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Application: Inpainting

given image yrestored image f 
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Application: Noise Removal

 given image y restored image f
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Original f

Application: High-Resolution 
Image Reconstruction

Bicubic interpolationTightframe interpolation
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A 352-by-288 video 
from a video recorder

Application: Video 
Enhancement



7

Bilinear methodTight-frame method

Application: Video 
Enhancement
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Observed Image from United 
Kingdom Infrared Telescope yReconstruction image f    

Application: Astronomical 
Infrared Imaging
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1. Tight Frames

2. Inpainting

3. Impulse Noise Removal

4. High Resolution Image Reconstruction

5. Video Enhancement

6. Extensions

7. Convergence Analysis

8. Combining PDE and Tightframe

Outline
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Preamble                  

A very brief introduction to image 
denoising and image deblurring
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The moon as seen by human

completely 
white = 255

completely 
black = 0

pixels

What is (gray-scale) image?

8-bit/pixel
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The moon as seen by the computer

black pixel

white pixel
grey pixel
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What is (gray-scale) image?

pixel values 
between 0 and 255

232235243240245

229228244240242

229236245236235

228237243231225

226223226215218

   1000-by-1000 image  =  1000-by-1000 matrix

          pixel-value       =        matrix-entry

Concatenate into a 10002-vector
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Color Images

RGB (red, green and blue channels) 24-bit color:

color image red channel

255

0
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Images are piecewise-
smooth functions with 
jumps at edges.

 ≅  
constant

jumps

What is an image?
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image = smooth parts + jumps

           = low frequency components 

                                  + high frequency components

where the high frequency components have big 
magnitudes.

What is an image?
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Denoising: 

y = f + n

observed image = true image + noise
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Denoising: 
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Variational Method for Denoising

Restoration = Minimization of a cost functional F
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Restoration = Minimization of a cost functional F

Total Variation of Rudin, Osher and FatemiTotal Variation of Rudin, Osher and Fatemi : :

Variational Method for Denoising
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Euler-Lagrange equation:Euler-Lagrange equation:

Variational Method for Denoising
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image = low frequency components 

                                  + high frequency components

where the high frequency components have big 
magnitudes.

On the contrary, (Gaussian) noise are high frequency 
components with small magnitudes.  

Wavelet Denoising

+=
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Wavelet Denoising
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Wavelet Denoising

f f

HL 
HL f

HH
HH f

HL
t

HH
t
 

HL
tHL f

HH
tHH f
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Thresholding
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Wavelet Denoising

y f

HL 
HL y

HH
HH y

HL
t

HH
t
 

HL
tHL y

HH
t         HH y

noise are thresholded 
and jumps are kept



27

image due to 
motion to 
the right.

true 
image

Motion blur

Deblurring 



28

Observed image y obtained from true image f as follows: 

y=

y(i) = f(i) + f (i+1) + f (i+2) ⋅⋅⋅+ + f (i+k)
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Thus

More generally, we have 

 

In matrix terminology, this is a matrix equation:

blurring 
matrix

To obtain the true image f:
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Point-spread 
function for 
motion blur

Point-spread Function 
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Out-of-focus blur

Gaussian blur

The point-spread function tells how every pixel in 
the image is blurred.

Given the point-spread 
function, we can form the 
BTTB      blurring matrix 
accordingly. 
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Blur Model 

observed image = blurred image + noise
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Variational Method for Deblurring

Restoration = Minimization of a cost functional F
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From observed y to reconstructed f:

Variational 
Approach

Tight-Frame 
Approach
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Blurs are Low-Pass Filters

edges are 
smoothed
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Boundary Conditions

fie
ld

 of
 vi

ew

Information outside 
field of view
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Periodic Boundary Condition (Gonzalez and Woods, 93):

Assume data are periodic near the boundary.

