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Abstract. The convergence features of a preconditioned algorithm for the convection-diffusion
equation based on its diffusion part are considered. Analyses of the distribution of the eigenvalues of
the preconditioned matrix in arbitrary dimensions and of the fundamental parameters of convergence
are provided, showing the existence of a proper cluster of eigenvalues. The structure of the cluster
is not influenced by the discretization. An upper bound on the condition number of the eigenvector
matrix under some assumptions is provided as well. The overall cost of the algorithm is O(n), where
n is the size of the underlying matrices.

Key words. finite differences discretization, preconditioning, multilevel structures, convection-
diffusion equation

AMS subject classifications. 65F10, 65N22, 15A18, 15A12, 47B65

DOI. 10.1137/050627381

1. Introduction. The aim of this work is to study the convergence behavior of
a preconditioned algorithm to solve the linear systems generated by the discretization
of the convection-diffusion equation

−ν ∇ · (a(x)∇u) + q(x) · ∇u =f, x ∈ Ω,(1.1)

u =g, x ∈ ∂Ω,(1.2)

where Ω is an open region of Rd with a(x) a uniformly positive function, q(x) ∈
Rd a convective velocity field (the wind), ∇ = ( ∂

∂x1
, . . . , ∂

∂xd
)T , and ν the viscosity

(or diffusion) coefficient. We stress that models based on similar equations, whose
domains can be of dimension d > 3, arise, e.g., in finance, where each spatial dimension
is related to an asset in a basket.

Discretizing problem (1.1) by using centered or upwinding finite differences on
equispaced meshes, we reduce the approximate solution of the above problem to the
solution of the linear system

Ay = b,

where the matrix A is nonsymmetric and positive definite and n is the size of A; see
section 2.2 for more details. If Ω coincides with (0, 1)d and the stepsizes are given by
(Nj + 1)−1, Nj ∈ N, j = 1, . . . , d, N = (N1, . . . , Nd)T , then the dimension of A is
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n = N1 · N2 · · ·Nd. In the case when Ω ⊂ (0, 1)d is a connected domain formed by
a finite union of d-dimensional rectangles (e.g., L, T, U-shaped domains, etc.), the
discretization of the diffusion part of (1.1) is symmetric and positive definite, and the
size n will be approximately equal to m(Ω) ·N1 ·N2 · · ·Nd, with m(·) being the usual
Lebesgue measure (m(Ω) = 1 for Ω = (0, 1)d). Therefore, when the number of the
mesh points in the domain Ω is large enough, A is large and sparse.

Let us emphasize the dependence of the matrix A on the parameters a and q
in (1.1) by writing A = A(a, q) or A = A(a, q, Ω), where Ω is the domain. The
preconditioner we consider is defined as

P = P (a) := D1/2(a)A(1, 0)D1/2(a),(1.3)

where D(a) is a suitably scaled main diagonal of A(a, 0), and A(1, 0) denotes the
discrete Laplacian (a = 1). Preconditioning with a scaled discrete Laplacian operator
for nonself-adjoint and nonseparable elliptic boundary value problems was considered
in [12] and [15]. Moreover, in [15] the independence of preconditioned iterations from
the mesh was observed. The eigenvalue distribution for the diffusive part of the latter
problem was investigated in [23, 26, 25].

In this paper we focus our attention on the case when q is nonzero and Ω is a
connected finite union of d-dimensional rectangles (a plurirectangle) so that A(1, 0)
(and consequently the whole preconditioner P (a)) is symmetric and positive definite
as proven in [26]. In particular, the authors of [23, 26] found that, if a(x) is positive
and regular enough and q(x) ≡ 0, then the preconditioned sequence shows a proper
eigenvalue clustering at the unity (for the notion of proper eigenvalue and singular
value clustering, see Definition 2.2), and we prove here that the same holds true in
the complex field for problem (1.1) as well. Moreover, under mild assumptions on the
coefficients of the problem, we prove that all the eigenvalues of the preconditioned
system belong in a complex rectangle {z ∈ C : Re(z) ∈ [c, C], Im(z) ∈ [−ĉ, ĉ]} with
c, C > 0, ĉ ≥ 0 independent of the dimension n. Note that the existence of a proper
eigenvalue cluster and the aforementioned localization results in the preconditioned
spectrum can be very important for fast convergence of preconditioned iterations (see,
e.g., [4]): here we will use and generalize to the case of nonnormal preconditioners
a recent general tool devised in [24] for deducing the eigenvalue clustering from the
singular value clustering, the latter being much easier to check.

In previous works [1, 5] solvers based on the symmetric/skew-symmetric splittings
of A were considered. We stress that symmetric/skew-symmetric splittings can be
used successfully as preconditioners; see [2].

Indeed, beside the spectral theoretical analysis of the preconditioned structures,
the idea is to propose a technique that can be easily used. In fact, the ingredients
are a Krylov method (e.g., GMRES, BiCGSTAB, etc.), a matrix vector routine (for
sparse or even diagonal matrices), and a solver for the related diffusion equation with
a constant coefficient (a method based, e.g., on the cyclic reduction approach [9, 14] or
on multigrid methods [27, 19] for which professional software is available). Of course,
if the convection part is dominating, then the considered approach can be enriched
by approximating the related discrete operator. We stress that convection-dominated
problems require appropriate upwind discretization to avoid spurious oscillations.

1.1. Outline. The paper is organized as follows. In section 2 some tools and
definitions from structured linear algebra are introduced, while in section 3 the pre-
conditioner and some of its basic properties are introduced. In sections 4 and 5 we
first derive specific tools for dealing with eigenvalue clusters and then we study the
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spectral properties of the preconditioned matrix sequences, with special emphasis on
the eigenvalue and singular value clusterings. Section 6 is devoted to the convergence
analysis of GMRES. Moreover, some numerical experiments in both two dimensions
and three dimensions, and their computational aspects, are presented and discussed.
Section 7 concludes the paper with some final comments and remarks.

2. Preliminaries. We start by stating a few results from the spectral theory of
Toeplitz matrix sequences (subsection 2.1) and then we briefly analyze the structure
of the coefficient matrix A (subsection 2.2).

