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Application: Inpainting
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Image Reconstruction




Application: Video
Enhancement

A 352-by-288 video
from a video recorder




Application: Video
Enhancement
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Application: Astronomical
Infrared Imaging

Observed Image from United

K&%@&%ﬁtﬂ%&%&@@%‘% cfope 8y




Outline

. Tight Frames

. Inpainting

Impulse Noise Removal

High Resolution Image Reconstruction
Video Enhancement

Extensions

Convergence Analysis

I L I S

Combining PDE and Tightframe




Preamble

A very brief introduction to image
denoising and image deblurring
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What is (gray-scale) image?

The moon as seen by human

completely
white = 255

completely
black =0

8-bit/pixel




The moon as seen by the computer

grey pixel
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300

black pixel

12



218 215 226 | 223

226

225 231 243 | 237

228

o| 235 | 236 | 245 | 236

220 [e o

240 %44 228

T
245 M. 240 23\3 235

1000-by-1000 image

pixel-value

matrix-entry
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Color Images

RGB (red, green and blue channels) 24-bit color:

"

-3

255

color image red channel
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What is an image?

Images are piecewise-
smooth functions with
jumps at edges.

constant

jumps
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What is an image?

image = smooth parts + jumps
= low frequency components
+ high frequency components

where the high frequency components have big
magnitudes.
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Denoising:

observed image = true image + noise

y=f+n
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Denoising:
We want:

1. Data fitting: n =y — f is small, i.e.

min ||| = min ly — .
n f

2. Regularity: f is piecewise smooth, i.e.

min | DE]],

for some differential operator D.
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Variational Method for Denoising

Restoration = Minimization of a cost functional F

min £y (£) = min[ [f—y| + D] |,
N—— N——

data fitting term  regularization term

1.e. T 1s close to y and yet f is smooth.

The number 3, which balances the two terms,
is called reqularization parameter.
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Variational Method for Denoising

Restoration = Minimization of a cost functional F

2 @% Total Variation of Rudin, Osher and Fatemi :

min Py (£) = minl € -yl + 5 [ Vel ]
| \ ,

data fitting term regularization term

i.e. T is close to y and yet the total variation
norm of f is small.
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Variational Method for Denoising

Euler-Lagrange equation:

OFy(f)
of

VTI
—0—f— (XY~
— oy +hv QVH>

Nonlinear PDE—difhicult to solve.

Solve until steady state:

Of \VA3
_
ot y+ov: (\Vf\)
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Wavelet Denoising

image = low frequency components

+ high frequency components

where the high frequency components have big
magnitudes.

On the contrary, (Gaussian) noise are high frequency
components with small magnitudes.

o
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Wavelet Denoising

A wavelet transform is an orthogonal transtform
that consists of a low-pass filter H;, and one or
more high-pass filters Hy.

More precisely, for any signal f, H;f and Hyf are
the low- and high-refrequency parts of
respectively, and

H'H, + H Hy =1

the perfect-reconstruction formula.
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Wavelet Denoising

HL HLt
—— Hf —— H/Hf —

HH HHt

—— H{ —— H/H,f —

For image f, H;f consists of the smooth parts of
f, and Hyt consists of the jumps of £, and they
are big.

For noise n, both Hyn and Hgn will be small.
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Thresholding

Given v = [vy, - -+ ,v,], the hard-thresholding
operator 7, is defined as:

Ta(v) = [t (Vi) -+ tx, (vn)]

where )
y ( ) < Uy, lf |Uz| > )\Z‘,
A\V;) = )
/ A \O, if |UZ| S )\z

/ 25 25



Wavelet Denoising

Given y = f + n, we decompose y into low- and
high-frequency parts and we threshold the high-
frequency parts. Then we reconstruct f.

H, H'
Ly H/'Hy ]
y — >
H, T, H
uy © HYf ’TAHHY 7

noise are thresholded
and jumps are kept
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Deblurring

image due to
motion to
the right.

Motion blur
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Observed image y obtained from true image f as follows:

y) =f@) +1a+) +f(+2) T+ 1tk
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Thus . .
y(i) = f(i—t).
t
More generally, we have

Zb f(i —1).

In matrix terminology, this is a matrix equation:

blurripg =@f — v

matrix

To obtain the true image f:

f =By
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~For linear blur, B is block diagonal Toeplitz matrix:

L []
E L 0 % for picture with
[ L [ 2000-by-2000 pixels
B =[] []
N L 0
L] 0 e L
[] []
E L Q,OOO,OOOX4,OOO,OOO
a ]
[]
11 R
: A 1 1 0 [
with L a a o 5
lower-A I = (]
Toeplitz E E
matrix: [] ]
0o . . . G
[] ]
E 1 1 1 1QOOOXZOOO
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Point-spread Function

' | For general blur, B is block-Toeplitz-Toeplitz-block,
' hence determined by the middle row.

a4 Reshape the middle row into an n-by-n matrix
bt & and display it as a 2D function or an image:

08 Pomt-.spread
A T function for
A motion blur
02 . .

200

T 200
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The point-spread function tells how every pixel in
the image 1s blurred.

Ly - Out-of-focus blur

200 o

06
04 -

02

Given the point-spread 200
function, we can form the

BTTB /5 blurring matrix
accordingly.

200

Gaussian blur
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Blur Model

.

observed image = blurred image + noise

y=Bf +n
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Variational Method for Deblurring

Restoration = Minimization of a cost functional F

mfinFy(f) mm[ |Bf —yl| + S-IDE|| |,
N——— ——

data fitting term  regularization term

1.e. Bf i1s close to y and yet f is smooth.
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From observed y to reconstructed f:

Variational
Approach

mfin F,(f)

or

Tight-Frame
Approach

Az and A'z,
and

thresholding

where A'A =7

35




Blurs are Low-Pass Filters

Blurring has the form:
Z b(t)f(i —t).

where b(t) > 0. Thus blurring is a weighted averaging.

High frequencies in f, e.g. edges, got averaged out or
smoothed, and Bf consists mainly of low frequencies.

edges are
smoothed

B

——
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Boundary Conditions

The blurred image y = Bf involves information of the
true image f outside the field of view.

/.

field of view
B /

37
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Boundary Conditions

Periodic Boundary Condition (Gonzalez and Woods, 93):
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~ Dirichlet (Zero) BC (Boo and Bose, IJIST 97):

Assume data zeros outside boundary
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™ Neumann Boundary Condition (Ng, C. & Tang (SISC 00)):

Assume data are reflective near boundary.
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" Anti-reflexive Boundary Condition (Serra, SISC (2003))

Assume data are negated and reflected near boundary.
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Tight Frames

[ Definition (Duffin and Schaeffer, Trans.
AMS, 1952): Let X C L*(R) be countable.
X is a tight frame for L*(R) if

YLD =117 VfeL*(R)

gekXx

[J This 1s equivalent to

f=> {99 VfeLlR)

geX

[1 An orthonormal basis is a tight frame
43




Construction of Haar Wavelet

Define ¢(x) = 1 for z € [0, 1], and 0 otherwise.
Then we have the refinement equation:

o(x)=1-¢(22) +1- 2z —1).




Construction of Haar Wavelet

If we define
1 -1
h(w) = = + —e™ = e “/?gin(w/2)
2 2
We have
1
Y hi(w)hi(w) =1 and Zh hi(w+ ) = 0.

which gives the perfect reconstruction property ot
Haar wavelet.
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Construction of Haar Wavelet
Accordingly, define

() = 1 ) ¢(2x — 1)

< L
. 2
{ %

The set X = {1 | Yjr(z) = 29/2p(27 2 — k)}
is a wavelet system and hence a tight frame.
46




Haar Function

Wop = Wix)
1
-1

o =2 x) W =w(2x —1)
1 1

1

1 - -1

ag = W(4x) s =widx—1)

The collection of all these tunctions is the Haar
wavelet system and an orthonormal basis for Ls|0, 1].
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Haar Wavelet Filters

1,1] and £[1, —1]

[NSRI

Haar’s filters are:

If we use 5[1,1] and £[1, —1] to construct the
low-pass filter H; and the high-pass filters Hpy
respectively, then Ht H, + HiHy = I, the
perfect-reconstruction formula.