Boundary Conditions
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Dirichlet (Zero) BC (Boo and Bose, IJIST 97):

Assume data zeros outside boundary
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Neumann Boundary Condition (Ng, C. & Tang (SISC 00)):

Assume data are reflective near boundary.
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Anti-reflexive Boundary Condition (Serra, SISC (2003))

Assume data are negated and reflected near boundary.

--

-
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1. Tight Frames

2. Inpainting

3. Impulse Noise Removal

4. High Resolution Image Reconstruction

5. Video Enhancement

6. Extensions

7. Convergence Analysis

8. Combining PDE and Tightframe

Outline
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Tight Frames
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Construction of Haar Wavelet

+=
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Construction of Haar Wavelet
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Construction of Haar Wavelet
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Haar Function

... 
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Haar Wavelet Filters

f f

HL 
HL f

HH
HH f

HL
t

HH
t
 

HL
tHL f

HH
tHH f
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Piecewise Linear Tight Frame
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Piecewise Linear Tight Frame
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Piecewise Linear Tight Frame
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Piecewise Linear Tight Frame
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Piecewise Linear Tight Frame
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Unitary Extension Principle



55

Unitary Extension Principle
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1D Piecewise Linear Tight Frame
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1D Piecewise Linear Tight Frame
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Matrix Representation



59

Matrix Representation

C. & Jin, Iterative Toeplitz Solvers, SIAM (2007)
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Analysis and Synthesis Operators
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Important Observation

Tight Frames = Redundant Bases
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Perfect Reconstruction Formula

f f

H0 
H0 f

H1 

H2

H1 f

H2 f

H0
*

H1
*

 

H2
*

 

H0
*H0 f

H1
* H1 f

H2
* H2 f
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Multi-level Decomposition without 
Down-sampling
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Multi-level Decomposition without 
Down-sampling
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f

H0
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Multi-level Decomposition
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2D Tight Frame
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2D Piecewise Linear Framelets
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1D Piecewise Cubic Tight Frame
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1D Piecewise Cubic Tight Frame
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Tight Frames

 Tight frames — redundant bases

 preserve the unitary property of the  
analysis and synthesis operators

 sacrifice orthogonality and linear 
independence to get more flexibility

 Robust signal representation—errors in signals 
can be reduced when represented by a 
redundant system 

 Discrete Fourier transform frames applied 
successfully to many fields
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Spline Framelet Systems

 Spline framelet systems: piecewise linear or 
cubic tight frames

 Can be constructed from the unitary extension 
principle of Ron and Shen (JFA, 97)

 Either symmetric or anti-symmetric 

 Have small supports for a given smoothness 
order—good time frequency localization

 Our algorithm works with other tight frames
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1. Tight Frames

2. Inpainting

3. Impulse Noise Removal

4. High Resolution Image Reconstruction

5. Video Enhancement

6. Extensions

7. Convergence Analysis

8. Combining PDE and Tightframes

Outline
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Applications: film restoration, text or scratch 
removal, and digital zooming

Inpainting

Image Inpainting: filling-in missing pixels based 
on information in the observed region
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Notations

noise set

data set
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Variational Method

Restoration = Minimization of a cost functional F

Total Variation of Rudin, Osher and FatemiTotal Variation of Rudin, Osher and Fatemi : :

Euler-Lagrange equation gives rise to PDE:Euler-Lagrange equation gives rise to PDE:
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Existing Schemes
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Existing Schemes
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Existing Schemes
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Existing Schemes
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Basic Idea of Our Framelet Method
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Explanation

In variational method, there are two terms to 
minimize:

 data fitting term

 regularization term
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Hand-waving Explanation
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Hand-waving Explanation
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Tight Frame Algorithm
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Tight Frame Algorithm
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Numerical Test 1: 512-by-512 Lena
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   1dB increase

= error decreases 10%

Numerical Results 1
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Numerical Test 2: 512-by-512 Lena
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Numerical Results 2
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Numerical Test 3: 256-by-256 Pepper

