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ABSTRACT

We consider the question: Is every n X n complex matrix unitarily similar to a
tridiagonal one? It is shown that the answer is negative if n > 6, and is affirmative if
n = 3. Additionally, some positive partial answers and related results are given. For
example, (1) every pair of (Hermitian) projections is simultaneously unitarily similar to
a pair of tridiagonal matrices; (2) if A — A* has a rank one, then A is unitarily similar
to a tridiagonal matrix.

1. INTRODUCTION

Throughout, H denotes a finite-dimensional Hilbert space of dimension at
least three and all scalars are complex. It is well known that every normal
transformation A on H is (unitarily) diagonalizable, that is, there exists an
orthonormal basis relative to which the matrix of A is diagonal. A square
matrix B = (b;;) is called tridiagonal if all its entries below the first subdiago-
nal and all those above the first superdiagonal are zero, that is, if b, i= 0 for
|¢ — §| > 1. The theory of Jordan canonical form shows that for every transfor-
mation T on H there exists a basis for H relative to which the matrix of T is
tridiagonal (even bidiagonal). We will call T tridiagonalizable if there is an
orthonormal basis relative to which the matrix of T is tridiagonal. The
question: Is every transformation on a space of dimension n tridiagonaliz-
able? is obviously equivalent to: Is every n X n complex matrix unitarily
similar to a tridiagonal matrix? It is shown that the answer is negative if
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n > 6 and affirmative if n=3. The situation when n=4 or 5 remains
unresolved. Additionally, we mention some positive partial answers and some
related results. Throughout, (-|-) denotes the inner product on H, and for
vectors e, f, g,... of H, (e, f, g,...) denotes their linear span. By a reducing
subspace of a transformation T on H is meant a (vector) subspace M of H
such that both M and M * are invariant under 7. The norm on H is denoted
by |1, and for a transformation T on H, ||T| denotes the corresponding
operator norm of T, given by ||T|| = sup < [|Tx]|

2. ON TRIDIAGONALIZATION

THEOREM 2.1.  For every n > 6 here exists a complex n X n matrix which
is not unitarily similar to a tridiagonal matrix.

Proof. Let n > 6, and let M(n) [U(n), A(n)] denote the set of complex
n X n matrices [complex unitary n X n matrices, complex tridiagonal n X n
matrices]. It is sufficient to show that the mapping p: A(n) X U(n) = M(n)
defined by p(T, U)=UTU* is not surjective. Identifying M(n) with R2" in
the usual way, the dimension of M(n) as a real differentiable manifold is 2n?
Similarly, the dimension of A(n) is 6n — 4. The real Lie group U(n) has as
associated Lie algebra the real vector space of skew Hermitian matrices, so
dim U(n) = n? [7, p. 108]. The mapping p is a polynomial mapping and so is
smooth. Since dim[A(n)XU(n)] =n2+6n — 4 <2n®=dim M(n), every
point of A(n)X U(n) is a critical point of p, so by Sard’s theorem {2, 16.23,
p. 167] the image of A(n)XU(n) under p has measure zero in M(n). Thus p
is not surjective and the proof is complete. [ ]

The preceding result was first proved, very recently, by B. Sturmfels [6].
The proof given above is a similar version, slightly simpler though no more
elegant, and is due to J. L. Noakes. The author thanks these authors for
allowing this proof to be included here.

So, at least if dim H > 6, not every transformation on H is tridiagonaliz-
able. Which transformations are tridiagonalizable?

Influenced by the case of normal transformations, one might entertain the
idea that, if the transformation T on H is tridiagonalizable, then T*T — TT*
is in some sense “small.” The following example shows that this measure of
“smallness” cannot be rank. Note that T*T — TT* can never be of rank one,
since it is self-adjoint (that is, Hermitian) with zero trace.
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ExampLE. Let n> 3, and let m € Z satisfy 2 < m < n. Let C be the
n X n matrix

0O 0 O 0 0

P I 0 o0

0 ¢ 0 0 o0
C=1lo o ’

Cy 0 0

0O 0 O c 0

where
cj=min{\/}7,\/m}.
Here C*C — CC* has rank m, since
C*C — CC* = diag(1,1,...,1,0,...,0, — (m — 1)),

where there are m — 1 ones.