2.1. Definitions and tools for sequences of Toeplitz matrices. Let f be
a d-variate Lebesgue integrable function defined over the hypercube T d, with T =
(−π, π] and d ≥ 1. From the Fourier coefficients of f (called a symbol or generating
function)

aj =
1

(2π)d

∫

T d

f(z)e−i(j,z) dz, i2 = −1, j = (j1, . . . , jd) ∈ Zd,(2.1)

with (j, z) =
∑d

r=1 jrzr, one can build the sequence of Toeplitz matrices {TN (f)}N ,
N = (N1, . . . , Nd), where TN (f) ∈ Cn×n and n =

∏d
r=1 Nr. The matrix TN (f) is said

to be the Toeplitz matrix of order N generated by f (see, e.g., [8] for more details).
For example, if d = 1 we have that aj , j = −(N1 − 1), . . . , 0, . . . , (N1 − 1), is

the value on the jth diagonal of the N1 × N1 Toeplitz matrix TN1 . The Fourier
coefficients aj are equal to zero (for |j| large enough) if f is a (multivariate) trigono-
metric polynomial. Therefore, the corresponding Toeplitz matrix is multilevel and
banded. A typical example is the case of the classical d-level Laplacian with Dirichlet
boundary conditions, discretized by equispaced finite difference formulas over a square
region. For instance, the generating function of the (negative) Laplacian (discretized
by centered differences of accuracy order 2 and minimal bandwidth) is expressed by

d∑

j=1

(2− 2 cos(zj)).

For d = 1 the corresponding matrix is the symmetric tridiagonal matrix TN1 =
Toeplitz(−1, 2,−1) while, in the general case, it corresponds to

∑d
j=1 Pj with

Pj = IN1 ⊗ · · · ⊗ INj−1 ⊗ TNj ⊗ INj+1 ⊗ · · · ⊗ INd
.

The spectral properties of the sequence {TN (f)}N and of related preconditioned
sequences are completely understood and characterized in terms of the underlying
generating functions. For instance, TN (f) = T ∗N (f) (∗ is the transpose conjugate
operator) for every N if and only if f is real valued: more results are given in Theorem
2.1 following. Before stating it we clarify some notation that we will use throughout
the paper.

We consider two nonnegative function α(·) and β(·) defined over a domain D with
accumulation point x̄ (if D = N, then x̄ = ∞; if D = T d, then x̄ can be any point of
D). We write

• α(·) = O(β(·)) if and only if there exists a pure positive constant K, such
that α(x) ≤ Kβ(x), for every (or for almost every) x ∈ D (here and in the
following, by pure or universal constant we mean a quantity not depending
on the variable x ∈ D);
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• α(·) = o(β(·)) if and only if α(·) = O(β(·)) and limx→x̄ α(x)/β(x) = 0 with x̄
a given accumulation point of D, which will be clear from the context;

• α(·) ∼ β(·) if and only if α(·) = O(β(·)) and β(·) = O(α(·));
• α(·) ≈ β(·) if and only if α(·) ∼ β(·) and limx→x̄ α(x)/β(x) = 1 with x̄ a given

accumulation point of D (the latter can be rewritten as α(x) = β(x)(1+o(1))
with 1 + o(1) uniformly positive in D).

Theorem 2.1 (see [8, 22]). Let f and g be two d-variate Lebesgue integrable real
valued functions defined over T d, and assume that g is nonnegative with a positive
essential supremum. Then, the following holds:

1. If f is not identically a constant, then every eigenvalue of TN (f) lies in
(m,M), where m =essinf f and M =esssup f ;

2. if we denote by λmin(TN ) and λmax(TN ) the minimal and maximal eigenvalues
of TN (f), then

lim
N→∞

λmin(TN ) = m, lim
N→∞

λmax(TN ) = M ;

3. if Ni ∼ Nj for every i and j, then λmin(TN )−m ∼ n−α/d and M−λmax(TN ) ∼
n−β/d, while if Ni ≈ αi,jNj for every i, j, and αi,j are universal constants,
then λmin(TN ) − m ≈ cmn−α/d and M − λmax(TN ) ≈ cMn−β/d; here α is
the maximum among the orders of the zeros of f(z)−m, β is the maximum
among the orders of the zeros of M−f(z), and cm, cM are universal constants
which can be explicitly evaluated, at least for smooth symbols.

Definition 2.2. A sequence {An}n (An of size n) is properly (or strongly)
clustered at p ∈ C in the eigenvalue sense if for any ε > 0 the number of the eigenvalues
of An not belonging to D(p, ε) = {z ∈ C : |z−p| < ε} can be bounded by a pure constant
possibly depending on ε, but not on n. Of course if every An has, at least definitely
(i.e., for n large enough), only real eigenvalues, then p has to be real, and the disk
D(p, ε) reduces to the interval (p− ε, p + ε).

Moreover, a sequence {An}n (An of size n) is properly (or strongly) clustered at
p ∈ R+

0 , in the singular value sense, if for any ε > 0 the number of the singular
values of An not belonging to (p− ε, p + ε) can be bounded by a pure constant possibly
depending on ε, but not on n.

2.2. The discrete problem and splitting the contribution of convection
and diffusion. We denote with Re(G) the symmetric and with i Im(G) the skew-
symmetric part of a real coefficient matrix G, i.e., Re(G) = (G + G∗)/2 and Im(G) =
(G−G∗)/(2i), respectively.

The analysis is performed without restrictions on the dimension d of problem
(1.1), provided that a(x) > 0 and that the domain is a hypercube (by exploiting
the analysis in [26], the same can be extended to the case when the domain is a
connected finite union of d-dimensional rectangles by using the same arguments as in
[5]). Conversely, we emphasize that here the numerical tests are performed mainly on
two-dimensional problems with a(x) > 0.

Note that we can always write

A = Θ(a) + Ψ(q),

where the matrix Θ(a) = A(a, 0) is the discretization of the diffusion term, and the
matrix Ψ(q) is the discretization of the convection term. We observe that when
q(x) = (w1, w2, . . . , wd)T is a constant vector and a centered difference discretization
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is used, the matrix Ψ(q) is skew-symmetric and coincides with the d-level Toeplitz
structure that, for d = 2, is given by

SN1 ⊗ IN2 + IN1 ⊗ SN2 ,

where SNk
, k = 1, 2, is the Toeplitz matrix generated by f(z) = (−2iwk/(2hk)) sin(z),

i.e.,

SNk
=

wk

2hk




0 1
−1

. . . . . . . . .
1

−1 0




Nk×Nk

.(2.2)

On the other hand, Θ(a) is a d-level Toeplitz matrix which, for d = 2, is given by

TN1 ⊗ IN2 + IN1 ⊗ TN2 ,

where, if a(x) = 1, TNk
is the usual one-dimensional discrete Laplacian with generating

function given by (ν/h2
k)(2− 2 cos(z)), i.e., the tridiagonal Toeplitz matrix

TNk
=

ν

h2
k




2 −1
−1

. . . . . . . . .
−1

−1 2




Nk×Nk

.