Text with even bigger font
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Numerical Results 3
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Results Up-close
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Results Up-close
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Advantages of Tight Frame Algorithm
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An Equivalent Formulation 
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Minimization Functional
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1. Tight Frames

2. Inpainting

3. Impulse Noise Removal

4. High Resolution Image Reconstruction

5. Video Enhancement

6. Extension

7. Convergence Analysis

8. Combining PDE and Framelets

Outline
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Goal

 Impulse noise removal
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Original Image
 (a triangle)

Image corrupted  
 by Impulse Noise

 Only a number of pixels are corrupted

Impulse Noise Model

NoiseNoise
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 Malfunctioning pixels in camera sensors

 Faulty memory locations in hardware

 Transmission in a noisy channel

Two types of Impulse Noise

I.  Salt-and-Pepper Noise 

II.  Uniformly-Distributed Random Noise

Impulse Noise are caused by

Impulse Noise Model
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Salt-and-Pepper Noise
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Noise-free Image At 10% Noise

At 30% Noise At 50% Noise
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Random-Valued Impulse Noise
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Denoising Schemes   

Median Filter

Sort Recovered

Noisy ImageNoisy Image Restored Image

Median
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Median filter

30% Salt-and-Pepper Noise 
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 Drawback of Median Filter: Every pixel is 
modified, hence fuzziness and blurring

 Extensions of Median Filters (Median-type 
Filters):
 Adaptive Median Filter (IEEE TIP 1995)
 Adaptive Center Weighted Median Filter 

(2001)
 Multi-state Median Filters (2001)
 Filter based on homogeneity info (2003)
 …
 Detection statistics (Dong, C., Xu, IEEE 

TIP 2007)

Median-type Filters   
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Adaptive Median Filter   

Sort

Noisy ImageNoisy Image

Median
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Median Median 
FilterFilter

AdaptiveAdaptive

Median FilterMedian Filter

30% Salt-and-Pepper Noise
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Adaptive Median FilterAdaptive Median Filter

Replacement of noise by median cannot preserve edges

But …at 70% Salt-and-Pepper Noise
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Two Steps

1. Noise Detection (e.g., thresholding)

2. Noise Replacement (by Median or its variants)

Advantages

1. Fast

2. Accurate Detection

Characteristics of Median-type Filters
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Variational Method

Restoration = Minimization of a cost functional F

Total Variation of Rudin, Osher and FatemiTotal Variation of Rudin, Osher and Fatemi : :

Euler-Lagrange equation gives rise to PDE:Euler-Lagrange equation gives rise to PDE:

Edge-preserving for images corrupted by Gaussian noiseEdge-preserving for images corrupted by Gaussian noise
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l1 Fitting Term for Impulse Noise:
        (Nikolova, J. Math. Imaging & Vision, (2004))

 Non-smooth data-fitting term (smooth data left unchanged)

 Edge-preserving potential function:
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 Insensitive to the amplitude of noise (l1-norm), and 

 Preserve edges when denoising (edge-preserving potential 
function).

DenoisingDenoising

Advantages

Drawback

 Continuous method --- cannot handle noise patches well. 

 Some uncorrupted pixels at the edges will be distorted.
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Variational Variational 
MethodMethod

70% Salt-and-Pepper Noise
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Two-Phase Method:

                    Median-type Filter + Variational Method

(Chan, Ho, and Nikolova, IEEE TIP (2005))  

Phase 1: Detect noise candidate set       by Adaptive 
Median Filter

Phase 2: Restore pixels in       by Variational Method
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70% 70% SaltSalt-and--and-PepperPepper Noise Noise Adaptive Median FilterAdaptive Median Filter

Variational MethodVariational Method         Our MethodOur Method
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Adaptive Median FilterAdaptive Median Filter

Variational MethodVariational Method         Our MethodOur Method

70% 70% SaltSalt-and--and-PepperPepper Noise Noise
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Adaptive Median FilterAdaptive Median Filter

