that

−h‖p‖∞ĥ−1Tn




3∑

j=1

(1 − cos(zj ) + ĥ2)



 ≤ − i

2
Xn(p)(23)

and

− i

2
Xn(p) ≤ h‖p‖∞ĥ−1Tn




3∑

j=1

(1 − cos(zj ) + ĥ2)



 .(24)
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Once we have the key relations (23)–(24), we have reduced the spectral anal-
ysis of Im(An) to a Toeplitz problem. By using Theorem 3.4, we also reduce
Pn to a Toeplitz structure. Therefore both the uniform spectral boundedness
and the proper spectral clustering are obtained by exploiting the standard
matrix technology used in Step1 of Theorem 3.2 for the constant coefficient
(i.e. Toeplitz) case with the choice of ĥ = hε−1 with fixed and small enough
ε > 0. ��
Remark 3.2 We observe that Theorem 3.5 holds unchanged (i.e. with the
same constants!) if the convection term in (12) is replaced byp

∑d
j=1

∂
∂xj

u(x);
moreover a similar result can be stated if the convection term is more general
and takes the form pT (x) · ∇u where

p(x) =



p1(x)

p2(x)

p3(x)



 and ∇u =






∂
∂x1

u
∂

∂x2
u

∂
∂x3

u




 .

Here the term ‖∇p‖∞ in Theorem 3.5 has to be replaced by max1≤v≤3

‖∇pv‖∞. Therefore the results stated in Theorem 3.6 and Theorem 3.7 can
be easily adapted to these cases as well.

Higher order FD discretizations and FEM methods Concerning the case of
high order Finite Differences discretizations and Finite Elements approxi-
mation, we recall that in [30,34,35,33] we derived asymptotic expansions
concerning the preconditioned matrices P −1

n An in terms of related Toeplitz
structures. Moreover, it was proved that the sequence {P −1

n An}n is clustered
at unity and is spectrally bounded if a(x) is regular enough and positive.
Therefore most of the results proved in Section 3 can be extended with little
effort to these cases so covering several approximation schemes for PDEs.

4 Numerical experiments

The section is divided into two main parts: in the first one we give a general
description of the numerical experiments, some implementation details and
few remarks on the computational costs; the second part is devoted to the
comments on the obtained numerical results.

4.1 General comments and implementation details

Following [2], we must observe that in principle each iteration of the HSS
method requires the exact solutions with large matrices αI + Re(An) and
αI + i Im(An) which can be impractical in actual implementations. To fur-
ther improve computing efficiency of the HSS method, it is possible to use the
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conjugate gradient (CG) method for solving linear systems with coefficient
matrix αI + Re(An) and some Krylov subspace methods for linear systems
with matrix αI + i Im(An). This idea defines an inexact HSS iteration which
is denoted in short by IHSS iteration. The tolerances (or number of inner
iteration steps) for the inner iterative procedures may vary and are changed
according to the outer iteration scheme: as shown in [2], a proper choice of
these parameters can be done following a rigorous analysis in such a way that
the resulting method is accurate and each (inexact) outer iteration is cheap. In
complete analogy the proposed PHSS iteration can be also be implemented
inexactly. More precisely, instead of inverting the matrices αI +P −1

n Re(An)

and αI + i P −1
n Im(An), we may use a PCG method and a preconditioned

GMRES method where the preconditioner is Pn and the coefficient matrices
are αPn+Re(An) and αPn+ i Im(An), respectively. The latter proposal leads
to an inexact PHSS iteration which is denoted in short by IPHSS iteration.
The tolerances (or number of inner iteration steps) for the inner iterative pro-
cedures may be chosen as in [2]: in principle the analysis given in Section 3
of [2] can be repeated in the context of the PHSS method in a totally similar
way with the conclusion that the IPHSS and the PHSS methods have the same
convergence features but the cost per iteration in the first case is substantially
reduced. We now discuss some numerical tests in the specific PDEs context.