Besides rank, another measure of the “size” of T*T — TT* is its norm.
Of course, if T is tridiagonalizable and T*T — TT* is nonzero, then T
can be rescaled, preserving tridiagonalizability, so as to make the value of
||T*T — TT*|| any given positive number. On the other hand, for any T
satisfying ||T)| = 1, we have ||T*T — TT*}| < 1. For,

IT*T = TT*| = sup |((T*T — TT*)xlx)
[lx]l =1

>

and for ||x|| =1 we have
|((T*T — TT*)x|x) | = ||| Tx||® — |1 T*x)|?| < 1,

since ||Tx||<1 and ||T*x||<1l. Can ||[T*T —TT*||=1 with ||T||=1and T
tridiagonalizable? The answer is affirmative, and the transformation T/|[T||,
with T the transformation on C" whose matrix relative to the usual basis is C
as in the preceding example, establishes it to be so. Another example is the
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transformation T, on H@H given by Ty(x,y)=(ix +y, x —iy)/2, that is,
with operator-entried matrix representation

i(il 1)
o\ I —il)’

where I is the identity transformation on H (T, is tridiagonalizable, since
both 2ReT; and 2ImT, are symmetries and thus simultaneously tridiagonal-
izable; see Corollary 3.2.1). Actually, slightly more is true.

ProrosiTion 2.2. For every a &[0,1] there exists a tridiagonalizable
transformation T on H satisfying ||T|| =1 and || T*T - TT*|| = a.

Proof. If a=0 take T = I. Suppose a €(0,1]. Let S be any tridiagonal-
izable transformation satisfying ||S|| = ||S*S — SS§*|| = 1. Define the function

f:R >R by f(§)=|S— ¢I|. Then, for every £, 1€ R we have |f(§) — f(n)|
< |€ — 1), so f is continuous on R. Also f(§) > |1 — |£|| for every £ €R. Since

f(0)=1<1/Va and f(1+1/Va)>1/Va, we have f(£,)=1/Ya for some
£, €ER by the intermediate-value theorem. Let T =(S—§,1)/||S — £\
Then T is tridiagonalizable, it has norm one, and

Is*ss—ss¥ 1
IS=&I1E  fl&)

|T*T - TT*) =

If a transformation T on H is tridiagonalized by some orthonormal basis,
then the same basis tridiagonalizes T* and both ReT = (T + T*)/2 and
ImT = (T — T*)/2i. Conversely, if an orthonormal basis simultaneously tridi-
agonalizes both ReT and ImT, it tridiagonalizes T =ReT +iImT. This
shows that our earlier question is equivalent to “Which pairs of self-adjoint
transformations are simultaneously tridiagonalizable?”” (and to the equivalent
question concerning pairs of Hermitian matrices). The latter formulation
would seem to present a more tractable problem than the original, primarily
because, for a given self-adjoint transformation A, all tridiagonalizing ortho-
normal bases can be described. This is the substance of the famous Lanczos
algorithm [4, 5]. Some positive partial results to this reformulation are given
in the next section, but before considering these, observe that if dim H=3
then things are easy.
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ProrosiTioN 2.3. If dim H =3, every transformation T on H is tridi-
agonalizable.

Proof. Let fi€H be a unit eigenvector of T. The dimension of
(Fo T, T*f,) is at most two. Let fy€ (f,,Tf,,T*f,)* be a unit vector.
Then (f;1£)=0. Let {f,, £, f;} be an orthonormal basis for H. Then
{fi, f»» £z} tridiagonalizes T, since (Tf; | £)=0 and (T | fi) =
(£ 1T*f)=0. a

CoroLLary 2.3.1. If dim H = 3, every pair of self-adjoint transforma-
tions on H is simultaneously tridiagonalizable.

3. SIMULTANEOUS TRIDIAGONALIZATION

We now describe some results concerning simultaneous tridiagonalization
of pairs of self-adjoint transformations and related results. In the following, by
a projection we mean a self-adjoint idempotent transformation, and by a
symmetry we mean a self-adjoint unitary transformation. First we show
that tridiagonal unitary matrices are in fact quasidiagonal in the sense of
Watters [8].

ProrosiTion 3.1.  If U is a tridiagonal n X n unitary matrix, then U has
the block diagonal form diag(u,, u,,..., u,), where u; is either 1 X1 or 2X2
foreachi=1,2,..., k.