HL HLt
—— Hf —— H®Hf

HH HHt
—— H {f —— H/H,f
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Piecewise Linear Tight Frame

Piecewise Linear Refinable Function ¢ 0(X)=(2x+1)/2+¢(2X)+0(2x-1)/2

4 1k
-4 08

. Olek

Vi \
Y \

V'é \
o 02
A 7 v
AT’ 7

N

. 04k
4
1 \\ ’ \
4 02r- 1 4 \
) T f(2x-1)
N -—
o2x+1) 12 . 2x-1) /
’ \ v A
1 N oy \
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 /A 1 1 A\ 1 1
-0.8 -0.6 -0.4 -0.2 0 0.2 04 086 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1

o(x) = %gb(Zx + 1)+ 1-¢(2x) + %¢(2:1; —1)

1 . 1 1 .
ho(éd) — Zew —+ 5 —+ Ze_w
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Let
fn(w)
ha(w)
Then
Zi; hi(w)hi(w)

\/5 1w \/§ W
- —€ — —€
4 4
1 1w i 1 —Ww
= ——C€ — — —€
2
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Piecewise Linear Tight Frame

Piecewise Linear Refinable Function ¢

0.8

06

04

021

* 0

0.2+

04 -

)=0.707¢(2x+1)-0.707 ¢(2x-1)

0.707¢(2x+1

\-0.707 §(2x-1

hi(w) = %ew—re_w
1
i(x) = =02z +1) = —=¢(2z — 1)



Piecewise Linear Tight Frame

Piecewise Linear Refinable Function ¢ | | Y, (X)=- ¢(2x+1)/12+¢(2x)- ¢p(2x-1)/2 |

| | | | | | | | | L L 1 1 L L 1 1 1
-0.8 -08 -04 02 0 02 0.4 06 0.8 1 1 0.8 0.6 04 0.2 0 0.2 0.4 0.8 -0.8 -1

h2(CU) — —ieiw + %_ie—iw
o) = —%qb(Qx + 1)+ 1-¢(2z) — %¢(2x — 1)
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Piecewise Linear Tight Frame
The system obtained by dilation and translation:
X = {2"2; (2" —j) -k, j € Zyi = 1,2}

is the piecewise linear tight framelet system.

Given hg, is it easy to find A; and Ay such that

2

th(w)hz(w) =1 and Zhi(w)hi(w + ) =07
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Unitary Extension Principle

Theorem (Ron-Shen, 97): Let ¢ € L*(R) be a
refinable function whose refinement equation is

S AN

$(2-) = ho(-)o(-),

(ho is called refinement mask or low-pass filter.)

Let h;, : =1,...,m be highpass filters satistying

Zhi(w)hi(w)zl and Zhi(w)hi(erﬂ):O.

({h;}, are called framelet masks.)
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Unitary Extension Principle

Define ¥ := {vy, ..., ¥, } with

AN

77;@(2) = hi(-)o(-).

Then X () is a tight frame of L*(R) and {4;}™,
are called framelets.

[ Easy to find {h;}2, if

ho ()" + [ho(- + )" < 1

[ Explicit formula for h; for B-spline
tightirames
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1D Piecewise Linear Tight Frame
. Start with linear B-spline ¢ (the hat function).

. Its Fourier transform is a(w) . Si?j%)/f)

. Define framelets

i(w) = hi(w/2)p(w/2)

with framelet masks

[/

() = (7) sin /) cos* ),

for 1 < ¢ < 2.
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1D Piecewise Linear Tight Frame

4. The system

X = {2"2; (2" —j) : k, j € Zyi = 1,2}

is the piecewise linear tight framelet system.

5. The filters are:

1

—11,2.1
4[77]7
V2
—11,0, —1
4[77 ]7
1

—1—1.2. —1].
4[ 7= ]
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Matrix Representation

To apply a filter onto a signal is equivalent to
pre-multiply the signal vector by a Toeplitz

matrix.
E.g. ho = [1,2, 1] corresponds to
2 1 0
. I 2 1
ho «— Hy = 1
r 2 1
0 |
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Matrix Representation

Usually, one uses reflexive boundary condition
to minimize boundary artifacts—resulting a
Toeplitz-like matrix.

E.g. ho = (1,2, 1] corresponds to

31 0

I 2 1

ho «— Ho = SR
I 2 1

0 1 3

C. & I, [terative Toeplitz Solvers, SIAM (2007)
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Analysis and Synthesis Operators

The tight-frame transform is obtained by:

< analysis operator

synthesis operator

«— framelet coeflicients
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Important Observation

Tight Frames = Redundant Bases

If
A = analysis operator
and
A* = synthesis operator,

then

A*A =1,
but

AA* £ T.
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Perfect Reconstruction Formula

H, H)
- Hf —— H'H,f
H] H]* *
f B > H]f e H] Hlf
H, H,

—— Of —— HHf —

No need for AA* =71
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Multi-level Decomposition without
Down-sampling

For piecewise linear tight frame:

] hl [ [707%] hZZ[_i7%7_ ]

Hkli—‘
l\.')lr—\
N

Define hg at level /7 is

ORI 0. 2.0 0,
0o 47 y ) 727 ’ ’ 74
_ 2(6-1) _1 2(£-1) _1 i

The masks hgg) and hg) can be given similarly.
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Multi-level Decomposition without
Down-sampling
Let HZ-(E) be the matrix corresponding to h§€). Then

- L—1 (L= 7]
<L>£:0L}{O (T=0) A
Hl /=1 HO L

L) 7rL—1 77(L—¢
i

A
]
]

HY
HY

A A= A5 A + Ay Ay = 1.
64




Multi-level Decomposition

H,
HOHQHDE
0 0 0
Ho | HO
o |1 H®OH®HMT
H,
3 2 1
HOHAOHOf
H® | H®
: - HOH/Vf
H,?
- HOHMDf
2 0
H,"
f > - HVf
H,"
- Hf

65



2D Tight Frame

We use tensor product to produce a tight framelet
system in £*(IR?):

L1 framelet masks:

‘E@jﬁdlﬂﬂ2)ZZiQ(aH)EjGU2)

[ filters:
hij = hih;

fori,7=0.1,2.
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T 1 2 -1
1 2 1
L2 4 2 ¥2l2 0 —2| L|-2 4 -2
12 1 10 -1 -1 2 -1
102 1 10 -1 —1 2 1
0 0 of flo o o] ¥lo 0 0
-1 -2 -1 -1 0 1 1 -2 1
B2t BV S 1 -2 1
2 1
2 4 2| ¥212 0 —2| L|-2 4 -2
-1 -2 -1 -1 0 1 1 -2 1
Hoo Hox Hop
Hio Hi1 Hio
Hoog Hoi Hspo
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1D Piecewise Cubic Tight Frame

1. Start with cubic B-spline ¢(w) = Si?j%)/f)

2. Define framelets

bi(w) = hi(w/2)p(w/2)

with framelet masks

hulw) = () sin /) cost o),

tor 1 < < /4.
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1D Piecewise Cubic Tight Frame

o .-.': | 3. The system
X = {2228 —j) ik, jeZi=1,...,4)
is the piecewise cubic tight framelet system.

¥ 4. The filters are: ho = %[1,4, 6,4,1],

1 V6
hy = —=1.2,0,—2,—1 ho = —|—1,0.2,0,—1
1 8[777 ’ ]7 2 16[ g Uy &y Uy ]7
1 1
hs = —|—1.,2.0,—2.1 h, = —I|1,—4.6. —4.1]|.
3 8[ y &y Uy 7]7 4 16[7 ) V9 7]

,, @ 5. Again we still have A*A = 1.
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Tight Frames

J Tight frames — redundant bases

d preserve the unitary property of the
analysis and synthesis operators

d sacrifice orthogonality and linear
independence to get more flexibility

J Robust signal representation—errors in signals
can be reduced when represented by a
redundant system

d Discrete Fourier transform frames applied
successfully to many fields
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Spline Framelet Systems

J

Spline framelet systems: piecewise linear or
cubic tight frames

Can be constructed from the unitary extension
principle of Ron and Shen (JFA, 97)

Either symmetric or anti-symmetric

Have small supports for a given smoothness
order—good time frequency localization

Our algorithm works with other tight frames
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Inpainting

Image Inpainting: filling-in missing pixels based
on information in the observed region

Applications: film restoration, text or scratch
removal, and digital zooming
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Notations

noise set

Y 4 & =
r@n- mnan
g det,
B0, () _
N N UA W'
Pr \
data set

Fill in data in N with given data in A.
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Variational Method

Restoration = Minimization of a cost functional F
2 @% Total Variation of Rudin, Osher and Fatemi :

min Fy (£) = minl € - ¥/ + 3 [ |VE
A\ -~ _J/ \ ,

data fitting term regularization term

Euler-Lagrange equation gives rise to PDE:

\Y4§
f—vyv+038V- (\Vﬂ) 0.
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Existing Schemes

CS TV Inpainting Model (T. Chan and J. Shen,
2001)

Rt =5 [(E-yr+ [ ve

The steepest descent equation for the energy is

of [ Vi

T N A (f —
S| A (=)

a diffusion-reaction type of nonlinear PDE.
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Existing Schemes

BSCB Model (M. Bertalmio, G. Sapiro, V.
Caselles, and C. Ballester, 2000):

of _,
— =Vt -VL(f

where V+ is the 90-degree-rotated copy of the
gradient, and L(f) is an operator that evaluates
the degree of smoothness.