We have applied the proposed preconditioning techniques to the HSS
method and we have considered its inexact version (i.e. PHSS and IPHSS for
short, respectively) to problems of the form

−∇T [a(x)∇u(x)] + (p(x))T ∇u = f (x), x ∈ � ⊂ Rd,

p(x) = P p̂(x) = P




p̂1(x)

p̂2(x)

p̂3(x)



 ,(25)

with a(x) being a uniformly (nonnegative) positive function, p̂(x) a function
vector which is regular enough to let the theorems of Section 3 hold true
and with P parameter that controls the norm of the convection term. The
boundary conditions are the same as in (12). We report here results based
on � rectangular and L-shaped domains, but some experiments have been
performed with other shapes for � giving a similar behavior for outer and
inner iterations of the proposed strategy.

The inexact preconditioned and non-preconditioned (in the sense of outer
iterations) HSS methods have been tested by using conjugate gradients and
GMRES for the Hermitian and skew-Hermitian inner iterations, respectively.
Other Krylov methods such as QMR or CGNE have shown a similar behavior.
The experiments confirmed the analysis of the previous sections. In particu-
lar, we observed that the behavior of the preconditioned iterations does not
depend on N , N being the number of the grid points in each of the d directions
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(at least for N large enough with respect to P in (25)) and does not depend
on the dimension d of the problem. Concerning the unidimensional problem,
we should observe that it can be solved with optimal arithmetic by using a
banded Gaussian elimination (see e.g. [16]) but this is no longer true when
d ≥ 2. We will show the results only in 2D (i.e. d = 2) to appreciate the
decreasing behavior of preconditioned iterations for N large enough, but we
observed the same behavior in 3D as well (i.e. d = 3).

The considered preconditioners used in the PHSS and IPHSS methods
are described in detail in the previous sections and are based on the precondi-
tioners developed in [30,34] by using Pn = Re(An) and α = 1 in (7), when
a(x) and p(x) are constant in (25). Otherwise, if Re(An) = �n(a, �) and
Dn = diag(�n(a, �)), i.e., Dn is a diagonal matrix whose nonzero elements
are given by those in the main diagonal of �, then

Pn := Pn(a, �) = D1/2
n (a)�n(1, �)D1/2

n (a),

see the previous sections for more details. Notice that preconditioning has
been used in [2] in a different way. More precisely, for the solution of inner
CG/CGNE iterations linear systems whose matrices are given by αI+Re(An)

and αI + i Im(An). However, from here on, the word preconditioning will
be intended for the outer iterations only, i.e., applied directly to the splitting
of the original matrix An leading to the solution of (7).

It is worth recalling that the underlying preconditioning strategy leads to
convergence in one step for the outer iteration of the splitting method when
a(x) and p(x) are constant. Therefore, we need to solve only linear systems
of the form (11). If either a(x) or p(x) is not constant, then we need to use
the IPHSS iterations based on the solution of

(
I + P −1

n Re(An)
)
y = c,(26)

(
I + i P −1

n Im(An)
)
y = c,(27)

where we solve (26) preconditioned by conjugate gradients and (27) by pre-
conditioned GMRES, both with preconditioner Pn and coefficient matrices
Pn + Re(An) and Pn + i Im(An), respectively. The preconditioning oper-
ator Pn is applied by using, at each iteration step of the Krylov subspace
accelerator, a modified fast Poisson solver based on the sine transform which
costs O(n log n) flops even if we can do better with cyclic reduction based
solvers or with multigrid methods in O(n) flops. Therefore, the overall com-
putational cost of the PHSS/IPHSS iterations is O(n log n) flops, because
the convergence of the preconditioned iterations does not depend on n. On
the other hand, we notice that the cardinality of the IHSS and HSS iterations
is roughly proportional to N , therefore the IHSS method requires, at best,
O(Nn log n) flops, see [2]. However, we observe that the skew Hermitian
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inner iterations of HSS/IHSS increase roughly with N , therefore the overall
asymptotic cost is sensibly higher. We notice that a standard direct solver for
the HSS method would cost O(n3 d−1

d
+1) flops, in general (O(n) if d = 1).

The reason is that the classical band solvers [16] require O(nl2) operations
where l is the bandwidth and in our context l equals O(n

d−1
d ).