Variational MethodVariational Method         Our MethodOur Method

70% 70% SaltSalt-and--and-PepperPepper Noise Noise
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Adaptive Median FilterAdaptive Median Filter

Variational MethodVariational Method         Our MethodOur Method

70% 70% SaltSalt-and--and-PepperPepper Noise Noise
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Performance in PSNR:  Performance in PSNR:  70% 70% SaltSalt-and--and-Pepper Pepper NoiseNoise

Salt-and-PepperSalt-and-Pepper Lena Bridge Goldhill Cameraman

NoisyNoisy 6.71 6.78 6.93 6.63

Variational MethodVariational Method 24.64 21.11 23.54 20.69

AdaptiveAdaptive

Median FilterMedian Filter
25.73 21.76 21.46 21.38

Our MethodOur Method 29.26 25.00 26.94 24.91

PSNR increases by 1 dB, error decreases by 10%PSNR increases by 1 dB, error decreases by 10%
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Median-type Filter + Tight Frame Method

Phase 1: Detect noise candidate set      by Adaptive      
            Median Filter

Two-Phase Method using Framelets:

Phase 2: Restore pixels in      by Tight Frame 
Method.

     (Do an inpainting on    .)
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70% Salt-&-Pepper Noise
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Numerical Results
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90% Salt-&-Pepper Noise
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Numerical Results
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90% 
noise AMF

AMF+Variation AMF+Frame
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Image
Noise 
level Variational Framelet

50% 30.5 31.3

Lena 256x256 70% 27.4 28.8

90% 22.9 24.2

50% 33.1 33.8

Lena 512x512 70% 29.7 31.2

90% 25.4 26.5

Cameraman 
256x256

24.8 25.8

Goldhill 512x512 29.9 30.0

Boat 512x512 70% 28.0 29.1

Barbara 512x512 24.6 25.7

Bridge 512x512 24.7 24.7

Comparison with Variational Method
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Random-Valued Impulse Noise
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The Local Image Statistic ROAD (2005)

ROAD Statistic

Noisy Image

The ROAD Statistic:



131

ROAD Statistic
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 Advantages:
 noisy pixels usually have intensities vary greatly 

from those of its neighbors (i.e. their ROAD 
values will be large)

 noise-free pixels should have at least half of the 
neighbors having similar intensity (i.e. their 
ROAD values will be small)

 Disadvantages:
 for random-valued impulse noise, some noise 

values may be close to their neighbors’ values
 the ROAD values may be in the middle of range 

and not large enough to distinguish them.

ROAD Statistic
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ROLD Statistic

Dong, C., and Xu, IEEE TIP, 2007

The ROLD Statistic:
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 Differences between the means and the ranges 
of the error bars all increased 

 Make it easier to separate noisy pixels from 
noise-free ones

Comparison of ROAD & ROLD 
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Explanation by PDF’s
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60% Random-Valued ACWMF (21.19dB)ACWMF (21.19dB)

CHN Method (24.62dB)CHN Method (24.62dB) New Detector (29.03dB)New Detector (29.03dB)
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60% Random-Valued ACWMF (19.27dB)ACWMF (19.27dB)

CHN Method (20.89dB)CHN Method (20.89dB) New Detector (22.59dB)New Detector (22.59dB)
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A New Noise Detector (ROLD)
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1. Tight Frames

2. Inpainting

3. Impulse Noise Removal

4. High Resolution Image Reconstruction

5. Video Enhancement

6. Extension

7. Convergence Analysis

8. Combining PDE and Framelets

Outline
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Resolution = 64 ×  64 Resolution = 256 ×  256

Goal
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Four low resolution images (64 ×  64) of the 
same scene. Each shifted by sub-pixel length.