Proof. The proof is by induction on n. For n =1 or 2 there is nothing to
prove. Suppose

Note that |a,|%+ |b,|2=a,|>+ |c,|2=1, so |by| =|c,| Also, |c;|+ |a,|®+
|bg|? = |by|% + |ag|® + |co)®> =1, so |bg|=|cy. Suppose b,=c,=0 is false.
Then both b; and c, are nonzero, and since a.,¢, + b,a,=0, we have
a,é,= — b,@,, 50 |a;| = |ay|. Now |a|* + |by|* = |by|? + |ay|? + || = 1 gives
¢y = 0. Thus b, = ¢, = 0. Hence the result is true for n = 3.
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Assume the result is true for every n <m. Let

a, by 0 0 0 0
¢, a, by 0 0 0

u—|® @ b 0 0
0O 0 0 0 a,_, b,
0 0 0 O a

The above argument again gives either b;=c¢, =0 or by,=c,=0. The
argument is completed by using the induction assumption and the fact that if

u 0
0 U
is unitary, then U, is unitary. [ ]

CoroLLary 3.1.1.  If P is a tridiagonal (Hermitian) projection matrix,
then P has the block diagonal form diag(p,, ps,-... py), where p, is either
1xX1or 2X2 foreachi=12,..., k.

Proof. U= 2P —I is unitary. |

The preceding proposition and its corollary show that tridiagonality is a
fairly strong imposition on a unitary or projection matrix. In view of this one
might be led to believe that simultaneous tridiagonality of a pair of unitaries
or a pair of projections is a nontrivial imposition. For projections this is not
the case; for unitaries it is (see the next example).

TueoreM 3.2.  Every pair of projections on H is simultaneously tridi-
agonalizable.

Proof. Recall that we are assuming dim H > 3. The proof is by induction
on n = dim H and uses the fact that for every pair of projections on H there
exists a projection different from 0 and I commuting with both. The latter
result was first proved in [1] (another proof is given in [3]) as follows. Let E
and F be projections on H. Define C (the closeness operator) by C=1-
E—~F+EF+ FE=EFE+(1—E)1—F)(1- E). It is enough to show that
there is a nonscalar transformation commuting with both E and F (since the
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commutant of {E, F} is generated as a von Neumann algebra by the
projections it contains). Now C commutes with both E and F, so if C is
nonscalar we are done. Assume that C is scalar. We may assume E # 0.
Choose a nonzero vector x belonging to the range of E. Obviously, F leaves
{x, Fx) invariant. Also, E leaves (x, Fx) invariant, since Ex = x and EFx =
EFEx = Cx, where Cx is a scalar multiple of x. Thus the projection with
range (%, Fx) commutes with both E and F and is nonscalar, since (x, Fx)
is neither (0) nor H.

The result is true for n = 3, by Corollary 2.3.1. Assume the result is true
for every n <m, and let P and Q be projections on H, where dim H = m.
Let R # 0, I be a projection commuting with both P and Q. Let M be the
range of R. By commutativity, M is a nontrivial reducing subspace of P and
of Q. Relative to the decomposition H=M®M * of H, P is represented by
an operator-entried matrix, say

P, 0
0 B/

where P;: M — M is the restriction of P to M and P,: M+ - M* is the
restriction of P to M *. Both P, and P, are projections. Similarly Q has the

representation
52l
0 O

with both @, and (@, projections. There is an orthonormal basis
{x}, xg,..., 2} of M which simultaneously tridiagonalizes P, and Q,. This is
obvious if dim M < 3, and it follows from the induction assumption other-
wise. Similarly, there is an orthonormal basis {y,, y,,...,4,} of M+ which
simultaneously tridiagonalizes P, and Q,. Clearly the orthonormal basis
{x1, Xgsv0s Xk, Yy, Y, -, Yy } of H simultaneously tridiagonalizes P and Q. B

CoroLLARY 3.2.1. Every pair of symmetries on H is simultaneously
tridiagonalizable.

Proof. If V is a symmetry, (V +1)/2 is a projection. [ ]

It follows fairly easily from Proposition 3.1 that if two unitaries U, and U,
are simultaneously tridiagonalizable, then there exist eigenvectors f, and £,
of U, and U, respectively such that (£] | £;) = 0. It follows that not every pair
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of unitaries is simultaneously tridiagonalizable, as the following example
shows.