Propagation of smoothness along the isophotes
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Existing Schemes

Curvature-Driven Diffusion Model (T. Chan
and J. Shen, 2001):

cof d(k) ,

) @—V[WVf‘}, 1IlN

=y, in A
where

d(s)=s", s>0,p>1
and -
=V |—==].
" [\Vﬂ]
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Existing Schemes

[l Simultaneous Structure and Texture Image
Inpainting, (M. Bertalmio, L. Vese, G.
Sapiro, and S. Osher, 2003)

[l Simultaneous Cartoon and Texture Image
Inpainting using Morphological Component
Analysis, (Elad, Starck, Querre, and
Donoho, 2005)

79



Basic Idea of Our Framelet Method

Repeat three basic steps in our iteration:

1. Transform current approximation f into the
framelet domain via the analysis operator A
to obtain the framelet coefficients ¢ = {c¢;;}.

2. Propagate information from A into AN by
thresholding each c¢;; to obtain ¢ = {¢;}.

3. Obtain new approximation f on N by
applying the synthesis operator A* on ¢.

0



Explanation

In variational method, there are two terms to
minimize:

J data fitting term

J regularization term

min Py (£) = minl € -yl + 5 [ |VE] ]
A\ -~ 4 \ ,

data fitting term regularization term

1



Hand-waving Explanation

(1 In Step 3, the new image is

f=A¢= Zégg.

gexXx

[1 At the same time, we have

~

f=If=A(Af)

where

Af = A(A*E) £Te=¢

&2



Hand-waving Explanation

[ 'We have two representations of f :

~

f=A"¢=A(Af).

[ Frame theory states that Af has the
minimum £, norm among all sequences
{c,}4ex such that

F=Y e

geX

(1 Our process regularizes the new f and gives

a representation with minimum £5.
&3




Tight Frame Algorithm

For r = 0,1, ..., until convergence:
1. Compute ¢ = Af").
2. Threshold ¢ by threshold A to get &,
3. Reconstruct fr+1) = A4*&"),

4. Data fitting: set

cenr U], peWN,
[f+]p_{[y]p, pEA

4



Tight Frame Algorithm

The tight frame algorithm is

f(rJrl) — (I — PA).A*'TAA]C(T) + Pay

where

[J Py: projection onto A / A

/.

L1 77,: soft-thresholding operator

t)\i (az)

<

(

\

Sgﬂ(()éi)(|()éi| — )\2), if |Oéz| > >\z'7

85 85



the supports of the™
brutal transition J4
nuaber if hi mpl
coeffic

proporta

Havelet

small a

regions,

SR ts o take
gularity

7
_Hauelrt rEgularity is-amportant in

reducing the visibilify of
artifactsh A quantizatie
ddds to the image a wave
Bultipliediby the amplif
quantized ‘error '

Compared with curvature-based program provided by

T. Chan and J. Shen (STAMAM, 02)
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@88 Chan-Shen Model Our Algorithm

Y PSNR = 34.78dB PSNR = 37.60dB (2.82dB)
(e CPU time = 7,862s CPU time = 521s (15 times)

Ol ]7 |




These fselg,(i:’ied vectt
interpretec as intrinsi
stiuctures. Linear and™

Lena image with bigger text




i )
I L] -

2% Chan-Shen Model Our Algorithm

IRY PSNR = 34.38dB PSNR = 36.40dB (2.02dB)
§,CPU time — 7,883s CPU time = 509s (16 times)

Ol ]9 |




Numerical Test 3: 256-by-256 Pepper

Text with even bigger font
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il

W8 Chan-Shen Model Our Algorithm
Y PSNR = 32.91dB PSNR = 34.83dB (1.92dB)
J% time = 1,682s CPU time = 162s (10 times)
W A 91




e~ Results Up-close

rocedure

Text Zoomed
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e~ Results Up-close

(al
(B
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g Advantages of Tight Frame Algorithm

[l Built-in regularization effect, and exact data
fitting

[l Framelet coefficients from A affect the missing
framelet coeflicients in a smooth way.

L1 2 to 3 dB better and 10-15 times faster than
T. Chan and J. Shen’s curvature-driven
method.

[1 Convergence proved by convex analysis

(Cai, Chan, Shen, ACHA (2008)).
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An Equivalent Formulation

The tight frame method
fUHD) = (T — Pa)A"TLAF + Pay
equivalent to Forward-Backward Splitting:

FUY = proxg (f7) = VE(F7)),

for the minimization problem
mfin{Fl(f) + Fy(f)},

where prox is Moreaus proximity operator.
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~ Minimization Functional
The functional are:

¥ In image domain, f minimizes:

. . 1 2 .
ponin ming|lAf —cl; + [|diag(A)el[1}}-

In frequency domain, ¢ minimizes:

min{} | Pa(A"0)~Pay[3+5 | (T AA" |3+ [ ding(Ne] -

(Cai, C., Shen, ACHA (2008))
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Goal

Impulse noise removal
O




Impulse Noise Model

V

Original Image Image corrupted
(a triangle) by Impulse Noise

Only a number of pixels are corrupted
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Impulse Noise Model

Impulse Noise are caused by

J Malfunctioning pixels in camera sensors

J Faulty memory locations in hardware

J Transmission in a noisy channel

Two types of Impulse Noise
I. Salt-and-Pepper Noise
II. Uniformly-Distributed Random Noise

100



Salt-and-Pepper Noise

f = (f;,;): true image with f; ; € [0, 255].
y = (yi,;): observed noisy image.

0 with probability r/2%,
Vi = 4 255 with probability /2%,
fi.j with probability 1 — r%.

Noise level = r%.
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At 50% Noise
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Random-Valued Impulse Noise

f = (f;;): true image with f; ; € [0,255].
y = (i j): observed noisy image.

ey with probability r,
Yi,j fi with probability 1 — r,

where n; ; is randomly distributed in [0,255].
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Denoising Schemes

Median Filter
Noisy Image Restored Image
Yi—1,5—1 | Yi—1,5 | Yi—1,5+1 Yi—1,—1 | Yi—1,57 | Yi—1,5+1
Yij—1 Yij Yi,j+1 Yij—1 Yis Yij+1
Yi+1,7—1 | Yi+1,5 | Yi+1,j+1 Yi+1,5—1 | Yi+1,5 | Yi+1,5+1

or\ /{ecovered

Yir < Yis < Yiy < Via f‘ Yie < Yir < Yis < Vig

Median
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Median filter




Median-type Filters

J Drawback of Median Filter: Every pixel is
modified, hence fuzziness and blurring
J Extensions of Median Filters (Median-type
Filters):
J Adaptive Median Filter /EEE TIP 1995)
J Adaptive Center Weighted Median Filter
(2001)
J Multi-state Median Filters (2001)
J Filter based on homogeneity info (2003)
4Jd ...
d Detection statistics (Dong, C., Xu, /EEE
TIP 2007)
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Adaptive Median Filter

Noisy Image
Yi—1,j—1 | Yi—1,5 | Yi—1,5+1
Yi,j—1 Yij Yij+1
Yi+1,5—1 | Yi+1,5 | Yi+1,5+1

Sort l

Yii = Yiz < Yis < Yiy Yie < Yir < Yis < Yig
I Median —

If Median = y;, or y;,, then increase window size.
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b But ...at 70% Salt-and-Pepper Noise

Adaptive Median Filter
T
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Characteristics of Median-type Filters

Two Steps

1. Noise Detection (e.g., thresholding)

2. Noise Replacement (by Median or 1ts variants)
Advantages

1. Fast

2. Accurate Detection

110



Variational Method

Restoration = Minimization of a cost functional F
~ 3y Total Variation of Rudin, Osher and Fatemi :

min Fy (£) = minl € -yl + 5 [ |VE] ]
| S S— \ ,

data fitting term regularization term

W Euler-Lagrange equation gives rise to PDE:

\V4 4
£ () =0
y+Ov QVH>

Edge-preserving for images corrupted by Gaussian noise
111




~ [, Fitting Term for Impulse Noise:

(Nikolova, J. Math. Imaging & Vision, (2004))

/1-norm data
fitting term

edge-preserving regularization term

F(f) = Z { fii — v | +0 ] Z alfij — fm,n; }

2V}

(m7n) EV/I’?J

J Non-smooth data-fitting term (smooth data left unchanged)

J Edge-preserving potential function:

pa(t)

\

(4], total variation
£, 1 <a<?2,
| Va+ 12, a > 0.
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Advantages

L Insensitive to the amplitude of noise (/,-norm), and

J  Preserve edges when denoising (edge-preserving potential
function).