For the upwind scheme we consider here, if q(x) is a constant vector, the matrix A is
as before with the exception of SNk

as in (2.2), which is now the following bidiagonal
matrix:

S′Nk
=

wk

hk




1 0
−1

. . . . . . . . .
0

−1 1




Nk×Nk

.(2.3)

For simplicity, from here on we consider hk = h, k = 1, . . . , d, and we normalize the
underlying linear systems by multiplying the left and right sides by h2.

As in the case of the upwind scheme considered above, the symmetric part of
A cannot be exactly the discretization of the diffusion term Θ(a), and the skew-
symmetric part of A cannot be exactly the discretization of the convection term Ψ(q).
Indeed, we observed (see [5, Theorem 3.5, p. 466] and Remark 3.2 in [5]) the following
property for a centered difference discretization of (1.1).

Theorem 2.3. Let us assume that the function ∇ · q(x) in (1.1) is a vector with
bounded components and that (1.1) is discretized with centered differences (of precision
order 2 and minimal bandwidth). Then

Re(A(a, q)) = Θ(a) + E,

iIm(A(a, q)) = Ψ(q)− E,
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where

E =
Ψ(q) + Ψ∗(q)

2
(2.4)

with

‖E‖2 ≤ cd h2(2.5)

cd = αd‖∇ · q‖∞

(αd = 2d with d = 2 or d = 3 when Ω = (0, 1)d).
For the upwind scheme based on (2.3), we have that

||E||2 ≤ hα′d max
x∈Ω

|q(x)|,

where α′d is a constant of the order of unity which depends only on d and the dis-
cretization.

Under the assumption that ‖∇ · q‖∞ is smaller than a suitable positive constant,
by using the same arguments as in [5], we can prove that Re(A) is real symmetric
positive definite but ill-conditioned with a condition number asymptotic to h−2.

3. The preconditioner. Here we focus on certain Krylov methods (e.g.,
GMRES; see [20] and [10]) preconditioned by

P := P (a,Ω) = D1/2(a)Θ(1)D1/2(a), Θ(1) = A(1, 0),(3.1)

where D(a) is a diagonal matrix which, in MATLAB notation, is given by

D(a) =
1
γ

diag (diag (Θ(a))) , γ = Θ(1)j,j .

For example, if we consider the centered difference approximation of the Laplacian
Θ(1), we have γ = 4 for d = 2 and γ = 6 for d = 3, where d is the dimension of
the domain of the problem. Note that P in (3.1) is an approximation of the matrix
generated by the discretization of the diffusive part of (1.1). Similar strategies were
used in [11], in [15], and in [23, 25] for the purely diffusive equation, or, in other
words, with q as a null vector in (1.1).

The resolution of linear systems with matrices as in (3.1) can be performed within
a linear arithmetic cost by means of fast Poisson solvers, and this is important for an
efficient implementation of (3.1). Classical (direct) Poisson solvers are mainly based
on cyclic reduction or on multigrid algorithms (see [9, 14] and, e.g., [27, 19]). From
Theorem 2.3, we infer that A is certainly positive definite if the norm of E is smaller
than the minimum (positive) eigenvalue of Θ(a). More specifically

min
j

(λj(Θ(a))) ≥ νh2 m(Ω)βd min
Ω

a,

with m(·) denoting the Lebesgue measure. Therefore, by using again the bound in
Theorem 2.3 and by following the same arguments as in [5, Theorems 3.6 and 3.7],
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it is easy to prove the following two results, which are important in order to gain
insight into the convergence of preconditioned iterations. From here on, where not
otherwise stated, we will consider the centered differences discretization of precision
order 2 and minimal bandwidth for (1.1).

Theorem 3.1. Let A ∈ Rn×n be the positive definite matrix generated by the
discretization of (1.1). If

‖∇ · q‖∞ < ν
βd

αd
m(Ω)min

Ω
a

and if the coefficient a(x) is strictly positive and belongs to C2(Ω), then the sequence
{P−1Re(A)}n is properly clustered at 1 in the eigenvalue sense. Moreover, the eigen-
values belong to a positive interval [c, C] well separated from zero.

Theorem 3.2. Let the hypotheses of Theorem 3.1 hold true. Then the sequence
{P−1Im(A)}n is properly clustered at 0 in the eigenvalue sense. Moreover, the eigen-
values belong to an interval [−ĉ, ĉ], ĉ > 0.

In reference to Theorem 3.1 we have β3 = 3π2 (i.e., for d = 3) and β2 = 2π2

if centered differences are used in (1.1). Therefore, for d = 3, Ω = (0, 1)d (three
dimensions), the hypothesis on q in Theorem 3.1 reads ||∇ · q||∞ < νπ2/2, which
can be quite restrictive. However, if the latter is not satisfied, then everything in
Theorems 3.1 and 3.2 can be stated identically, except for the fact that the interval
[c, C] (only in Theorem 3.1), with c, C still independent of n, may include 0. The same
can be stated for the subsequent and more important Theorem 4.3. In conclusion,
the eigenvalue spectral clustering is not affected by the considered assumption, while
the localization is affected only partially. However, we stress that we experienced
the existence of good localization results even with weaker hypotheses than those in
Theorems 3.1 and 3.2.

4. The cluster. To understand the behavior of preconditioned iterations, we
analyze the spectrum of the coefficient matrix associated with (1.1) after precondi-
tioning and the related matrix of eigenvectors; see, e.g., [10, 4]. First, we prove the
existence of a proper cluster of the singular values through the decomposition of the
preconditioned matrices as identity plus low-norm plus low-rank (Theorem 4.1). Sec-
ond, we derive a general result (Theorem 4.3) on the relationships between proper
eigenvalue and singular value clusters. From the latter result and from Theorems
3.1 and 3.2, we deduce the eigenvalue uniform boundedness and proper eigenvalue
clustering in Corollary 4.4 and, in section 5, we provide some inequalities for the
eigenvalues. Finally, we give a bound for the condition number of the matrix of the
eigenvectors and discuss the convergence of GMRES in section 6.