ExampLE. Let n >3, and define the n X n matrix P by P=(1/n)J,
where | is the matrix whose every entry is one. Put V=2P — 1. Let
@}, Wg,. .., w, be distinct complex numbers of modulus one, and let U, [U]
be the unitary whose matrix relative to the wusual basis of C" is
diag(w,, wg, ..., w,) [Vdiag(w,, w,,..., w,)V]. The eigenvectors of U, are the
nonzero scalar multiples of the usual basis vectors, and the eigenvectors of U,
are the nonzero scalar multiples of the column vectors of V. Since V has no
zero entries, U, and U, are not simultaneously tridiagonalizable.

The following proposition is used to show that, if T acts on H and if T
and T* differ by a rank-one transformation, then T is tridiagonalizable.

ProrosiTioN 3.3. If P is a rank-one projection and A is a self-adjoint
transformation on H, then P and A are simultaneously tridiagonalizable.

Proof. Let e be a unit vector spanning the range of P, and let W(e) be
the cyclic invariant subspace of A generated by e. Put ¢ = dimW(e). Then
(e, Ae, A%,..., A7 %} is a basis for W(e). Now W(e) is invariant under
both A and P; in fact PW(e)* =0. Thus, relative to the decomposition
H=W(e)®W(e)*, since A is self-adjoint, A and P are represented by
operator-entried matrices of the forms, respectively,

B 0 Q 0
(0 C) and (0 0)
with B and C self-adjoint transformations on W(e) and W(e)* respectively
and with Q a rank-one projection on W(e). Since C is diagonalizable, it
suffices to show that P and A are simultaneously tridiagonalizable if
W(e) = H. But this is fairly obvious: The orthonormal basis {g,, g5,.--, &, }
obtained by applying the Gram-Schmidt process to {e, Ae,..., A" e}
simultaneously tridiagonalizes A and P. For, if 1<i<n—2, then
g, € (e, Ae,..., A" 'e), so Ag; and Pg, (a scalar multiple of g, = ¢) both
belong to (e, Ae,..., Ale) =(g,,8s,-.., ;41 Since A and P are self-
adjoint, the result follows. [ ]

CoroLLary 3.3.1. If T is a transformation on H such that the linear
span of T and T* contains a rank-one projection, then T is tridiagonalizable.
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Proof. Let P be a rank-one projection such that P = aT + bT* for some
scalars a and b. Here a and b are not both zero. Write T = A + iB with
both A and B self-adjoint. Then P =(a + b)A + i(a — b)B, and a + b and
a — b are not both zero. Suppose a + b # 0. By the preceding proposition
some orthonormal basis simultaneously tridiagonalizes P and B. The same

basis tridiagonalizes
A=—p_i{2P\g
T a+b —%a+b)

and hence T. If a — b # 0 a similar argument gives the result. [ ]

CoroLLaRY 3.3.2. If T is a transformation on H such that T — T* has
rank at most one, then T is tridiagonalizable.

Proof. We may suppose that T — T* has rank one. Then T —T* is a
nonzero scalar multiple of a rank-one projection, and the result follows from
Corollary 3.3.1. [ ]

We conclude with some results valid on four-dimensional space.

ProrposiTioN 3.4. If A is a self-adjoint transformation and P is a
projection on H, where dim H = 4, then A and P are simultaneously tridi-
agonalizable.

Proof. Let f; be a unit eigenvector of A. If f, is an eigenvector of P
then, relative to the decomposition H = (f,)®{(f;)*, A and P are repre-
sented by operator-entried matrices of the forms, respectively,

a 0 d r, O
Oazan 0 p)

where a, and p, are self-adjoint transformations on (f;)*. By Corollary
2.3.1, a, and p, are simultaneously tridiagonalizable and the desired result
easily follows. Suppose f; is not an eigenvector of P. Choose a unit vector
L E{fi)* such that (f,, £,)=(f,, Pf,); then choose a unit vector
LE{(fi, o)* such that Af,e(f, £, f;). Finally, choose a unit vector
fi€{fi o /3)*. Then { fi, £, £, f,} tridiagonalizes P, since ( f, £, is an
invariant and thus a reducing subspace of P, and this orthonormal basis
obviously tridiagonalizes A. =
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ProposiTioN 3.5. If U is a unitary and P is a rank-one projection on H,
where dim H = 4, then U and P are simultaneously tridiagonalizable.