Drawback

d Continuous method --- cannot handle noise patches well.

d  Some uncorrupted pixels at the edges will be distorted

Denoising °
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70%




~ Two-Phase Method:

Median-type Filter + Variational Method
(Chan, Ho, and Nikolova, IEEE TIP (2005))

Phase 1: Detect noise candidate set N' by Adaptive
- Median Filter

Phase 2: Restore pixels in N by Variational Method

mfmZ{ ’fi,j _yi,j‘ +0 Z Sf’a(fi,j_fm,n) ;

(m,n)EVi,j

subject to f;; = v;; if (i,j) ¢ N
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mmZ“fm Yi i+ Z Vol fii — fmn):|

(m n)EVz 7

subJect to fi; =y 1 (4,7) ¢ N

[l 3. regularization parameter,
balance the data-fitting and regularity of x

OV, ;: the four neighbours of (i, j)
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Our Methf;fl7

Adaptive Median Filter

Variational Method

70% Salt-and-Pepper Noise
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70% Salt-and-Pepper Noise

Variational Method
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70% Salt-and

Variational Method




t Performance in PSNR: 70% Salt-and-Pepper Noise

Salt-and-Pepper Lena Bridge Goldhill | Cameraman
Noisy 6.71 6.78 6.93 6.63
Variational Method | 24.64 21.11 23.54 20.69
Ad_apt“{e 25.73 21.76 21.46 21.38
Median Filter
Our Method 29.26 25.00 26.94 24.91

121

PSNR increases by 1 dB, error decreases by 10%




W 7wo-Phase Method using Framelets:

Median-type Filter + Tight Frame Method

Median Filter

Phase 2: Restore pixels in N by Tight Frame
Method. N

(Do an mnpainting on )
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WA 4
J “ﬂ: S

Corrupted with 70%

salt-and-pepper noise
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Our Method
PSNR = 24.69dB (3.01dB)

CPU time = 182.05s
124




Salt-&-Pepper Noise

Corrupted with 90%
salt-and-pepper noise

125



Adaptive Median Filter = Our Method
PSNR = 18.26dB PSNR = 21.81dB (3.55dB)

8. CPU time — 267.655 CPU time = 382.43s
126



90%

noise AMF

AMF+Frame
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~ Comparison with Variational Method

Image Ir\ic\)’lee Variational | Framelet
50% 30.5 31.3
Lena 256x256 70% 27.4 28.8
90% 22.9 24.2
50% 33.1 33.8
Lena 512x512 70% 29.7 31.2
90% 254 26.5
o 24.8 25.8
Goldhill 512x512 29.9 30.0
Boat 512x512 70% 28.0 29.1
Barbara 512x512 24.6 25.7
Bridge 512x512 24.7 24.7

)
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Random-Valued Impulse Noise

f = (fi;): true image with f; ; € [0, 255].
y = (y;;): observed noisy image.

)y with probability r,
Yi,j fi with probability 1 — r,

where n; ; is randomly distributed in [0,255].
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ROAD Statistic

The Local Image Statistic ROAD (2005)

Noisy Image Absolute Difference:

. Jiclgo1 | Sicly | Yl dst(Yij) = [Yits,j+t — Yij
Yij—1 Yij Yi,j+1
Yit1-1 | Yi+1,j | Yi+15+1  Sort dse(yi ;):

ri(yi) < ..o < rs(yij)

The ROAD Statistic:

Ms

ROAD,, y” Tk yw

k=1
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ROAD Statistic

213 171 88
216 186 107 —
218 202 139

Original Neighborhood /

16
30 —

ry = 15, r
rqg = 27, 14

The tour smallest
absolute difterences

27 15 98
30 — 79
32 16 47

Absolute Difterences

ROAD = S0 n,
15 + 16 + 27 + 30 = 88

Final Calculation
of ROAD
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ROAD Statistic

J Advantages:

J noisy pixels usually have intensities vary greatly
from those of its neighbors (1.e. their ROAD
values will be large)

J noise-free pixels should have at least half of the

neighbors having similar intensity (1.e. their
ROAD values will be small)

- Disadvantages:

J for random-valued impulse noise, some noise
values may be close to their neighbors’ values

J the ROAD values may be in the middle of range
and not large enough to distinguish them.
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ROLD Statistic

Absolute Difference:

dst(yi,j) = 1 + max{log, |yits,j+t — ¥ijl, —b}/b

SOI‘t Dst (yi,j):

Ri(yi;) < ... < Rs(¥i,5)

The ROLD Statistic:

NE

ROLD,, (i) = Y  Ri(yi ;)

k=1

Dong, C., and Xu, /EEE TIP, 2007
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Comparison of Mean ROAD Values of Impulse and Uncorrupted Pixels Comparison of Mean ROLD Values of Impulse and Uncorrupted Pixels
|||||||||||| 25 I I T T T
---%-- Noisy Pixels ---¥ - Noisy Pixels
---@ -- Noise-Free Pixels ---@ - Noise-Free Pixels
2_
S 15t
b
a
-
2
51_ - - 4+ L 1 1 1 1 1 1 A
L] -
E _
05 8
D
NI T A R i 0 N P S S S S
- or |
IIIIIIIIIIIIIIIIIII _I_

1 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 O 5 10 15 20 25 30 35 40 45 50 55 60 65
Noise level (%) Noise level (%)

J Differences between the means and the ranges
of the error bars all increased

J Make it easier to separate noisy pixels from
noise-free ones
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Explanation by PDF’s

'4 I I I 1 1 I 1 1 1 1
l;I1 Fy 1)
351 | fagy (2]
1
3L ﬁllu, ;Fh:ng:'-:#lu:ng ¥ “Dg‘ﬂ

___,_f
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New Detector (29.03dB)
136



CHN Method (20.89dB) New Detector 52327.59dB)




A New Noise Detector (ROLD)

“Lena” image “Bridge” image
Method 20% | 40% | 60% 20% | 40% | 60%
Median Filter 32.37 | 27.64 | 21.58 || 25.04 | 22.17 | 19.36
Switching Scheme | | 32.93 | 27.90 | 20.61 || 26.26 | 22.66 | 19.13
Switching Scheme |l | 33.43 | 27.75 | 20.61 || 25.90 | 22.85 | 19.04
SD-ROM Filter 35.29 | 28.59 | 21.64 || 27.04 | 23.33 | 19.43
PSM Filter 35.09 | 28.92 | 22.06 || 26.33 | 22.75 | 19.73
TSM Filter 34.21 | 28.30 | 21.67 || 26.52 | 22.89 | 19.60
MSM Filter 35.44 | 29.26 | 22.14 || 27.27 | 23.55 | 20.07
ACWM Filter 36.07 | 28.79 | 21.19 || 27.08 | 23.23 | 19.27
PWMAD Filter 36.50 | 31.41 | 24.30 || 26.90 | 23.83 | 20.83
ACWM-EPR 36.57 | 32.21 | 24.62 || 27.66 | 24.60 | 20.89
ROAD-EPR 36.79 | 32.32 | 28.37 || 27.42 | 24.52 | 22.04
ROLD-EPR 37.45 | 32.76 | 29.03 || 27.86 | 24.79 | 22.59
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Outline

. Tight Frames

. Inpainting

Impulse Noise Removal

High Resolution Image Reconstruction
Video Enhancement

Extension

Convergence Analysis

I L S

Combining PDE and Framelets

139



R&vedotismos 2564 264
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) " Four low resolution images (64 x 64) of the
| same scene. Each shifted by sub-pixel length.