Theorem 4.1. Under the assumptions of Theorem 3.1, fixed ε > 0 small enough,
there exist integers N̄ = (N̄1, . . . , N̄d) (with respect to the partial ordering of Nd),
N̄ = N̄(ε), r = r(ε) < n such that, for

N = (N1, . . . , Nd) > N̄(ε) = (N̄1, . . . , N̄d),

we have

P−1/2AP−1/2 = I + R(1) + R(2),(4.1)

where ||R(1)||2 ≤ ε and rank(R(2)) ≤ r. Moreover, the sequence {P−1/2AP−1/2}n

shows a proper singular value cluster at 1.
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Proof. We can write

P−1/2AP−1/2 = P−1/2(Re(A) + iIm(A))P−1/2

= P−1/2(Θ(a) + E)P−1/2 + P−1/2(Ψ(q)− E)P−1/2,

and, from Theorem 3.1, we have that, with fixed ε1 > 0 small enough, there exist Ñ =
(Ñ1, . . . , Ñd) and a constant r1 such that for N > Ñ (to be intended componentwise),
n−r1 eigenvalues of the matrix P−1/2Re(A)P−1/2 belong to the interval (1−ε1, 1+ε1),
and all the eigenvalues of P−1/2Re(A)P−1/2 belong to an interval [c, C], 0 < c < C;
i.e., we can write

P−1/2Re(A)P−1/2 = I + R
(1)
1 + R

(2)
1 ,(4.2)

where ||R(1)
1 ||2 ≤ ε1 and rank(R(2)

1 ) ≤ r1.
Moreover, from Theorem 3.2, we infer that the matrix sequence

{P−1/2Im(A)P−1/2}n

is spectrally bounded and clustered at zero; i.e., for N large enough,

iP−1/2Im(A)P−1/2

is a skew-symmetric matrix whose eigenvalues are in [−iĉ, iĉ]. Therefore, there exist
N̂ = (N̂1, . . . , N̂d) and a constant r2 such that for N > N̂ , n − r2 eigenvalues of
P−1/2Im(A)P−1/2 belong to (−ε2, ε2) and all the eigenvalues of P−1/2Im(A)P−1/2

belong to [−ĉ, ĉ]. Then, we can write

P−1/2Im(A)P−1/2 = R
(1)
2 + R

(2)
2 ,(4.3)

where ||R(1)
2 ||2 ≤ ε2 and rank(R(2)

2 ) ≤ r2, ||P−1/2Im(A)P−1/2||2 = ĉ. The claimed
results follow by taking

R(1) = R
(1)
1 + R

(1)
2 , ε = ε1 + ε2; r = r1 + r2, N̄ = max{N̂ , Ñ},(4.4)

where the condition for N̄ is to be intended componentwise. Finally, the existence
of a proper singular value cluster at 1 of the sequence {P−1/2AP−1/2}n is a direct
consequence of (4.1) and of the singular value decomposition [17].

Note that r in (4.4) does not depend on N for N > N because of the existence
of a proper cluster for the spectrum of

{P−1/2Re(A)P−1/2}n

and of

{P−1/2Im(A)P−1/2}n.

Now we introduce a general tool, i.e., Theorem 4.3, for analyzing eigenvalue clusters
of a preconditioned matrix sequence. We will take recourse to the following result
(Theorem 4.2) essentially based on the majorization theory (see, e.g., [7]).

Theorem 4.2 (see [24]). Let {An}n be a sequence such that the singular values
are properly clustered at zero and their spectral norm is uniformly bounded (by a
constant independent of n). Then, the eigenvalues of {An}n are properly clustered
as well.
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Theorem 4.3. Let {An}n and {Pn}n be two sequences of matrices with invertible
Pn. Suppose that there exist Bn, Cn, and Un such that the Un are invertible, An =
Bn + Cn, and such that

1. the matrices Vn = UnP−1
n BnU−1

n , Wn = UnP−1
n CnU−1

n are normal;
2. {P−1

n Bn}n is clustered at r ∈ C in the eigenvalue sense and the spectral radius
ρ(P−1

n Bn) is uniformly bounded by b with b ≥ 0 independent of n;
3. {P−1

n Cn}n is clustered at s ∈ C in the eigenvalue sense and the spectral radius
ρ(P−1

n Cn) is uniformly bounded by c with c ≥ 0 independent of n.
Then {P−1

n An}n is clustered at r + s in the eigenvalue sense and the spectral radius
ρ(P−1

n An) is uniformly bounded by b + c.
Proof. Since we are interested in the eigenvalues of P−1

n An, it is natural to
consider UnP−1

n AnU−1
n which is similar to the original matrix. Moreover,

UnP−1
n AnU−1

n =Vn+Wn = (r+s)In+(Vn−rIn)+(Wn−sIn), In identity matrix.

By items 2 and 3 it is evident that {Vn − rIn}n and {Wn − sIn}n are both properly
clustered at zero in the eigenvalue sense. Moreover, Vn and Wn are normal (item 1)
and so are Vn−rIn and Wn−sIn: as a consequence, {Vn−rIn}n and {Wn−sIn}n are
also both properly clustered at zero in the singular value sense (the singular values
are the moduli of the eigenvalues). Moreover, by the triangle inequality and from the
assumption on the spectral radii, we have

‖Vn − rIn‖2 ≤ |r|+ ‖Vn‖2 = |r|+ ρ(P−1
n Bn) ≤ |r|+ b

and

‖Wn − sIn‖2 ≤ |r|+ ‖Wn‖2 = |s|+ ρ(P−1
n Cn) ≤ |s|+ c.

Finally, the matrix sequence

{Zn = Vn − rIn + Wn − sIn}n

is properly clustered at zero in the singular value sense (by the singular value decom-
position) and its spectral norm is bounded, by the triangle inequality, by |r|+b+|s|+c
which is independent of n. Therefore, by Theorem 4.2, the sequence {Zn}n is prop-
erly clustered at zero in the eigenvalue sense and {P−1

n An}n is properly clustered at
r + s in the eigenvalue sense with ρ(P−1

n An) ≤ |r + s| + |r| + b + |s| + c. However,
by exploiting again similarity and normality, the latter estimate can be substantially
improved (leading to a more natural estimate) by observing that

ρ(P−1
n An) = ρ(Vn + Wn) ≤ ‖Vn + Wn‖2 ≤ ‖Vn‖2 + ‖Wn‖2

= ρ(P−1
n Bn) + ρ(P−1

n Cn) ≤ b + c.

It is worth mentioning that the latter result is an extension (potentially for non-
symmetric preconditioners) of Proposition 2.1 in [24]. Moreover, Theorem 4.3 works
unchanged if the assumption of normality of Xn ∈ {Vn,Wn} is replaced with a weaker
one such as the existence of a pure constant d ≥ 1 (independent of n) such that for
all j and uniformly with respect to n it holds that σj ≤ d|λj |, where the values λj

and σj are the eigenvalues and the singular values of Xn, respectively, arranged by
nondecreasing moduli.