In the Matlab implementation of our algorithms, similarly to the algo-
rithms in [2], the inner iterations (26), (27) are switched to the (k + 1)–th
outer step if,

||rcg||2
||rk||2 ≤ 0.1 δk,

||rGMRES ||2
||rk||2 ≤ 0.1 δk,(28)

respectively, where k is the current outer iteration, δ ∈ (0, 1) (typically δ =
0.9 or δ = 0.95 give the best performances), and where rj is the residual at the
j–th iteration. It is worth to note that more sophisticate stopping criteria may
save a significant amount of iterations with respect to (28). However, they
are effective enough to show the behavior of the inner and outer iterations
for IPHSS.

We observe that the eigenvalues of Re(An) can not be explicitly obtained
if either a(x) or p(x) is nonconstant. Therefore, the optimal parameter α∗=√

λmin(Re(An))λmax(Re(An)) for the HSS/IHSS iterations can not be explic-
itly computed, in general. As a consequence, as suggested in [2], we use the
value α which gave the best performances among the two quantities

α̃ = Ph/2 and α̃∗ =
√

λmin(An(1, 0))λmax(An(1, 0)).

The situation is easier with PHSS/IPHSS methods because of the clustered
eigenvalues at the mass point 1. Indeed, in these cases, we take α = 1.

We report the number of HSS (outer) iterations for each problem while
the number of IHSS outer iterations is not shown since the number of outer
iterations for the HSS method is an upper bound of the number of IHSS
iterations (see Theorem 3.1 in [2]).

The initial guess for the underlying iterative solvers is zero and the itera-
tive solvers terminated when the current iterate satisfies ||rk||2 ≤ 10−6||r0||2.
All experiments are performed in Matlab. In the tables reported in the sequel,
the symbol † indicates that the iterations do not converge after 1000 steps.

4.2 Numerical results

The numerical results are reported in Tables 1–17. Concerning Tables 1–
10, we point out that considered differential problems have been discretized
using centered FD formulae of minimal precision order 2 (according to the
theoretical analysis of Section 3). In Tables 11–12 we considered the case



474 D. Bertaccini et al.

of upwinding discretizations: the good news that we anticipate here is that
we did not observe any difference in the quality of the numerical results
and this is an indication that the analysis performed in the preceding sec-
tion could be extended to other discretization schemes (upwinding formulae,
Finite Elements approximations, etc.).

Tables 13–16 are concerned with an L-shaped domain L, where L =
Q \ G, Q = (0, 1) × (0, 1) and G = (0, 0.5) × (0, 0.5). Table 17 is con-
cerned with a Sinc-Galerkin discretization of a boundary value problem.

Furthermore, the first 5 tables of the group 1–10 and tables 11, 13 and 14
concern the comparison between the PHSS method and the HSS method in
terms of outer iterations, while the last 5 tables of the same group and tables
12, 15, 16 concern the number (average and total) of CG and GMRES steps
used in the inner iterations.

As a general fact we observe that for all the considered problems the num-
ber of preconditioned (outer) iterations required for convergence is slightly
decreasing withn = N2 and the same also holds for the inner CG and GMRES
iterations. This confirms the analysis of the previous sections even if it is worth
stressing once again that the proposed preconditioning technique is effective
at the same time for the outer scheme and for both the inner schemes. More-
over, as it can be expected, the number of inner GMRES iterations increases
with P (actually, with the norm of the convective part of the problem), at
least if N is relatively small with respect to P . However, we notice that small
values of N may be not appropriate for an accurate solution of (25) if P is
large, say (in that case an upwinding discretization should be used).

We observe that the Hermitian steps in HSS/IHSS iterations converge in
a small, fixed number of conjugate gradients iterations, see [2]. The related
skew-Hermitian steps require a number of preconditioned Krylov iterations
which, differently from PHSS/IPHSS methods, increases with n and with P .
Therefore, if we consider a preconditioner for the inner iterations in the two
IPHSS steps based on sine and modified sine transform as in [2], we have that
the PHSS/IPHSS methods, we propose here, have at most the same cost per
outer iteration but they converge in a small and fixed (or slightly decreasing
with n) number of outer iterations.