Construct a high-
resolution image
(128 x 128) from them.

141




High-
Resolution
Camera
Configuration

taking lens

Boo and Bose (IJIST, 97):

H-
Z
BT g

v
H-
(\®)

partially silvered
MIrrors

relay
lenses

v
=
[E—

CCD sensor array

142




~ Ultra-thin Image Information Input Card

High-resolution image without long focal-length
lens

RN N S . N - ETR CR-R -







w High-Resolution Image Reconstruction

Not 1, but many lens ---
compound eyes

!
4 #:':g \ Digital processing
1 P ——
'l.?-“- '."'\-._H.*g ]
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Modeling of HR Image Reconstruction

4 low-resolution images merge into 1

> low-resolution pixel
given intensity = (a+b+c+d)/4

high-resolution
pixel

146



Four 2 X 2 images merged into one 4 x 4
[Iage:

a, a,

By permutation

a; a, b, D, N

c, c, d, d, /

Observed high-
resolution 1image

Four low resolution images
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One of the 4 LR Images  The Observed HR Image

Can we get something better?
148




~
a b
> low-resolution pixel
c d given intensity = (a+b+c+d)/4
/
—— sensor 2
- - sensor 1
h1gh-r§solut10n N /
pixel
4 low-resolution d
Images merge
into 1 / 5
sensor 3 sensor 4

149



~ The Blurring Matrix:

Let f be the true image, y the observed HR 1image, then
Lt = (Lx 0%, Ly)f =Yy

f involves information of true 1image outside the field of view.

sensor 1 sensor 2

\ & /
F —

& \

& o outs
% Information outside
field of view
d
i i /4/

sensor 4

150



~ Matrix 1s fat and long;:

\ J

Assume something about the image outside the field of view
(boundary conditions).

After adding boundary condition:

4 A 3\ 4 3\
L f| =1y

\ J X\ J \ J
NX N NX ] N?

X 1 151



~ Boundary Conditions

Periodic Boundary Condition (Gonzalez and Woods, 93):

Assume data are periodic near the boundary.

152



J 4 x 4 sensor array (16 low-resolution to 1 high-
resolution). Matrix is:

J Block-circulant-circulant-block system.
)

%

W N 153

2 2 1 12 B o2 1
m® 2 2 1 1o m 2 2 1
[ O O
o222 0,0 202 21
s 120

[ O 80

5 1 2 2 2 15 f§ 1 2 2
%1 1 2 2 2% %1 )
w1 1 2 2 @ |1 1

N oo o @

.-,:%) J Diagonalized by 2D Fourier transforms in O(N? log N).
[L")-)‘ 7

— N

I r I aririririrmi

(N \O



Ringing effect 1s prominent.

reconstructed image

.-1....-?.- A

P pe—
- ——

observed high-
resolution image
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~ Dirichlet (Zero) BC (Boo and Bose, IJIST 97):

Assume data zeros outside boundary

155



m 2 1 0 o2 !
2 2 2 ] 2 2 2 1
1%1 2 2 2 1 E 1%1 2 2 2
s s

- 1 2 2 2 17 ¢ )
N 1 2 2 20 O 1
. 1 2 29 f

J Block-Toeplitz-Toeplitz-Block system.
J Cannot be diagonalized by sine-transforms.

J Tterative solvers with circulant preconditioners
(C. and Jin, SIAM, 07).
156
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Ringing effect still prominent:

reconstructed image

observed high-
resolution image
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™ Neumann Boundary Condition (Ng, C. & Tang (SISC 00)):

Assume data are reflective near boundary.

158



J Matrix is

ERER 03 B
3 2 2 1 O @ 2 2 1 C

O C
1%‘1 2 2 2 ] - 1%‘1 2 2 2 1 =
O 0 8Q C
- 1 2 2 2 1 g 1 2 2 2 If
O 1 2 2 30 O 1 2 2 3C
E 13 4% E 1 3 4E

J Block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel
blocks. (Hankel = constant along anti-diagonals.)

J Diagonalized by 2D cosine-transforms in O(N? log N).
J Holds for sensor array of any size, and

J more generally for all symmetric blurring flllrgcgtions.



Ringing effect 1s smaller:

original image

observed high-
resolution image
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" Anti-reflexive Boundary Condition (Serra, SISC (2003))

Assume data are negated and reflected near boundary.

J Matrix approximately diagonalized by 2D sine-
transforms 1n O(N- log N)..
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* The problem L f =y + n is ill-conditioned.

i
5

Regularization is required:

o1
min o |ILf —y |5 + BIRE3]

where R can be I, V, A, or the TV norm operator.
162




> Fuler-Lagrange equation < Tikhonov regularization

(L'L+BRYf = L'y,

163



Tightframe Approach

Consider 2% 2 sensor array:

................. Hi gh_
resolution

N

pixels

!

NI

Low-
resolution
pixel

Averaging process = a lowpass filter with refinement mask:

1 1 1 1 1 1
—(...,0,5,1,5,0,...)@5(...,0,5,1,5,0,...)

2




@) Key Observation

The low-resolution images y are obtained by

passing the high-resolution image f via the
ho = 5[1,2,1] filter. Thus we have

H()f =Y.
The problem is to find f from y = Hyf.

Recall that there exists H; and Ho such that

H:Hy+ H'H, + HiHy = I
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Tight-frame Algorithm

Using
I =HyHy+ H/H,+ H;H,

we have

2
f = ) HiHf
1=0

2
= HiHof + ) H Hf

1=1

2
= Hjy+» HHf.

1=1
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Tight-frame Algorithm

[ Choose f© € L?([—m,7]?);

[ Iterate until convergence

2
£ = Hyy + Y H;THf®,

i=1
where 7 is the thresholding operator.
Chan, Chan, Shen, Shen, SISC (2003), where we

used biorthogonal wavelets corresponding to Hy
instead of linear tight frames.
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| Numerical Examples

2-by-2 sensor array:

SNR Tikhonov with A Wavelet Algorithm

(dB) PSNR RE PSNR RE Iter.
30 32.55 0.0437 | 34.48 00350 9
40 33.88 0.0375 3523 0.0321 12

4-by-4 sensor array:

SNR Tikhonov with A Wavelet Algorithm

(dB) | PSNR RE PSNR RE  Iter.
30 29.49 0.0621 30.11 0.0579 30
40 30.17 0.0573 30.56 0.0549 45

For 4-by-4 sensors, hg = i[l, 2,2,2,1].
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4 X 4 sensor array

169



Wavelet
170



[-D Example: Signal from Donoho’s Wavelet
Toolbox. Blurred by /-D 4-to-1 filter.

Original Signal Observed HR Signal

Tikhonov Wavelet 171



Displacement Error Displacement
CIror
Ideal pixel Pixels with
positions displacement errors

172



High-
resolution
pixels

Displacement
error € 7

Ideal low-
resolution pixel
position

Displacemen
error € ¥

Problem no
longer
spatially
Invariant.

Displaced low-
resolution
pixel

173



) Tightframe Algorithm

For K-by-K sensor array, the filter is

1 1
e = 5 P 717'”717__
Ke=F | gTO 057"
K-—1

Therefore we have to find a minimally supported
tightframe system with ax . as its lowpass filter.

C., Chan, Shen, Shen, LAA (2003) using a
bi-orthogonal wavelet system.
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) Drawbacks of Wavelet Algorithm

[l The regularity of the scaling functions varies
with the displacement errors €, and in some
cases, the function can even be discontinuous

(Shen-Sun, 04).

[l Since the filters are not symmetric, we only
can impose the periodic boundary conditions,
which is not good in practice.

[l The design of the wavelet filters depends on
the displacement errors e.
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) Tight Frame Approach

Observe that the filter can be written as:

1 1+1 11
K 2 677 772 €

L TRTTRE - IR O
_K277 772 K,’ ) M .
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) Tight Frame Approach

Construct a multi-resolution analysis with lowpass

filter as
1 1
~ 1,01, =
(31 13)

and one of the highpass filters as

(1,0,---,0,—1).