Corollary 4.4. Under the hypotheses of Theorem 4.1, the eigenvalues of the
preconditioned matrix {P−1A}n are properly clustered at 1 ∈ C+ (C+ being the right
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Fig. 4.1. Eigenvalues for the preconditioned problem with ν = 1/30, a = 1, discretization in
two dimensions using centered differences and q = [−√2/2

√
2/2]T . (a) h = 1/16; (b) h = 1/32,

h stepsize.

half plane) and all belong to a uniformly (with respect to the grid) bounded rectangle
with positive real part, well separated from zero.

Proof. The localization result simply follows from Bendixson (see, e.g., [17]):
indeed, it is clear that any eigenvalue of P−1A has to belong to the field of values

F =
{

z ∈ C : z =
x∗Re(A)x

x∗Px
+ i

x∗Im(A)x
x∗Px

, x ∈ Cn\{0}
}

(4.5)

and that any eigenvalue of P−1Re(A) and any eigenvalue of P−1Im(A) must stay in
{

z ∈ C : z =
x∗Re(A)x

x∗Px
, x ∈ Cn\{0}

}
and

{
z ∈ C : z =

x∗Im(A)x
x∗Px

, x ∈ Cn\{0}
}

,

respectively. Therefore, from Theorems 3.1 and 3.2 we deduce that all the eigenvalues
of P−1A belong to {z ∈ C : Re(z) ∈ [c, C], Im(z) ∈ [−ĉ, ĉ]} with c, C > 0, ĉ ≥ 0
independent of the dimension n, as in Theorems 3.1 and 3.2.

Now setting Un = P 1/2, Pn = P , and An = A we have (a) the eigenvalues
of {P−1Re(A)}n are properly clustered to 1 and all lie in a uniformly bounded in-
terval (Theorem 3.1), and Vn = P−1/2Re(A)P−1/2 is symmetric and therefore nor-
mal; (b) the eigenvalues of {P−1Im(A)}n are properly clustered to 0 and all lie in
a uniformly bounded interval (Theorem 3.2), and Wn = iP−1/2Im(A)P−1/2 is skew-
symmetric and therefore normal.

Statements (a) and (b) are the assumptions of Theorem 4.3 from which we deduce
that the eigenvalues of {P−1A}n are properly clustered at 1 ∈ C+.

Figures 4.1 and 4.2 report some examples of the spectrum of the coefficient matrix
associated with equation (1.1) in two dimensions after preconditioning. Note the
presence of the cluster in 1 in the complex field.
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Fig. 4.2. Eigenvalues for the preconditioned matrix with ν = 1/60, a = 1, discretization in two
dimensions using centered differences and q = [−√2/2

√
2/2]T . (a) h = 1/16; (b) h = 1/32, h

stepsize.

5. Spectrum of the preconditioned matrix. We state here some a-priori
bounds on the spectrum of the underlying preconditioned matrix.

In what follows, the numbers γj , j ∈ N, denote constants of the order of unity,
and αd is defined as in section 2 (see Theorem 2.3). All these constants, in general,
depend on the discretization and on the dimension d of the considered domain Ω. To
simplify the notation, here we will focus on the two-dimensional case, where Ω is the
rectangle [0, 1] × [0, 1]. The extension to any connected finite union of rectangles in
any d dimension and therefore for the three-dimensional case (by just changing some
constants) can be performed with the same arguments. In the result below, d = 2
and centered differences are used for (1.1), γ1 → 2 for n → ∞, and γj → 1 j = 2, 3.
As usual, with λj(X) we denote the generic eigenvalue of a square matrix X.

Theorem 5.1. Under the assumptions of Theorem 4.1, λj

(
P−1Re(A)

)
belongs

to the interval
[

minx∈Ω(a)
maxx∈Ω(a)

− 1
ν

αd

2γ2π2

||∇ · q||∞
minx∈Ω(a)

,
maxx∈Ω(a)
minx∈Ω(a)

+
1
ν

αd

2γ2π2

||∇ · q||∞
minx∈Ω(a)

]
.(5.1)

Similarly,

∣∣λj

(
P−1Im(A)

)∣∣ ∈
[
0,

(
1 + π−3

) αd

ν
γ1 ||q||∞

maxx∈Ω(a)
[minx∈Ω(a)]2

]
.(5.2)

Proof. By (4.5) and the properties of the field of values, we have

Re
(
λj

(
P−1A

)) ∈
[

min
x∈Cn\{0}

x∗Re(A)x
x∗Px

, max
x∈Cn\{0}

x∗Re(A)x
x∗Px

]
(5.3)
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and

Im
(
λj

(
P−1A

)) ∈
[

min
x∈Cn\{0}

x∗Im(A)x
x∗Px

, max
x∈Cn\{0}

x∗Im(A)x
x∗Px

]
.(5.4)

For the sake of clarity, we prove the statements through three progressive steps.
• Let a ∈ R and q ∈ Rd be constants in (1.1). Then, P ≡ Re(A) and

P−1A = I + iP−1Im(A).

Therefore, the real part of the eigenvalues of the preconditioned matrix is
equal to 1. Moreover, by using similar arguments as in [5, Theorem 3.2], we
have the following bound for λj(P−1Im(A)):

∣∣λj

(
P−1Im(A)

)∣∣ ∈
[
0,

1
ν
||q||∞ · (1 + π−3

)
γ1

]
.

• Let q(x) = q be constant and a(x) > 0 in (1.1). The discretization of the
diffusive part Θ(a) is exactly Re(A). Therefore, by [23, Theorem 8.1],

λj

(
P−1Re(A)

) ∈
[

minx∈Ω(a)
maxx∈Ω(a)

,
maxx∈Ω(a)
minx∈Ω(a)

]
.(5.5)

Moreover, Ψ(q) ≡ iIm(A) (i.e., the discretization of the convective part is
exactly iIm(A)). As a consequence, by [5, Theorem 3.2, 3.3, and 3.4], we
have

∣∣λj

(
P−1Im(A)

)∣∣ ∈
[
0,

1
ν
||q||∞ · maxx∈Ω(a)

[minx∈Ω(a)]2
(
1 + π−3

)
γ1

]
.(5.6)

• Finally, let us consider the general case, i.e., a(x) : Ω → R+ and q(x) : Ω →
Rd. Recalling Theorem 2.3, we deduce

Re(A(a, q)) = Θ(a) + E, i Im(A(a, q)) = Ψ(q)− E,

x∗Re(A)x
x∗P x

=
x∗Θ(a)x
x∗P x

+
x∗Ex

x∗P x
,(5.7)

x∗Im(A)x
x∗P x

=
x∗Ψ(q)x
x∗P x

− x∗Ex

x∗P x
.(5.8)

By (3.1), we observe that

min λj(P ) ≥ 2γ2π
2h2 min

x∈Ω
(a), max λj(P ) ≤ 8γ3 max

x∈Ω
(a),

and invoking Theorem 2.3 (i.e., ||E||2 ≤ h2αd‖∇ · q‖∞), that
∣∣∣∣
x∗Ex

x∗Px

∣∣∣∣ ≤
1
ν

αd

2γ2π2

||∇ · q||∞
minx∈Ω(a)

.