Notice that the total number of IPHSS inner iterations for PCG (Hermitian
step) are small and roughly constant (usually of the order of 4–8), while the
number of inner iterations for GMRES (skew-Hermitian step) increases with
P but not with n = N2. Therefore, a specialized preconditioning for the inner
iteration with matrix I + i P −1

n Im(An) could be considered in order to make
the whole method robust also with regard to the parameter P . Furthermore,
we recall that the inner iterations of the IHSS method with the precondition-
ing proposed in [2] is not optimal in the sense we observe an evident sensible
increase either when N or P becomes larger.
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Table 1. PHSS and HSS outer iterations (the two level iterations for PHSS algorithm
reduces to a single level method and the number of Hermitian steps is zero) for the equa-
tion −∇2u + P

∑d
j=1

∂
∂xj

u(x) = f .

P

1 10 100
N = √

n IPHSS HSS IPHSS HSS IPHSS HSS

16 1 64 1 44 1 26
32 1 124 1 84 1 37
64 1 252 1 162 1 62
128 1 512 1 311 1 112

Table 2. IPHSS and HSS outer iterations for the equation −∇T [a∇u] +
P
∑d

j=1
∂

∂xj
u(x) = f , a(x) = exp(

∑
j xj ).

P

1 10 100
N = √

n IPHSS HSS IPHSS HSS IPHSS HSS

16 16 161 17 97 23 51
32 16 299 16 183 19 93
64 15 574 16 353 17 180
128 14 † 15 688 16 344

Table 3. IPHSS and HSS outer iterations for the equation −∇2u+P exp(
∑

j xj )x
T ∇u=

f .

P

1 10 100
N = √

n IPHSS HSS IPHSS HSS IPHSS HSS

16 18 73 21 47 20 25
32 17 130 20 83 20 48
64 16 235 18 157 20 96
128 15 456 16 321 19 121

The various equations considered in our tests are described in the related
tables: here we just mention the relationships with the theoretical results of
Section 3. The examples considered in tables 1, 6, 13 and 15 fall in the results
of Subsection 3.2 (a(x) = 1 and p(x) constant). The examples considered
in tables 2, 7, 14 and 16 concern the results of Subsection 3.3 (nonconstant
a(x) and p(x) constant); finally the examples of the remaining 8 tables are
related to the general case and then the associated theoretical results pertain
to Subsection 3.4 and to Remark 3.2.

We now focus our attention to the equation −∇T [a∇u]+P exp(
∑

j xj )x
T

∇u = f , a(x) = ∑
j xj , considered in Tables 5 and 10. We observe that the
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Table 4. IPHSS and HSS outer iterations for the equation −∇T [a∇u] +
P exp(

∑
j xj )x

T ∇u = f , a(x) = exp(
∑

j xj ).

P

1 10 100
N = √

n IPHSS HSS IPHSS HSS IPHSS HSS

16 16 169 20 181 25 68
32 16 333 18 358 22 148
64 15 650 16 692 23 290
128 14 † 15 † 20 507

Table 5. IPHSS and HSS outer iterations for the equation −∇T [a∇u] +
P exp(

∑
j xj )x

T ∇u = f , a(x) = ∑
j xj .

P

1 10 100
N = √

n IPHSS HSS IPHSS HSS IPHSS HSS

16 18 88 22 70 18 36
32 17 154 20 121 21 79
64 16 273 18 237 22 167
128 15 480 16 468 22 346

Table 6. Number of inner iterations for preconditioned HSS (IPHSS) outer iterations
(i.e. GMRES iterations because the two level iterations for preconditioned HSS algorithm
reduces to a single level: the number of conjugate gradients iterations is zero) for the
equation −∇2u + P

∑d
j=1

∂
∂xj

u(x) = f .

P

1 10 100
N = √

n CG GMRES CG GMRES CG GMRES

16 0 5 0 14 0 47
32 0 5 0 14 0 59
64 0 5 0 14 0 61
128 0 5 0 13 0 61

matrices generated by the discretization of the problem (12) in this case are
even more ill conditioned than the previous ones (see [30]) since the diffusive
part of the considered problem now is semi elliptic. As observed for the other
examples, the preconditioned outer (and inner as well) iterations (IPHSS) are
insensitive with respect to n, while the non-preconditioned (IHSS) outer and
inner GMRES iterations increase proportionally with N .