Wavelet cannot, but wavelet tight frame can
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gl An Example

For K = 4, the filters associated with the tight
frame system are

11 1. V2
“[=o1010102]) =2 —1
4[27 > ) 72}7 8 [ 7070707 ]7

1. 1 1, 1.1 1
“—=,1,-1,1,—=], =[=,1,0,—1, —=
4[ 27 Y Y Y 2]7 4[27 Y Y Y 2]7

V2 1.1 1
Y70M1.0.-2.0.1]. =[—=.1.0.—1.=].
8[77 77]74[ 2777 72]
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We have the perfect reconstruction formula:
> HiH =1
and the observed image y is given by
Yy = (HO + \/§€H1)f

Thus

17#0
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y Tight Frame Algorithm

Iterate on r:

£Fr+D) — [y _ \/§€Hlf(r)] + N Hy HfO
i=£0

Applying the thresholding operator 7 :

£t = Hyy — V2eHy T (Hif "))+~ H T (H )
17#0

T % C., Shen, Shen, ACHA (2004).
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16 merges into 1 with calibration error

Boat Image:

SNR 2-by-2 sensor array 4-by-4 sensor array
(dB) | Wavelet  Framelet | Wavelet Framelet

20 30.45 33.87 27.16 29.35

30 30.80 35.41 27.20 30.38

40 30.85 36.26 27.21 31.06
Bridge Image:

SNR 2-by-2 sensor array 4-by-4 sensor array
(dB) | Wavelet  Framelet | Wavelet Framelet

20 277.66 28.89 23.99 25.66
30 27.92 29.22 24.01 26.05
40 28.00 29.37 24.01 26.19
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\—‘\R Wavelet Tight Frame
%{ (PSNR=27.2dB)  (PSNR=30.38dB)
e A 182



Wavelet Tight Frame
(PSNR=24.1dB)  (PSNR=26.05dB)

183




Outline

Tight Frames

Inpainting

Impulse Noise Removal

High Resolution Image Reconstruction
Video Enhancement

Extension

Convergence Analysis

X N SH N R» DN

Combining PDE and Framelets
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Goal

One of the frame
in a video

After enhancement

185



A 352-by-288 video
from a video recorder
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= | ==l ——i PSS

Bigtinl Signal Proessing 3

1 gy =

30 frames/second




Displacement
error &€

[ Improving
] ! resolution
{ of

p m reference
i | ‘ frame
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Use the 914 to

120" frames to
improve the 100"

framef,,, in the
movie

TH
i
£
i

Affine Model:

Co; Co; Cr 4 )
f100-|—j — [ C(l)j' C?j ] f100_|_ [ Czyj' ] y J = il,ﬂtQ,

where {¢; ;}9_; are obtained by least-squares, and
cs; and cg ; the displacement errors for frame figo- ;.

189



ey ERL
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Gl nidn

|
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i

704-by-578 image of f,,, by
bilinear interpolation




| f=K:

& Digital Imege Procesiing

Waveletl Theory and s Applicatio:
Mattern Hecognliion
e n

o = — M. =1 —
RESINIm<R s

704-by-578 image of f,,, by tight frame
method using 20 frames from the movi@|




Bilinear method Tight frame method

C., Shen, and Xia, ACHA, 2007
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Outline

. Tight Frames

. Inpainting

Impulse Noise Removal

High Resolution Image Reconstruction
Video Enhancement

Extension

Convergence Analysis

I L S

Combining PDE and Framelets
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General Framework for Missing
Data Recovery

@7be wavelet
inan ormean gr

.g,e

pr dure accros
5 Sharp”
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General Framework for Missing
Data Recovery in Image Domain

In both inpainting and impulse noise removal, we
have missing data in the image domain. Our goal
is to find the image f in () from the data y given
only on A, i.e., solve f from

Prf = Pay.

The 1teration we used 1s

fUH) = (T = PA)ATAST + Pay.
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Tight Frame Algorithm

For r =0,1,..., until convergence:
1. Compute ¢\ = Af),
2. Threshold ¢™ by threshold A to get &),
3. Reconstruct fr+1) = A4*&"),

4. Data fitting: set

[f(r+1)]p _ { [f(H_l)]pa p & N,

196



Bl Convergence (Cai,C., Shen, ACHA 2008)

In image domain, f minimizes:

Jmin {min{3|LAf — cl3 + diag(Nel 1} }

In frequency domain, ¢ minimizes:
min{ g || Pa(A"e)=Payll+35 | (T—AA") |5+ diag(A)e||: }.

Convergence proved by convex analysis.
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~ Extension to Frequency Domain Inpainting

ah & [ Problem Setting: find the image f from the framelet
~ coefficients d on I', 1.e., solve f from

PI‘Af — Prd

[1 Algorithm: the same idea as the image domain
inpainting algorithm

Frr = AT ((Z — Pr)AFT + Prd).
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Tight Frame Algorithm

For r = 0,1, ..., until convergence:
1. Compute ¢\ = Af),

2. Data fitting: set

A(r [C(T)]pv € O\ T,
)y = { a1 per

p Y

3. Threshold & by threshold A to get &),

3. Reconstruct fU+D) = A4*&),
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~ Convergence Results

In image domain, f minimizes:
. . 1 .
min{min{z{|Af — ell; + [|diag(A)ell: } }

with
D = {C : PFC — Prd}

In frequency domain, ¢ minimizes:

min{ g | Pr(c—d)|5+ 517 — AA)el|3+||diag(N)ell:}.

Cai, C., Shen, Shen, Adv. Comp. Math. (2009)
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P Application 1: High-Resolution Image
Reconstruction

Four low resolution images (64 X 64) of the same scene.
Each shifted by sub-pixel length.

\

Construct a high-

resolution image

(128 x 128) from
them 201
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Application 2: Super-Resolution Image

Reconstruction
1 T
4 2 4
1 1 1
4 2 4
| 0
By L
4 4
. V2 g V2
4 4
| .
_1 1 _ 1 ..
4 2 4
.. _1 1 1
4 2 4
- : H2

OOOO‘OOOO‘OQOQ
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4 LR images recovered
204




recovered
205



Clacscal FouricrTransionns

One of the frame

. . After enhancement
in a video
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The 100" frame
/.00 I the movie

TH
i
£
i

Affine Model:

Co; Co; Cr 4 )
f100-|—j — [ C(l)j' C?j ] f100_|_ [ Czyj' ] y J = il,ﬂtQ,

where {¢; ;}9_; are obtained by least-squares, and
cs; and cg ; the displacement errors for frame figo- ;.
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W Application 4: Infrared Imaging

Consider

where
[l f : the celestial source
[l n : background noise

The goal is to extract the weak astronomical signal
f from the large background noise 7.
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~ Chop-and-Nod Procedure

First obtain signal sp at pixel P = (x,y) at t:

Sp — f(xvy) + n(xvyvt)

Then move telescope at A-distance away to obtain
signals sp, and sp :

Spy = f(x,y+A)+n(x,y+A,t’),
sp. = flz,y—A)+nlx,y—AL).

(A is chopping amplitude.)
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~ Chop-and-Nod Procedure

%8 T'wo chopped images are nodded:
Asy =sp—sp, = f(z,y) = flz,y + A) + Any,

As_ =sp —sp=flx,y—A)— f(x,y) + An_.

3 Then the chopped-nodded image is

g(r,y) = Asp—As

+An, — An_
—f(a:,y—A)Jer(fU,y) _f(ajay_I_A)'
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& Application 4: Infrared Imaging
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~Minimization Properties

The limit minimizes

min {mm{;uAf — cl} + Ildiag (N,

fePy ceC

" ||diag()\)CH1||1}} |

where
O P, ={f:f >0 componentwise},

[ C = {cy, satisfies constraints}.
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Observed Image Reconstruction Reconstruction

from United by Projected by Framelet-
Kingdom Infrared Landweber’s Based Method
Telescope Iteration

Cai, C., Shen, Shen, SISC, 2008.
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Landweber Framelet
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B More General Framework

Inpainting for missing data both in image and
frequency domain.

FUD — (T—Py) (A*T,\((I—PP)A f(’")+7>pd)) Py

L1 The algorithm has many potential
applications.

[1 Convergence and minimization properties can
also be proved by convex analysis.

Cai, C., Shen, Shen, Numerisch Mathematik (2009)
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Outline
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. Inpainting

Impulse Noise Removal

High Resolution Image Reconstruction
Video Enhancement
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Combining PDE and Framelets
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Inpainting Algorithm
Let f A
[ 1 ifi=j€A,
Pali, j] = { 0 otherwise.