Therefore, from (5.5), (5.7), and Theorem 2.3, we have (5.1). On the other
hand,

P−1Im(A) = − i
2
P−1 (Ψ(q)−Ψ(q)∗) ,(5.9)
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and hence, by the same arguments as in [5, Theorem 3.4], we deduce

minx∈Ω(a)
[maxx∈Ω(a)]2

Z ≤ P−1/2Im(A)P−1/2 ≤ maxx∈Ω(a)
[minx∈Ω(a)]2

Z,(5.10)

with

Z = [A(1,Ω)]−1/2Im(A)[A(1, Ω)]−1/2.

Finally, by the similarity of the two sequences of matrices

{
P−1Im(A)

}
n

and
{

P−1/2Im(A)P−1/2
}

n
,

and considering expressions (5.9), (5.10), and (5.8), Theorems 3.2 and 2.3,
and [5, Theorem 3.2], we infer (5.2), i.e., the desired result.

If q(x) is not a constant function, we note that the eigenvalues of the spectrum of
the preconditioned matrix can have negative real part if ||∇ · q||∞ is huge and/or ν is
small. This may slow down the initial phase of the convergence process of the Krylov
subspace projection method used to solve the underlying preconditioned linear system.
However, if the convection is overly dominant, a preconditioning strategy based on a
suitable upwind discretization can be used. The related eigenvalue analysis can be
adapted by using tools similar to those considered here.

6. Notes on the convergence of iterative methods.

6.1. The condition number of the eigenvector matrix. Here we will focus
on the case

q = [cos(φ) sin(φ)]T , 0 ≤ φ < π,

where φ is a constant angle; i.e., the wind is constant. In this case, the following result
holds true. For simplicity, here we focus on the case when N1 = N2 = · · · = Nd = n1/d,
where n is the size of A (uniform grid).

Lemma 6.1. Let q(x) and a(x) in (1.1) be constant and (1.1) be discretized with
centered differences. Then, the matrix P−1A is diagonalized by a set of n eigenvectors,
and if V is the matrix of the eigenvectors of P−1A, V can be chosen such that κ2(V ) ∼
n1/d; moreover, if Ni ≈ αi,jNj for every i, j, and αi,j are universal constants, then
κ2(V ) ≈ cn1/d, where c is a pure positive constant.

Proof. Under our assumptions, since q(x) and a(x) in (1.1) are constant, then
P ≡ Θ(1) and Ψ(q) is a skew-symmetric matrix. Moreover, the preconditioned matrix
P−1A can be written as

P−1A = (Θ(1))−1 · (Θ(1) + Ψ(q)) = I + (Θ(1))−1Ψ(q) = I + (Θ(1))−1/2S(Θ(1))1/2,

where Θ(1) and Ψ(q) are the matrices generated by the discretization of the dif-
fusive and convective parts of (1.1), respectively. However, by construction S =
(Θ(1))−1/2 Ψ(q) (Θ(1))−1/2 is a skew-symmetric matrix since (Θ(1))−1/2 is a symmet-
ric positive definite matrix and Ψ(q) is a skew-symmetric matrix. Therefore, I + S is
normal because

(I + S)∗ · (I + S) = (I − S)(I + S) = I − S2,
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which is the same matrix obtained as (I + S) · (I + S)∗. Consequently,

P−1A = (Θ(1))−1/2(I + S)(Θ(1))1/2

= (Θ(1))−1/2QDQ∗(Θ(1))1/2,

where D is diagonal (the eigenvalue matrix), Q is unitary, and V = (Θ(1))−1/2Q is
the eigenvector matrix. Since κ2(P−1) = κ2((Θ(1))−1) ∼ n2/d (it is a classical result
on the discrete Laplacian; refer, e.g., to part 3 of Theorem 2.1), it directly follows that
κ2(V ) = κ2((Θ(1))−1/2Q) = κ2((Θ(1))−1/2) ∼ n1/d. Moreover, if Ni ≈ αi,jNj for
every i, j and αi,j are universal constants, then κ2((Θ(1))−1) ≈ c2n2/d, where c is a
pure positive constant, and therefore κ2(V ) = κ2((Θ(1))−1/2Q) = κ2((Θ(1))−1/2) ≈
cn1/d.

Note that if we could use P−1/2 as a split preconditioner instead of P as a left
(or right) preconditioner, then κ2(V ) = 1 because P−1/2AP−1/2 = I + S is normal.
This, in theory, could have some relevance for the convergence (see the next section);
in practice we observed no changes.

6.2. Analysis of the convergence. To study the convergence of GMRES, we
report a few tools based on polynomials related to the minimal polynomial of the
matrix K of the underlying linear system, which have been introduced in [10].

Recall the bound on the convergence of GMRES (see [20, sections 6.11.2, 6.11.4]):

||rj ||2 ≤ κ2(V ) · min
pj(0)=1

max
λ∈λ(K)

|pj(λ)| · ‖r0‖2,(6.1)

where λ(K) is the set of all the eigenvalues of the matrix K, κ2(V ) is the spectral con-
dition number of the matrix of the eigenvectors of K, V is chosen to minimize κ2(V ),
is and pj(z) is a polynomial of degree at most j. Note that, under the assumptions
of Lemma 6.1, we have κ2(V ) = c n1/d, with c a universal constant.

Let us consider the preconditioned sequence {K = P−1A}n whose spectrum
{λ(K)}n is clustered (recall Corollary 4.4) and partition λ(K) as in [4]:

λ(K) = λ(c)(K) ∪ λ(0)(K) ∪ λ(1)(K),

where λ(c)(K) denotes the clustered set of eigenvalues of K and λ(0)(K) ∪ λ(1)(K)
denotes the set of the (distinct) outliers. We assume that the clustered set λ(c)(K) of
eigenvalues is contained in a convex set C whose closure must not contain the origin.