Construct a high-
resolution image       

(128 ×  128) from them.
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#2

#N

High-
Resolution 

Camera 
Configuration

#1

taking lens

CCD sensor arrayrelay 
lenses

partially silvered 
mirrors

Boo and Bose (IJIST, 97):
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Ultra-thin Image Information Input Card

High-resolution image without long focal-length 
lens
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High-Resolution Image Reconstruction

Not 1, but many lens --- 
compound eyes
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 low-resolution pixel 

a b

c d given intensity = (a+b+c+d)/4

high-resolution 
pixel 

4 low-resolution images merge into 1

Modeling of HR Image Reconstruction
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Four  2 ×  2 images merged into one 4 ×  4 
image:

a1 a2

a3 a4

b1 b2

b3 b4

c1 c2

c3 c4

d1 d2

d3 d4

Four low resolution images 

Observed high-
resolution image 

a1 b1 a2 b2

c1 d1 c2 d2

a3 b3 a4 b4

c3 d3 c4 d4

By permutation
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Observed High Resolution Image

Can we get something better?
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 low-resolution pixel 

a b

c d given intensity = (a+b+c+d)/4

high-resolution 
pixel 

4 low-resolution 
images merge 

into 1

sensor 1

             d

sensor 2

sensor 3 sensor 4

 
d           
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The Blurring Matrix:
Let f  be the true image, y the observed HR image, then

f involves information of true image outside the field of view. 
 

             d

sensor 1
sensor 2

sensor 3
sensor 4

 d
fie

ld
 of

 vi
ew

Information outside 
field of view
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Assume something about the image outside the field of view
(boundary conditions).

                    L                      f       =     y    .

 L              f       =     y    .  

After adding boundary condition:

Matrix is fat and long:

N2 × N2      N2 × 1            N2 

× 1
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Periodic Boundary Condition (Gonzalez and Woods, 93):

Assume data are periodic near the boundary.

Boundary Conditions
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 4 ×  4 sensor array (16 low-resolution to 1 high-
resolution). Matrix is:

 Block-circulant-circulant-block system.

 Diagonalized by 2D Fourier transforms in O(N2 log N).


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




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
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



⊗


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





















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12221

12221
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8
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8

1

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Ringing effect is prominent.

original image

observed high-
resolution image

reconstructed  image
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Dirichlet (Zero) BC (Boo and Bose, IJIST 97):

Assume data zeros outside boundary
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 Matrix is

 Block-Toeplitz-Toeplitz-Block system.

 Cannot be diagonalized by sine-transforms.

 Iterative solvers with circulant preconditioners        
(C. and Jin, SIAM, 07).
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


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original image

Ringing effect still prominent:

reconstructed  image

observed high-
resolution image
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Neumann Boundary Condition (Ng, C. & Tang (SISC 00)):

Assume data are reflective near boundary.
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 Matrix is

 Block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel 
blocks. (Hankel = constant along anti-diagonals.)

 Diagonalized by 2D cosine-transforms in O(N2 log N).

 Holds for sensor array of any size, and

 more generally for all symmetric blurring functions.


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


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Ringing effect is smaller:

observed high-
resolution image

original image reconstructed  image
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Anti-reflexive Boundary Condition (Serra, SISC (2003))

Assume data are negated and reflected  near boundary.

--

-

 Matrix approximately diagonalized by 2D sine-
transforms in O(N2 log N)..
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The problem L f = y + n is ill-conditioned.

      y y1−L
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Consider 2× 2 sensor array:

Low-
resolution 

pixel

High-
resolution

pixels

4

1

2

1

4

1

2
1

1
2
1

4

1

2

1

4

1

Tightframe Approach

Averaging process = a lowpass filter with refinement mask:
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Key Observation
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Tight-frame Algorithm
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Tight-frame Algorithm
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2-by-2 sensor array: 
SNR Tikhonov with Δ  Wavelet Algorithm  
(dB) PSNR RE PSNR RE Iter. 
30 32.55 0.0437 34.48 0.0350 9 
40 33.88 0.0375 35.23 0.0321 12 

 

4-by-4 sensor array: 

SNR Tikhonov with Δ  Wavelet Algorithm  
(dB) PSNR RE PSNR RE Iter. 
30 29.49 0.0621 30.11 0.0579 30 
40 30.17 0.0573 30.56 0.0549 45 

 

 

Numerical Examples
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Low-resolution FrameObserved High-resolution Image

4 ×  4 sensor array

            Tikhonov with Δ                    Wavelet
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Tikhonov

Wavelet
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1-D Example: Signal from Donoho’s Wavelet 
Toolbox. Blurred by 1-D  4-to-1 filter.