Then
f=Paf+(Z—"Pr)f.

Perfect reconstruction formula gives
f=Pry+ (T —PrA*Af.
Natural Algorithm:

FHD = Pry + (T — Pa) ATAFO
219




Inpainting Algorithm
Threshold A f():

Framelet Inpainting Algorithm:

1. Set an initial guess f©

2. Iterate on r until convergence:

FD = Pry + (T = Pa)A T (AS®)

The thresholding allows information from A to
permeate into N' = Q \ A.
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Thresholding Operator “ /
-

A
Soft thresholding operator 7: /

7’)\((041, N T )T) m— (t)\l (Ckl), c .. ,t)\l (Oél), .. .)T,

ty(a;) = sign(a;) max(|a;| — A;, 0)
o; — A 1t oy > A,
— a; + A 1oy < =N,
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Thresholding Operator

Key observation:

ty, (o) = arg min {%(7 —a)® + |)\z-fy|} , a, N\ € R.
2

Hence
= T(AfY)
= [tn, (LAFON), -, (AF),),
= argmin { 3| Af® — cl|? + |diag(N)ell1 }
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Projection Operator

Define C = {g : Png = Pay}. Then
Po(f) = argming|f - g3
- argmiﬂ{§’|f—gH§+LC(9)}
g

where

o(g) = 0, g € C,
C\9) = +00, otherwise.

Key Observation:
Pc(f) =Pay+(Z —"Pr)f
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Pa(Pry + (Z =Pa)f) = Pay
— Pay+ (T —=Pr)f €C.

= Z(gz — fi)* + Z (9s — fi)°

(SN 1€eQ\A

= Z(yz — fi)* + Z (9 — fi)°
ASYAN 1EQ\A

> Z(yz — £ = Pay+ (Z —=Pa)f — fll3-
1EA
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Alternate Direction Minimization
Recall that

fOY = Pay + (T — Pa) A T(AFD)
and &) = T, (AfM).

Hence our framelet algorithm becomes:

fUTD = Pay+ (T — Pp)ATE"
= Pc(A*E)

= argmin { 3 A2 — gll3 + 1c(9) }.
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Minimization Functional

We show that lim, .. {f"} = f* exists and is a
minimizer of

gféig{m(jﬂ{%\\flf — cllz + [|diag(A)el[1}}:
and that ¢® = 7,(Af*) is a minimizer of
min { 3 [P (A"c) = Payl3+

+ 51T = AA)e|3 + [[diag(Nells |
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~ Proximal Forward-Backward Splitting
Combettes and Wajs (SIMMS, 2005)

Theorem. Let Fj be convex, lower semi-continuous,
and F, be convex with a 1/b-Lipschitz continuous
gradient with b > 1/2. Then the minimization
problem

mj}n{Fl(f) + F>(f)}

can be solved by the iteration:

FUD = proxg, (f7 = VE(f)),

if minimum exists.
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~ Proximal Forward-Backward Splitting
Combettes and Wajs (SIMMS, 2005)

[l Theorem does not guarantee existence of
minimum. It has to be proved separately.

L1 No convergence rate is given.

Ll prox 1s Moreaus proximity operator:

prox,(f) = arg m;n{éllf — gl +»(9)}-
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~ Proximal Operators

[J For examples:
= T(AFD)
= argmin {%HA]‘(T) —cl|5 + Hdiag()\)cHl} .
= PIOX|giag(n) ) (A7)
and
f(r+1) — Pc (A*g(r))
— argmgin {%HA*E:'(T) —g|3 + LC(Q)}

prox, (A" &)
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An Equivalent Formulation

We now show that our tight frame method
Fr = Pyy + (T — PR A TAS®

is a proximal forward-backward splitting:

FU = proxg, (f7 = VE(f)),

for some minimization problem

ming £ (f) + F2(f)}-
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~ Minimization Functional for f

For our { {1} | the functional is:

f /

min{tc(f) + envidiagn)- |, (Af) }
—— - ¢

Fl F2
where

[J 1c 1s the indicator function of the constraints:

. (f) _ 0 if PAf — PAy,
C +oo if otherwise,

i.e. data-fitting, and
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~ Minimization Functional for f
[J env is the envelope function:
env,(c) = min{%le — d|f3 + p(d)}.
It gives the minimum value of prox(-).
[J Note that Fs:
ey diag(y)-; () = min{; e — d[l3 + |diag(A)d|,}
comes from the soft-thresholding operator:

T)(c) = arg m@}n{éHC — d||3 + [|diag(A)d]|: }.
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4"~ Proximal Forward-backward Splitting

Proof: We have

r+1 L * ~(r
fFUHh) - — prox, (A o ))

— Prox,, [A*prOXHdiag()\)-Hl (Af (T))]

Combettes and Wajs:

For any ¢: V. lenv,(c)| = ¢ — prox,(c). Hence:

V ¢lenvgiag(n)-, (AS)] = A" (AS — ProxX|giagn)-, (AS))-
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W Let & = ||diag()\) - ||;. We have

fUHl) = proxLC(A*proxg(Af(T)))
= prox,, (f(r) — A*AFT) 4 A*proxf(/lf(r)))
= prox,. (" — AT[AS") — prox (Af™)))
= prox,,(f” = Vienve (Af)])
= proxg (f = VE(f"))

where

234



~ Limiting Functional

The proximal forward-backward splitting
converges to:

m}n{Fl(f) + F>(f)}
— mfin{ac(f) + enve(Af)}
= min{enve(Af)}

feC
= I]}gg{mgn{éﬂflf— cll3 + [|diag(Mell }}-
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5y~ Minimization Problem for f
3 In image domain, {f™} in
fUD = Pay + (T — Py) A LA
is the forward-backward splitting for minimizing:

min {min{; [ Af = ell3 + [|diag(A)el|:}}

Note that
0 f € C={Parf = Pay}: data-fitting

O |[diag(\)c||1: sparsity of ¢ (<= piecewise smooth
image)

236



~ Lipschitz Constant

To prove convergence, we have to verify that F5 has
a 1/b-Lipschitz continuous gradient with b > 1/2.

. Combettes and Wajs: for any ¢:

[]
Vlenv,(c)| = ¢ — prox(c),

(¢ — prox,(c)) — (d — prox,(d))|[2 < [[¢ — dl|2-

237



~ Lipschit; Constant
| Recall we have, with £ = ||diag(\) - [|1,

VEy)(f) = Vienve(Af)] = A*(Af — prox.(Af)),

VFy(f) — VF(9)]l

A*(Af — prox(Af)) — A*(Ag — prox,(Ag))|l2
A*|l2|[(Af — proxc(Af)) — (Ag — prox.(Ag))||2
A2 ACS = g)ll2 < [[f — gll2,

BN ic. F5(f) has 1-Lipschitz continuous gradient

IA A I
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~ Minimization Problem for c

In frequency domain, ¢ = T3 (Af™) can be
rewritten as

&) = argmin{ || Af" — ¢||2 + [|diag(\)e|1 }-
This 1s equivalent to

) = PLOX| diagh-||1 {Af (T)}
—  PIOXjgiag()\)-|I1 {A[pI’OXLC (A*é(r_l))]}

This is another forward-backward splitting:

&) = proxp {1 — VE, (&)},
239




LProof: We have

A f("“+1)
— APy + (T — Pa)A* ]
= &) — &) L APy 4+ AAE) — APy ATED
= & — (T — AL + AP (PAATE) — Pyy))
= & [(T — AA)2E) 4 AP\ (Py A E) — Pyy)]

~(r ]- *\ ~(7r ]‘ * 2T
— M _vy <§|\(z— AANED |3 + SIIPaA et — PAyH§>
e Thus

clr+l) prOXHdiagA-Hl{Af(r—'_l)}
= prOX||diag>\'||1{6(T) - VF4(6<7“))}.
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~ Minimization Functional of c

In frequency domain, the minimization functional is:

.

|diag(N)ells + 5 1Pa(A*e) = Payll3 + 5 1(1 = AA7)e];.