Notice that, even if the HSS/IHSS iterations are unconditionally conver-
gent for α > 0, for N moderately large, the number of non-preconditioned
outer iterations can be greater than 1000 and the application of our PHSS/IPH-
SS methods become essential to avoid unacceptably slow convergence.
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Table 7. Number of (total for CG, average per outer step for GMRES and, in brackets, total
GMRES) IPHSS inner iterations for the equation −∇T [a∇u] + P

∑d
j=1

∂
∂xj

u(x) = f ,

a(x) = exp(
∑

j xj ).

P

1 10 100
N = √

n CG GMRES CG GMRES CG GMRES

16 4 1 (16) 4 1.4 (24) 6 4.7 (108)
32 4 1 (16) 5 1.4 (23) 6 5.6 (106)
64 4 1 (15) 5 1.4 (23) 5 5.8 (99)
128 5 1 (14) 5 1.4 (21) 5 5.9 (94)

Table 8. Number of (total for CG, average per outer step for GMRES and, in brackets,
total GMRES) IPHSS inner iterations for the equation −∇2u+P exp(

∑
j xj )x

T ∇u = f .
See Table 12 for the inner iterations by using an upwinding discretization.

P

1 10 100
N = √

n CG GMRES CG GMRES CG GMRES

16 4 1.8 (32) 5 4.4 (92) 8 22.4 (447)
32 4 1.8 (31) 4 4.5 (89) 7 22.6 (453)
64 4 1.8 (29) 6 4.5 (81) 6 23.8 (477)
128 5 1.8 (27) 7 5.3 (84) 6 25.4 (483)

Table 9. Number of (total for CG, average per outer step for GMRES and, in brackets, total
GMRES) IPHSS inner iterations for the equation −∇T [a∇u]+P exp(

∑
j xj )x

T ∇u = f ,
a(x) = exp(

∑
j xj ).

P

1 10 100
N = √

n CG GMRES CG GMRES CG GMRES

16 4 1 (16) 5 1.8 (35) 9 7.7 (193)
32 4 1 (16) 5 1.8 (32) 8 8.7 (192)
64 5 1 (15) 5 1.8 (29) 7 7.7 (177)
128 5 1 (14) 5 1.9 (28) 6 8.2 (163)

Furthermore, it is worth to note that an upwinding discretization for the
convective term does not change the behavior described above (refer to Tables
11 and 12. In particular, when the Reynolds number Ph/2 is high, the number
of inner iterations of IPHSS for GMRES can be sensibly reduced with respect
to the centered differences discretization, as shown in Tables 11 and 12.

As a final set of numerical experiments we consider the case of non-square
regions. More precisely Tables 13, 15, 14, and 16 are related to the case of
an L-shaped region (the simplest plurirectangle which is not a rectangle) of
the type (0, 1)2\(0.5, 0.5)2. The numerical behavior is completely similar to
the case of square regions and thus any specific comment is omitted.
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Table 10. Number of (total for CG, average per outer step for GMRES and, in brackets,
total GMRES) IPHSS inner iterations for the equation −∇T [a∇u] +
P exp(

∑
j xj )x

T ∇u = f , a(x) = ∑
j xj .

P

1 10 100
N = √

n CG GMRES CG GMRES CG GMRES

16 4 1.8 (32) 5 3.6 (80) 8 18.8 (340)
32 4 1.7 (30) 5 3.6 (72) 7 18.1 (381)
64 4 1.7 (28) 5 4.0 (72) 6 18.6 (411)
128 4 1.7 (26) 8 4.3 (69) 6 19.6 (433)

Table 11. Upwinding discretization. IPHSS and HSS outer iterations for the equation
−∇2u + P exp(

∑
j xj )x

T ∇u = f .

P

1 10 100
N = √

n IPHSS HSS IPHSS HSS IPHSS HSS

16 18 71 21 55 23 52
32 17 128 20 91 23 75
64 16 234 18 167 21 110
128 15 457 16 330 20 183

Table 12. Upwinding discretization. Number of (total for CG, average per outer step for
GMRES and, in brackets, total GMRES) IPHSS inner iterations for the equation −∇2u +
P exp(

∑
j xj )x

T ∇u = f .

P

1 10 100
N = √

n CG GMRES CG GMRES CG GMRES

16 4 1.8 (32) 5 3.6 (75) 9 7.2 (165)
32 4 1.8 (31) 5 3.8 (77) 8 10.5 (243)
64 4 1.8 (29) 6 4.3 (78) 7 15.0 (315)
128 5 1.8 (27) 7 5.0 (80) 6 18.9 (378)

Finally we stress that we have tried more complicate plurirectangular
domains and the observed behavior of the considered iterative solvers is
essentially the same.