Tikhonov Wavelet

Original Signal                          Observed HR Signal
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Ideal pixel 
positions

Pixels with 
displacement errors

Displacement 
error

Displacement Error
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High-
resolution

pixels

Problem no 
longer 

spatially 
invariant.

Ideal low-
resolution pixel 

position

Displaced low-
resolution 

pixel

Displacement 
error ε x

Displacement 
error ε y
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Tightframe Algorithm
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Drawbacks of Wavelet Algorithm
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Tight Frame Approach
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Tight Frame Approach

Wavelet cannot, but wavelet tight frame can 
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An Example
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Tight Frame Algorithm
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Boat Image: 
SNR 2-by-2 sensor array 4-by-4 sensor array 
(dB) Wavelet Framelet Wavelet Framelet 
20 30.45 33.87 27.16 29.35 
30 30.80 35.41 27.20 30.38 
40 30.85 36.26 27.21 31.06 

 

Bridge Image: 
SNR 2-by-2 sensor array 4-by-4 sensor array 
(dB) Wavelet Framelet Wavelet Framelet 
20 27.66 28.89 23.99 25.66 
30 27.92 29.22 24.01 26.05 
40 28.00 29.37 24.01 26.19 

 

 

16 merges into 1 with calibration error
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1. Tight Frames

2. Inpainting

3. Impulse Noise Removal

4. High Resolution Image Reconstruction

5. Video Enhancement

6. Extension

7. Convergence Analysis

8. Combining PDE and Framelets

Outline



185

Goal

One of the frame 
in a video

Before enhancement

After enhancement
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Video Enhancement

A 352-by-288 video 
from a video recorder
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t

30  frames/second
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Reference frame

t

Displacement 
error ε

Improving 
resolution 

of  
reference 

frame
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Use the 91st to 
120th frames to 

improve the 100th 
frame f100 in the 

movie
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704-by-578 image of f100 by                   
bilinear interpolation
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704-by-578 image of f100 by tight frame 
method using 20 frames from the movie
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Bilinear method Tight frame method

Video Enhancement

C., Shen, and Xia, ACHA, 2007
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1. Tight Frames

2. Inpainting

3. Impulse Noise Removal

4. High Resolution Image Reconstruction

5. Video Enhancement

6. Extension

7. Convergence Analysis

8. Combining PDE and Framelets

Outline
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General Framework for Missing 
Data Recovery
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General Framework for Missing 
Data Recovery in Image Domain
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Tight Frame Algorithm
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Convergence (Cai, C., Shen, ACHA 2008)
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Extension to Frequency Domain Inpainting

Γ
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Tight Frame Algorithm
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Convergence Results

Cai, C., Shen, Shen, Adv. Comp. Math. (2009)



201

Application 1: High-Resolution Image 
Reconstruction
Four low resolution images (64 ×  64) of the same scene.

Each shifted by sub-pixel length.