The sets

λ(0)(K) = {λ̂1, λ̂2, . . . , λ̂j0} and λ(1)(K) = {λ̃1, λ̃2, . . . , λ̃j1}
denoting two sets of j0 and j1 outliers, respectively, are defined as in [4]; i.e., if
λ̂j ∈ λ(0)(K), we have

1 <

∣∣∣∣∣1−
z

λ̂j

∣∣∣∣∣ ≤ cj ∀z ∈ C,

while, for λ̃j ∈ λ(1)(K),

0 <

∣∣∣∣∣1−
z

λ̃j

∣∣∣∣∣ < 1 ∀z ∈ C,

respectively.
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From (6.1) and the above definitions, we have

min
pj(0)=1

max
z∈λ(K)

|pj(z)| ≤ max
z∈λ(K)

|p̂(z) · q(z) · p̃(z)|,(6.2)

where

p̂(z) =
(

1− z

λ̂1

)
· · ·

(
1− z

λ̂j0

)
, p̃(z) =

(
1− z

λ̃1

)
· · ·

(
1− z

λ̃j1

)

are the polynomials whose roots are the (distinct) outlying eigenvalues in λ(0)(K) ∪
λ(1)(K) and q(z) is a polynomial of degree at most j− j0− j1 ≥ 0 such that q(0) = 1.
The polynomial q(z) can be chosen to be the shifted and scaled complex Chebyshev
polynomial q(z) = Ck((c−z)/d)/Ck(c/d) which is small on the set containing λ(c)(K);
see [20, sections 6.11.2, 6.11.4]. Therefore, by using the same arguments as in [4], we
have the following.

Theorem 6.2. The number of (full) GMRES iterations j needed to attain a
tolerance ε on the relative residual in the 2-norm ||rj ||2/||r0||2 for the preconditioned
linear system Kx = b (K is assumed diagonalizable) is bounded above by

min

{
j0 + j1 +

⌈
log(ε)− log(κ2(V ))

log(ρ)
−

j0∑

`=1

log(c`)
log(ρ)

⌉
, n

}
,(6.3)

where

ρk =

(
a/d +

√
(a/d)2 − 1

)k

+
(
a/d +

√
(a/d)2 − 1

)−k

(
c/d +

√
(c/d)2 − 1

)k

+
(
c/d +

√
(c/d)2 − 1

)−k
,(6.4)

and the set C ∈ C+ is the ellipse with center c, focal distance d, and major semi-axis
a.

The bound (6.3) suggests that there will be a latency of j0 + j1 steps before the
asymptotic behavior is observed. If j0 > 0, then there may be some additional delay
proportional to (

∑
l log cl)

−1. In practice, the asymptotic convergence behavior will
not be manifested until the expression

max
z∈λ(c)(K)

|p̂(z) · p̃(z)|ρk

is less than 1, where k is the degree of the shifted and scaled Chebyshev polynomial.
Of course, these are theoretical arguments because ||pj || can be arbitrarily large,
and then no general statements can be made about how much larger the delay in
convergence can be in practice or when superlinear convergence sets in.

6.3. Examples and comments. In this section we report on a few experiments
with a centered difference discretization and constant coefficients for problem (1.1)
in order to compare the theoretical results and notes above. The preconditioner
P is implemented here in MATLAB by using a fast Poisson solver. Performances
(timings) can be improved with a multigrid-based fast Poisson solver, but this will be
considered in a future work together with more general test problems. Experiments are
performed with GMRES but we include also two-dimensional tests and (total) timings
with preconditioned and nonpreconditioned BiCGSTAB. In three or more dimensions,
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Table 6.1
Preconditioned GMRES iterations for centered differences discretization of (1.1), two-

dimensional problem, q = [−√2/2
√

2/2]T , a = 1, ε = 10−6. In parentheses: nonpreconditioned
(full) GMRES iterations.

h \ ν 1/10 1/20 1/30 1/40 1/60 1/80
1/16 11(31) 18 (29) 23 (29) 27 (31) 35 (31) 44 (31)
1/32 11 (47) 17 (51) 23 (51) 27 (54) 36 (58) 47 (61)
1/64 10 (52) 15 (57) 21 (75) 25 (85) 35 (97) 45 (106)
1/128 8 (51) 13 (52) 19 (54) 23 (55) 31 (77) 43 (109)

Table 6.2
Preconditioned matrix-vector products (2× iterations) for BiCGSTAB on centered differences

discretization of (1.1), two-dimensional problem, q = [−√2/2
√

2/2]T , a = 1, ε = 10−6. In
parentheses: nonpreconditioned BiCGSTAB matrix-vector products.

h \ ν 1/10 1/20 1/40 1/60 1/80
1/128 11 (447) 17 (427) 39 (483) 61 (499) 93 (400)
1/256 9 (786) 17 (817) 36 (929) 56 (967) 80 (981)
1/512 6 (785) 15 (1609) 31 (1935) 47 (1953) 71 (1963)
1/1024 5 (1873) 13 (†) 25 (†) 42 (†) 59 (†)

Table 6.3
Timings (in seconds) for BiCGSTAB on centered differences discretization of (1.1), two-

dimensional problem, q = [−√2/2
√

2/2]T , a = 1, ε = 10−6. In parentheses: nonpreconditioned
BiCGSTAB timings. Note that halving the stepsize means that the sizes of matrices are multiplied
by four.

h \ ν 1/10 1/20 1/40 1/60 1/80
1/128 1.2 (1.5) 4.5 (1.5) 4.3 (1.3) 6.2 (1.6) 8.8 (1.2)
1/256 3. (13.1) 6.2 (13.53) 31.1 (15.9) 20 (16) 30.9 (17)
1/512 7.9 (111) 19.7 (113) 40.4 (138) 56 (145) 82.3 (139)
1/1024 27.28 (1019) 62.2 (†) 120.5 (†) 191 (†) 248 (†)

fair timings require a more efficient implementation. For memory limitations, we
provide large tests for BiCGSTAB only. A dagger † in the tables means that the
solver does not converge after 1000 iterations (i.e., 1000 matrix-vector products for
GMRES and 2000 for BiCGSTAB).

Our experiments are performed under the assumptions of Lemma 6.1. By Theo-
rem 5.1, we have j0 = 0. Therefore, the delay for asymptotic convergence behavior is
mainly related to the number of distinct outlying eigenvalues. However, if ε is large
enough, GMRES may treat as multiple eigenvalues those which belong to λ(1), are
nondefective, and form small satellite clusters, as observed in [10]. In this case, the
above mentioned delay can be less than j1 iterations.