4.3 Further applications

In this subsection, in order to show the potential of the proposed ideas, we
briefly report an example of applications to non Hermitian Toeplitz matri-
ces having positive definite real part (suitable rotation of a weakly secto-
rial symbol [7]). Consider the dense Toeplitz matrix TN(f ) with f (z) =
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Table 13. IPHSS and HSS outer iterations (the two level iterations for IPHSS algorithm
reduces to a single level method) for the equation −∇2u + P

∑d
j=1

∂
∂xj

u = f in an

L-shaped domain.

P

1 10 100
N n IPHSS HSS IPHSS HSS IPHSS HSS

16 184 1 46 1 52 1 69
32 752 1 85 1 61 1 74
64 3040 1 293 1 160 1 78
128 12224 1 † 1 578 1 77

Table 14. IPHSS and HSS outer iterations for the equation −∇T [a∇u]+P
∑d

j=1
∂

∂xj
u =

f , a(x) = exp(
∑

j xj ) in an L-shaped domain.

P

1 10 100
N n IPHSS HSS IPHSS HSS IPHSS HSS

16 184 6 57 6 70 5 108
32 752 6 112 6 99 5 112
64 3040 6 225 6 187 5 114
128 12224 6 719 6 665 5 136

Table 15. Number of inner iterations for preconditioned HSS (IPHSS) (i.e. GMRES iter-
ations because the two level iterations for preconditioned HSS algorithm reduces to a
single level and the number of conjugate gradients iterations is zero) for the equation
−∇2u + P

∑d
j=1

∂
∂xj

u(x) = f in an L-shaped domain.

P

1 10 100
N CG GMRES CG GMRES CG GMRES

16 0 6 0 16 0 69
32 0 6 0 16 0 78
64 0 6 0 16 0 80
128 0 5 0 16 0 80

z2 + i sin(z)z3, z ∈ T = (−π, π] and where (TN(f ))s,t = as−t with ak

denoting the k-th Fourier coefficient of the function f . From [7] we know
that the spectral condition number of TN(f ) grows as N2 since f is weakly
sectorial and has one zero of order two. We propose to use our PHSS method
with preconditioner TN(g) with g(z) = 2 − 2 cos(z) (TN(g) is the discrete
one-level Laplacian). From the theory of preconditioned Toeplitz sequences
(see e.g. [28]) we know that

1 = inf
T

z2

2 − 2 cos(z)
< λ < sup

T

z2

2 − 2 cos(z)
= π2

4
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Table 16. Number of (total for CG, average per outer step for GMRES and, in brackets,
total GMRES) IPHSS inner iterations for the equation −∇T [a∇u] + P

∑d
j=1

∂
∂xj

u = f ,

a(x) = exp(
∑

j xj ) in an L-shaped domain.

P

1 10 100
N CG GMRES CG GMRES CG GMRES

16 3 1.3 (8) 3 2.3 (14) 5 9.4 (47)
32 3 1.3 (8) 4 2.3 (14) 5 9.8 (49)
64 3 1.2 (7) 4 2.2 (13) 5 10 (50)
128 3 1.2 (7) 3 2.2 (13) 5 9.8 (49)

for every eigenvalue λ of YN = T −1
N (g) Re(TN(f )). Moreover, by invoking

the ergodic result contained in [29], we deduce that the preceding estimates
are asymptotically tight since

lim
N→∞

λmin(YN) = 1, lim
N→∞

λmax(YN) = π2

4
.

Therefore we can explicitly provide a precise estimate of the optimal param-
eter α∗ = √

λmin(YN)λmax(YN) ≈ π
2 . Since all the eigenvalues of the pre-

conditioned matrices belong to the positive interval (1, π/2) (which is well
separated from zero and from infinity), it follows that the number of PHSS
iterations is bounded by a universal constant not depending on N . Due to
the same spectral reasoning, the same is obviously true for the PCG solu-
tion of the auxiliary systems whose coefficient matrix is α∗I + YN . Finally,
concerning the further auxiliary systems related to the coefficient matrix

α∗I + i T −1
N (g) Im(TN(f )),

we remark that its eigenvalues have all real part equal to α∗ and imaginary
part belonging to the interval

(

−π3

4
= inf

T

sin(z)z3

2 − 2 cos(z)
,
π3

4
= sup

T

sin(z)z3

2 − 2 cos(z)

)

.