Construct a high-
resolution image 
(128 ×  128) from 
them
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Application 2: Super-Resolution Image 
Reconstruction
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1 LR image recovered

4 LR images recovered
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8 LR image recovered

16 LR images recovered
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One of the frame 
in a video

Before enhancement

After enhancement

Application 3: Video Still Enhancement
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The 100th frame 
f100 in the movie
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Application 4: Infrared Imaging
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Chop-and-Nod Procedure
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Chop-and-Nod Procedure
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Application 4: Infrared Imaging

Chopping & 
Nodding

f g
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Minimization Properties
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Observed Image 
from United 

Kingdom Infrared 
Telescope

Reconstruction 
by Projected 
Landweber’s 

Iteration

Reconstruction 
by Framelet-

Based Method

Cai, C., Shen, Shen, SISC, 2008.
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Original Chopped & Nodded

Landweber Framelet
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Cai, C., Shen, Shen, Numerisch Mathematik (2009)

More General Framework 
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1. Tight Frames

2. Inpainting

3. Impulse Noise Removal

4. High Resolution Image Reconstruction

5. Video Enhancement

6. Extension

7. Convergence Analysis

8. Combining PDE and Framelets

Outline
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Inpainting Algorithm
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Inpainting Algorithm
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Thresholding Operator
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Thresholding Operator



223

Projection Operator
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Projection Operator
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Alternate Direction Minimization
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Minimization Functional
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Proximal Forward-Backward Splitting
Combettes and Wajs (SIMMS, 2005)
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Proximal Forward-Backward Splitting
Combettes and Wajs (SIMMS, 2005)
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Proximal Operators
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An Equivalent Formulation 
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Minimization Functional for f
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Minimization Functional for f
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Proximal Forward-backward Splitting
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Limiting Functional
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Minimization Problem for f
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Lipschitz Constant
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Lipschitz Constant
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Minimization Problem for c
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241

Minimization Functional of c
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Lipschitz Constant
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Existence of Minimizers

Numerical results show no significant differences
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Existence of Minimizers (Easy Case)
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Existence of Minimizers (Easy Case)



246

Convergence Result
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Existence of Minimizers 
(Difficult Case)
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Just show the functionals are coercive under the assumption

Convergence Result
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Combettes and Wajs (2005): proximal forward 
backward splitting converges if minimum exists

Convergence Result
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Convergence Result for Splines

H0 with reflective boundary conditions is a symmetric 
block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel 
block matrices. It can always be diagonalized by discrete 
cosine transform, and eigenvalues and eigenvectors can 
be computed exactly (Ng, C., Tang, SISC (2000)).
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Convergence Result for Splines

Cai, C., Shen, ACHA (2008)
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R
e

g
u

l
a

r
i

t
y

S
p

a
r

s
i

t
y

            Sparsity

 Fadili et.al., 2007; Daubechies et.al., 2007

  

 Our tight-frame method SISC (2003)

                                   Regularity

 ~ total-variation inpainting for one level shift-invariant Haar 
wavelet transform

Sparsity + Regularity

synthesis approach

balanced approach

analysis approach
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1. Tight Frames

2. Inpainting

3. Impulse Noise Removal

4. High Resolution Image Reconstruction

5. Video Enhancement

6. Extension

7. Convergence Analysis

8. Combining PDE and Framelets

Outline
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Total Variation Revisit



255 255

Total Variation Revisit
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Isotropic Diffusion
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Anisotropic Diffusion
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Anisotropic Diffusion
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Haar Wavelet Shrinkage
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Haar Wavelet Shrinkage
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f

H00
(1)

 

Multi-level Decomposition

H 
(1)

 

H11
(1)

 

H00
(2)

 

H 
(2)

 

H11
(2)

 

H00
(3)

 

H(3)
 

H11
(3)

 

H11
(1)

 f= c11
(1)

H 
(1)

 f= c(1) 

H11
(2)

 H0
(1)

 f = c11
(2)

H(2) H0
(1)

 f = c(2)

H11
(3)

 H00
(2)

 H00
(1)

 f = c11
(3)

H(3)
 H00

(2)
 H00

(1)
 f = c(3)

H00
(3)

 H00
(2)

 H00
(1)

 f = c00
(3)
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Anisotropic Haar Shrinkage 



263

Convergence 

C., Setzer, Steidl, SIAM J. Imaging Sciences (2008)
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Numerical Results 
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Numerical Results 



266

Thank you !

www.math.cuhk.edu.hk/~rchan
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