We stress that the presence of a proper cluster of eigenvalues means also that the
number of the outliers does not increase with N , provided that it is large enough,
and that their influence is limited to an initial delay for the asymptotic phase of
convergence.

In Tables 6.1, 6.2, and 6.3, we report the number of preconditioned and non-
preconditioned GMRES iterations for the underlying two-dimensional problem with

q = [−
√

(2)/2
√

(2)/2]T ,

a = 1, ε = 10−6 for h = 1/16 to h = 1/128, and ν = 1/10 to ν = 1/80, and similarly
for BiCGSTAB. The boundary conditions in (1.1) are

u(0, y) = u(1, y) = 1, 0 < y < 1; u(x, 0) = u(x, 1) = 0, 0 < x < 1.
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Table 6.4
Preconditioned GMRES iterations for centered differences discretization of (1.1), three-

dimensional problem with q = [1/
√

3 1/
√

3 1/
√

3]T , a = 1, ε = 10−6. In parentheses: non-
preconditioned (full) GMRES iterations.

h \ ν 1/10 1/20 1/30 1/40 1/60 1/80
1/8 12 (25) 17 (23) 22 (21) 26 (25) 33 (31) 40 (37)
1/16 12 (51) 18 (50) 24 (48) 29 (47) 38 (45) 49 (50)
1/32 11 (93) 17 (97) 23 (97) 28 (97) 38 (95) 49 (94)

In Table 6.4 we report similar tests with the three-dimensional problem using GMRES
but with

q = [1/
√

3 1/
√

3 1/
√

3]T ,

and the boundary conditions are u(0, 0, 0) = 1 and zero elsewhere. Similar results are
obtained with other Dirichlet boundary conditions.

We note that halving the stepsize means that the sizes of matrices are multiplied
by four. The theoretical computational cost is O(N), where the mesh is equispaced,
and thus N = nd, with d the dimension of the domain. However, we can see that
when we halve the stepzise, timings for preconditioned iterations (see Table 6.3, where
d = 2) are always less than quadruple.

6.4. Convergence and the viscosity parameter. In the analysis performed
in section 5 we observed that, if q in (1.1) is constant, then the imaginary parts of the
eigenvalues of the preconditioned matrix are proportional to ν−1; see Theorem 5.1.
Moreover, the number of the distinct outliers does not depend on ν or on the mesh,
but it does depend on the choice of the function q; see the results on the existence
of a proper cluster in the previous sections. For example, if a(x) is also constant, we
have

β = max
j
{
∣∣Im (

λj(P−1A)
)∣∣} =

c

ν
,

where c is a universal positive constant. Another evidence of this can be found in
Figures 4.1 and 4.2.

Moreover, by denoting with β the radius of the cluster and provided that β > 0,
with the notation of Theorem 6.2, the contribution to the number of the iterations of
the eigenvalues in the cluster is bounded from above by

log(ε)
log(ρ)

= c′
log(ε)
−1
1+β

= c′(1 + β) log(ε−1).(6.5)

Here, c′ is a pure positive constant which takes into account that ρ is approximated
by

ρ̃ =
β

1 +
√

1 + β2
<

β

1 + β
= 1− 1

1 + β

and that, provided that β > 0, log(ρ) is approximated by the Taylor expansion of
log(ρ̃), with ρ̃ being defined as above. Again, note that we are in the hypotheses of
Lemma 6.1, and then the convergence is dictated by the distribution of the eigenval-
ues. Therefore, the number of iterations is expected to grow with ν−1. However, in
practice, the number of iterations seems to be proportional to

√
ν−1 (see Tables 6.1
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and 6.4), and this behavior is confirmed for various functions a(x) and q(x); see also
the numerical experiments in [6].

The above discussion was done under restrictive hypotheses. However, the expe-
rience of several different choices of functions a(x) and q(x) and values of the viscosity
parameter ν (always such that the hypotheses of Theorem 4.1 are satisfied) suggests
that the number of the iterations depends on a function of ν−1, even under more
general assumptions, but it is independent of the mesh and of the dimension d of
problem (1.1).

7. Conclusions. The purpose of this work was to explore some properties of
the preconditioned operator P−1A, where P is defined in (3.1) and A is the matrix
generated by a finite difference discretization (using centered differences or upwind)
of the convection-diffusion equation (1.1). In particular, we proved the existence of a
cluster in the spectrum of {P−1A}n and gave a bound for the condition number of
the matrix of the eigenvector. Moreover, we found that eigenvalue distribution and
convergence rates are independent of the discretization mesh size and of the dimension
of the problem but do depend (weakly) on ν−1.

Indeed, beside the spectral theoretical analysis of the preconditioned structures,
we stress that our technique can be easily implemented. In fact, the ingredients are
constituted by the following blocks: a Krylov method (e.g., GMRES, BiCGSTAB,
etc.), a matrix vector routine (for sparse or even diagonal matrices), and a solver
for the related diffusion equation with a constant coefficient (a method based, e.g.,
on the cyclic reduction approach [9, 14] or on multigrid methods [27, 19] for which
professional software is available). Of course, if the convection part is dominating,
then the considered approach can be enriched by alternating the discussed diffusion-
based preconditioning with a preconditioner for an upwind discretization. At this
point, we recall that the idea of using, e.g., a multigrid (for a simpler differential
problem) as a preconditioner in a Krylov-type method is quite classical, as it emerges
in [18, 27]. In this direction, we must quote the following statements from Greenbaum
[18, subsection 12.1.5, p. 197]:

Some multigrid aficionados will argue that if one has used the proper
restriction, prolongation, and relaxation operators, then the multi-
grid algorithm will require so few cycles . . . that it is almost point-
less to try to accelerate it with CG-like methods. This may be
true, but unfortunately such restriction, prolongation, and relaxation
schemes are not always known. In such cases, CG, GMRES QMR,
or BiCGSTAB acceleration may help.

Equivalently, one can consider multigrid as a preconditioner for
one of these Krylov subspace methods.

A future work will be in the direction of combining different iterative solvers
(the multi-iterative idea [21]) and more specifically we would like (A) to use the
preconditioner considered in this paper as one of the smoothers for a V-cycle directly
in the original problem; (B) to make a comparison between the present approach and
the one in (A); and (C) to enrich the analysis in the case of convection-dominated
problems in order to achieve more robustness.
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