Proof. Let e be a unit vector spanning the range of P, and let M be any
two-dimensional reducing subspace of U. There must exist a unit vector
f1 € M orthogonal to e; otherwise M N{e)* =(0). Similarly, there exists a
unit vector f; € M * orthogonal to e. Let { f,, f,} be an orthonormal basis for
M and let { f;, f;} be an orthonormal basis for M *. Then { f,, 4, £, fi}
tridiagonalizes U, and also P, since Pf, = Pf, =0. [ ]

The following example shows that we cannot replace “rank-one projec-
tion” by “rank-two projection” in the preceding proposition.

ExampLE. Let {¢,, €,, €;, ¢, } be the usual basis for C#, and let U be the
unitary whose matrix relative to this basis is diag(w,, wy, w5, w,), where w,,
w,, w3, and w, are distinct complex numbers of modulus one. The reducing
subspaces of U are precisely those subspaces of the form ({¢;:i€ &}) for
some subset & of {1,2,3,4}. Let P be the projection with range M =
{(—2,1,1,0),( =1, — 4,2,3)). Relative to the usual basis the matrix of P is

7 -2 -4 -1
Tl 7 -1 -4
0|-4 -1 3 2|

-1 -4 2 3

Since every entry of this matrix is nonzero, U and P have no common
reducing subspaces except (0) and C*. Now M * =((1,1,1,1),(0,1, — 1,2)),
and for every two-dimensional reducing subspace N of U we have M+ N N
= (0), since if any two of a,a+ B,a—B,a+28 (a, B €C) are zero, then
a=8=0.

By Proposition 3.1 and its corollary, and bearing in mind that U and P
have no common reducing subspaces except (0) and C*, if there were an
orthonormal basis { f,, £, f3, i} simultaneously tridiagonalizing U and P,
then, relative to this basis, the matrices of U and P would either have the
forms, respectively,

and

SO # »
SO »
* OO0
* ¥ OO
OO %
O x O
S * * O
* OO Q

i

or these interchanged. Here “ *” denotes a possibly nonzero entry. Consider
the first possibility. In this case the matrix of P cannot have either of the
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forms

or

ooCco
S O
O * O
* OO0 Q
QOO *
S % O
S * O
coCco

since then either f; or f; would belong to a two-dimensional reducing
subspace of U and to M *. Thus, since P has rank two, its matrix would have
to be diag(1,0,0,1). This contradicts U and P having no common reducing
subspaces except (0) and C*.

Finally, consider the second possibility. In this case, both f; and f
would be eigenvectors of U, so there would exist a permutation = of
{1,2,3,4) such that f, € {e,,)), f; € (yy))> and (fo, f5) = (€,2)> €n3))- But
then Pe, ;) € (€,), €y(a) €r(z)) and this contradicts the fact that the matrix of
P relative to the usual basis has no zero entries.

Hence U and P are not simultaneously tridiagonalizable.

Note that, with U and P as in the above example, the unitary U and the
symmetry V= 2P —1 are not simultaneously tridiagonalizable.

The author thanks L. J. Wallen for some useful discussions, V.L. Klee for
his interest, and the referee for his suggestions.

REFERENCES

1 Chandler Davis, Generators of the ring of bounded operators, Proc. Amer. Math.
Soc. 6:970-972 (1955).

2 ]. Dieudonné, Treatise on Analysis, Vol. 10-111, Academic Press, New York,
1972.

3 P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144:381-389 (1969).

4 C. Lanczos, An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators, J. Res. Nat. Bur. Standards 45:255-282
(1950).

5 C. C. Paige, Accuracy and effectiveness of the Lanczos algorithm for the symmet-
ric eigenproblem, Linear Algebra Appl. 34:235-258 (1980).

6 B. Sturmfels, private communication.

7 F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott,
Foresman, Glenview, IIl., 1971.

8 ]J. F. Watters, Simultaneous quasi-diagonalization of normal matrices, Linear
Algebra Appl. 9:103-117 (1974).

Received 27 February 1987; revised 29 December 1987