Due to the boundedness of the imaginary spectrum and to the fact that the
considered matrices are diagonalizable, it follows that an application of the
GMRES method is also optimal so that the total number of operations for
solving a system TN(f )x = b is asymptotical (up to some given absolute
constant) to the one of the FFT algorithm.

A further example whose analysis can be performed following the tools
given in the Step1 of Theorem 3.2 is related to the case where f (z) =
z2 ±hγ1z+h2γ2 with γj , j = 1, 2 being positive constants and h = N−1. In
that case the PHSS method with preconditioner TN(g) with g(z) = z2 +h2γ2
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Table 17. Iterations for the solution of the linear system (29) arising from model
Sinc-Galerkin discretizations. Non-preconditioned GMRES iterations (“I”), IPHSS (see
columns labelled “IPHSS (P (1)

n )”) outer, CG, and GMRES iterations. The IPHSS method
uses the preconditioner P

(1)
n = Tn(2 − 2 cos(z)) + h2I and the preconditioned GMRES

(see the column labelled “P (2)
n ”) uses as preconditioner the matrix P

(2)
n = Tn(z

2) + h2I .

I IPHSS (P (1)
n ) P

(2)
n

n GMRES Outer CG GMRES GMRES

100 100 16 3.3 2.0 4
200 200 16 3.3 1.8 4
500 500 16 3.3 1.6 4
1000 † 16 3.3 1.6 3
1500 † 16 3.3 1.4 3
2000 † 16 3.3 1.4 3

converges in one iteration and both the inner iterations are optimal. Finally,
we mention that this dense Toeplitz example is not artificial (see Subsection
4.4) but comes from the discretization by the Sinc-Galerkin method of a one-
level elliptic problem of convection-diffusion type (refer to equation (3.4) in
[24]) showing the potentiality of the proposed technique and that more work
should be done in this direction.

4.4 Numerics for Toeplitz structures arising in the Sinc-Galerkin method for
convection-diffusion problems

We consider now the solution of the following linear system arising from the
Sinc-Galerkin discretization of a model boundary value problem.

Anx = b, An = Tn(z
2) + h Tn(iz) + h2I, h = 1/(n + 1).(29)

We apply the non-preconditioned GMRES, the inexact PHSS method as de-
scribed in the previous experiments by using as preconditioner the matrix

P (1)
n := Tn(2 − 2 cos(z)) + h2I,(30)

and finally GMRES preconditioned by

P (2)
n := Tn(z

2) + h2I.(31)

We observe that P (1)
n is a banded matrix while P (2)

n is a full Toeplitz matrix.
The application of P (2)

n to our problems requires the use of a multigrid algo-
rithm as in [26] or the use of PCG-multigrid technique as in [25].

We observe that the IPHSS method using P (1)
n as in (30) requires a num-

ber of outer and inner iterations which remains constant with respect to n,
n being the size of the problem. A similar behavior is observed for GMRES
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preconditioned by P (2)
n as in (31): in this case the preconditioner is dense

and therefore the solution of the related linear systems is more costly even
if the number of outer GMRES iterations is very small. On the other hand,
standard non-preconditioned methods do not converge or converge in a num-
ber of iterations of the same order of the size of the underlying matrix. This
is the case of (full!) GMRES. A similar situation happens for the standard
HSS/IHSS methods which require a really large number of outer iterations (in
this specific context these standard HSS/IHSS methods become impractical).

5 Conclusions

In this paper we have proposed the application of a preconditioning step to
the HSS method both providing a numerical experimentation and a theoret-
ical analysis. The results suggest that the technique is effective for handling
non Hermitian, positive definite and ill conditioned problems with an opti-
mal convergence rate (at least with respect to the size) and an optimal total
arithmetic cost (the one of few matrix vector products). Finally, we stress that
most of the available solvers for these types of linear systems do not show
such a kind of optimality.
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