Fy
Note that
L ||diag(A)c||1: sparsity of ¢

O |[Pa(A*c) — Payl|2: data-fitting

O ||(I — AA")cll2: ¢ close to Range(A)

1 ¢ € Range(A): ||c[ly = || f]l 5y,
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~ Lipschit; Constant

By direct calculation:

IVFy(c) = VE(d)]]2
= |IVI5IPaA e = Payl + 5II(Z — AL )3
—V[5IPrA*d — Payll3 + 31T — AA")d|3]]12
| [(Z — AA")c + APA(PrAA c — Pry)]
—[(I — A.A*)d + APA(PA.A*d — PAy)] HQ
(Z — A(Z = Pp)A")(c = d)|l:
1 — A(Z = Pa)A2]lc — dl|2
T — A(Z = Pa)* Alalle = dll2 < [le = ]|

IA A
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~ Existence of Minimizers

It remains to show that a minimum exists.

[l Easy Case:
Threshold every coeflicients:

A >0, 1< N,

[l Difficult Case:
Similar to data-compression, do not
threshold low-pass coefficients.

Numerical results show no significant differences
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~ Existence of Minimizers (Easy Case)

Lemma. Let A be a tight frame system. Then the
minimization problem has at least one minimizer.

Proof. Combettes and Wajs: Minimizer exists if
Fi(f) + F5(f) is coercive, i.e. whenever

[l = 400 = {Fi(f) + E2(f)} — +o0.
Recall

Fy(f) = min{£[|Af — cl3 + [[diag(N)el|1},

where the minimizer is precisely 7,(Af).
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5"~ Existence of Minimizers (Easy Case)

Hence

5
=
v

N
|diag(A)Zx(Af)llr = Z Ailtx; (Af)il

N

>‘min Z |t>\i (Af>1| > )‘min Z(|(Af>2| _ )\i)

1=1

IV

>\min Af”l _ )\minAmaxN
>\min AfHQ _ )\min>\maxN
>\min fH2 T /\min)\maXN- []

AVARAY,
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~ Convergence Result

Theorem. For any tightframe system, if we
threshold every coefficients, then our tight frame
algorithm f") converges to

min {min{} | Af — cf}§ + [ding(\)el:}},

while ¢") = T, (Af")) converges to

mind]|diag(\)el+ 5 Pa(A"€)~Payl3+ 5 [[(T-AA")e]3).

For wavelets,

min{ ||diag(A)ef|, + 3 IPA(A7e) = Payll3}.
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~ Existence of Minimizers
(Difficult Case)

Difficult Case: Low freqeuncy not threshold.
Let H be the filter of A where we do not threshold.

In inpainting, H is the low-pass filter H,.

Assumptions on Existence of Minimizers:
(i) 1 is not an eigenvalue of H*H; or

(ii)) 1 is a simple eigenvalue of H*H, and its eigen-
vector u satisfies Pyu # 0.
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~ Convergence Result

Lemma. Let H, the filter we do not threshold,
satisfy the assumptions. Then

min{min{5 || Af — cf} + |diag(X)el 1 }},

mcin{||diag(A)cHl+§ | Pa(A* )= Payll5+51(1—AA")c|3}

both have at least one minimum.

Just show the functionals are coercive under the assumption
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~ Convergence Result

Corollary. Under the assumptions, ") converges to

min {min {5 | Af — clf§ + [[diag(Nel1}}.

min||diag(A)e]l+5[1Pa(A*e)=Paylls+5 | (I —AA)e|l3}-

Combettes and Wajs (2005): proximal forward
backward splitting converges 1f minimum exists
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~ Convergence Result for Splines

Lemma. For spline tightframe system with
reflective boundary conditions, 1 is a simple
eigenvalue of HiHg with 1 = [1,...,1]" as its
elgenvector.

Clearly Px1 # 0. Thus Assumption (ii) is sat-
isfied.

H, with reflective boundary conditions 1s a symmetric

block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel
block matrices. It can always be diagonalized by discrete
cosine transform, and eigenvalues and eigenvectors can

be computed exactly (Ng, C., Tang, SISC (2000)).
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~ Convergence Result for Splines

Theorem. For any spline tightframe systems,
even if we do not threshold the low-pass

> 3. coeflicients, our tight frame algorithm | (r)
e &5 converges to

gcneig{mcin{%ﬂflf —c|l3 + |ldiag(A)ell1}},
b | while o) = T(Af (7“)) converges to
min{[diag(\)e]i+5 [ Pa(A"c)~Payll3+5 | (1—AA" )l |3}

Cai, C., Shen, ACHA (2008)
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Je |n Beg

.1 :
min{ = |[Pa(A'c — y)|lz + B(Z — AA )5 + [|diag(N)e]1 }

d 6=0: Sparsity

synthesis approach

.1 .
min{ = [ Pa(A'e — y)|f5 + [|diag(A

)ell1}

U Fadili et.al., 2007; Daubechies et.al., 2007

d s=1/2: Sparsity + Regularity

balanced approach

.1 1 :
min{Z|[Pa(A'c = y)|lz + S [I(Z — AA)e|3 + [[diag(N)el| }

J Our tight-frame method SISC (2003)

1 3 =00 = c € Range(A) : Regularity

analysis approach

1
ming 5 {Pa(f = y)|I3 + [|diag(X)Af|[1}.

d ~ total-variation inpainting for one level shift-invariant Haar

wavelet transform
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~ Total Variation Revisit

We minimize

mjn £4(6) = min {3~ y1% + 5 [ 98]}

f f

1
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W~ Jotal Variation Revisit

We can rewrite it as:

SRR
fy+ﬂv-< N Vf)(),

1.e. 0,f and 0,1 are diffused isotropically
according to 1/|V f|.

If |V f| large (edge), do not diffuse.

More general form:

f—y+ 05V (DVE) =0.
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i Isotropic Diffusion

More generally: \
> S

C[d(vE) o
P=1 0 d(IVf!)}’

where d(|s|) is decreasing to 0 as |s| — oc.

For example (Weickert 1998):

( 3.31488

o (s/a)8®
d(ls) ={ L—e T s>,
1 s = (.

\
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~ Anisotropic Diffusion

For anisotropic edge-enhancing diffusion:

— d(|Vf0|) O t
pv{ O l}v,

1 £, is a Gaussian-smoothed f

VE ¥

VL, (normal direction)

0V =[n n'] N

257 257
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¥ Anisotropic Diffusion

Recall the Euler-Lagrange equation 1is:
f—y+p8V- (v { (Wofa\) } v’fo)

Thus VT is decomposed along

f £+
v and v

Vi, | VL, |

a¥ and diffuses according to d(|Vf,|) and 1
‘b respectively.
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W~ Haar Wavelet Shrinkage

Consider the Haar wavelet with filter:

1 1
h() — 5[1, 1] and hl — 5[1, —1]

Form the filter matrices Hy and H; similarly.

Important observation:

Hy® H,y
f =2 f.
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W~ Haar Wavelet Shrinkage

First level analysis operator:

(o Hy\ [ H
Ho@Hy | _ | Hoo | _ }20
Hi®Hy | | Hio | 2
\H1®H1/ \Hn/ .

Then form the m-level analysis operator A
using the filters: h,gk) = 2(1,0,...,0,(=1)").
N —

2k—1_1

We have A'A = AA" =T.
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Multi-level Decomposition

3
Hoo( )

2 3 2 ) = 3
[—[00( ) [—[OO( ) [—[OO( ) = 000( )

H.2 | H3
w_, . HYH,PH,Wf=c®

3
Hu( )

\ 4

>~ HOHWf=¢c®
H, >
: H”(2) HO(I) f= cll(Z)
H®
f ———— HOf=cO =1Vf
H,"

b 1) f= 1
H,"f=¢,®
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Anisotropic Haar Shrinkage
Our anisotropic wavelet method is

FUHD = Pay + (T — Pa) A"Sy(AF).
Here the shrinkage 1is:

Sae)) = Talep),
Sa(@d®) = YW (VIR k=1, m,
S\(dY) = T(dY), k=1,...m

with u = [H(()]f)fa, Hfg)fa]t, n = u/|u| and
V&) = n nt].
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Convergence

f () converges to the minimizer of

k=1

+ 7 |ldiag(A})elY | }

k=1

min {min sIAf =3+ diag(A\®)(W®) e,

Proof follows the lines for framelet algorithm.

C., Setzer, Steidl, SIAM J. Imaging Sciences (2008)
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Numerical Results

Corrupted Framelet (33.27dB)

™M scales Sha
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Numerical Results

Anisotropic Haar Anisotropic Haar

V®) (36.60dB) Yk (38.58dB)
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Thank you !

www.math.cuhk.edu.hk/~rchan
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