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ABSTRACT 

We consider the question: Is every n X n complex matrix unitarily similar to a 
tridiagonal one? It is shown that the answer is negative if n > 6, and is affirmative if 
n = 3. Additionally, some positive partial answers and related results are given. For 
example, (1) every pair of (Hermitian) projections is simultaneously unitarily similar to 
a pair of tridiagonal matrices; (2) if A - A* has a rank one, then A is unitarily similar 
to a tridiagonal matrix. 

1. INTRODUCTION 

Throughout, H denotes a finite-dimensional Hilbert space of dimension at 
least three and all scalars are complex. It is well known that every normal 
transformation A on H is (unitarily) diagcmalizabk, that is, there exists an 
orthonormal basis relative to which the matrix of A is diagonal. A square 
matrix B = ( bij) is called tridkgonul if all its entries below the first subdiago- 
nal and all those above the first superdiagonal are zero, that is, if bij = 0 for 
li - jl> 1. The theory of Jordan canonical form shows that for every transfor- 
mation T on H there exists a basis for H relative to which the matrix of T is 
tridiagonal (even bidiagonal). We will call T tridiagmulizabk if there is an 
orthonutmul basis relative to which the matrix of T is tridiagonal. The 
question: Is every transformation on a space of dimension n tridiagonaliz- 
able? is obviously equivalent to: Is every n x n complex matrix unitarily 
similar to a tridiagonal matrix? It is shown that the answer is negative if 

LZNEAA ALGEBRA AND ITS AZ’PLZCATZONS 109:1!53-163 (1988) 

6 Elsevier Science Publishing Co., Inc., 1986 

153 

655 Avenue of the Americas, New York, NY 10010 00!?,4-3795/88/$3.50 



154 W. E. LONGSTAFF 

n 2 6 and affirmative if n = 3. The situation when n = 4 or 5 remains 
unresolved. Additionally, we mention some positive partial answers and some 
related results. Throughout, (. 1 a) denotes the inner product on H, and for 
vectors e, f,g ,... of H, (e, f,g ,... ) denotes their linear span. By a reducing 
subspace of a transformation T on H is meant a (vector) subspace M of H 

such that both M and M ’ are invariant under T. The norm on H is denoted 
by I]. 11, and for a transformation T on H, lITI denotes the corresponding 
operator norm of T, given by llTl[ = supIlx,,~ r IITrll. 

2. ON TRIDIAGONALIZATION 

THEOREM 2.1. For every n > 6 here exists a complex n x n matrix which 

is not unitarily similar to a tridiagonul matrix. 

Proof. Let n > 6, and let M(n) [U(n), A(n)] denote the set of complex 
n X n matrices [complex unitary n X n matrices, complex tridiagonal n X n 

matrices]. It is sufficient to show that the mapping p : A(n) X U(n) -+ M(n) 

defined by p(T, U) = UTU* is not surjective. Identifying M(n) with lR2n2 in 

the usual way, the dimension of M(n) as a real differentiable manifold is 2n2. 

Similarly, the dimension of A(n) is 6n - 4. The real Lie group U(n) has as 
associated Lie algebra the real vector space of skew Hermitian matrices, so 
dim U( n) = n2 [7, p. IOS]. The mapping p is a polynomial mapping and so is 
smooth. Since dim[A(n)xU(n)] = n2 +6n - 4 < 2n2 = dim M(n), every 

point of A(n) X V(n) is a critical point of p, so by Sard’s theorem [Z, 16.23, 
p. 1671 the image of A(n) X U(n) under p has measure zero in M(n). Thus p 

is not surjective and the proof is complete. n 

The preceding result was first proved, very recently, by B. Sturmfels [6]. 
The proof given above is a similar version, slightly simpler though no more 
elegant, and is due to J. L. Noakes. The author thanks these authors for 
allowing this proof to be included here. 

So, at least if dim H > 6, not every transformation on H is tridiagonaliz- 
able. Which transformations are tridiagonalizable? 

Influenced by the case of normal transformations, one might entertain the 
idea that, if the transformation T on H is tridiagonalizable, then T*T - TT* 

is in some sense “small.” The following example shows that this measure of 
“smallness” cannot be rank. Note that T*T - TT* can never be of rank one, 
since it is self-adjoint (that is, Hermitian) with zero trace. 
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EXAMPLE. Let n>3, and let rn~Z satisfy 2dm,<n. Let C be the 
flXn matrix 

C= 

0 0 0 *-- 0 0 

Cl 0 0 **- 0 0 

0 c2 0 -*- 0 0 

0 0 c, -** 0 0 
. . . . . . 
. . . . . 

where 

Cj=min{d,\lX}. 

Here C*C - CC* has rank m, since 

c*c-cc*=diag(l,l,..., l,o ,..., 0, -(m-l)), 

where there are nz - 1 ones. 
Besides rank, another measure of the “size” of T*T - TT* is its norm. 

Of course, if T is tridiagonalizable and T*T - IT* is nonzero, then T 
can be resealed, preserving tridiagonalizability, so as to make the value of 
IIT*T - TT*II any given positive number. On the other hand, for any T 
satisfying lITI\ = 1, we have I)T*T - ZT*I) G 1. For, 

IIT*T - m*ll = ,,ypl i@*T- ~*hb) 1. 
.X= 

and for llrll= 1 we have 

I((T*T - rr*)+) I= [IITXII~ - llT*xl121 Q 1, 

since llTrll<l and IIT*rll<l. Can IIT*T-IT*ll=l with IIT/= and T 
trfdiagonalizable? The answer is affirmative, and the transformation T/ IIT& 
with T the transformation on C” whose matrix relative to the usual basis is C 
as in the preceding example, establishes it to be so. Another example is the 
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transformation T, on H8H given by Ti(x, y ) = (ix + y, x - iy)/2, that is, 
with operator-entried matrix representation 

where Z is the identity transformation on H (Ti is tridiagonalizable, since 
both 2 Re Ti and 2 Im Ti are symmetries and thus simultaneously tridiagonal- 
izable; see Corollary 3.2.1). Actually, slightly more is true. 

PROPOSITION 2.2. For every a E [0, l] there exists a tridiagonalimble 
transfolmation Ton H satisfying lITI = 1 and (IT*T - TT*lj = a. 

Proof. If (Y = 0 take T = I. Suppose LY E (O,l]. Let S be any tridiagonal- 
izable transformation satisfying llS[l = )(S*S - SS*(J = 1. Define the function 
f: W --, W by f(t) = JIS - 5111. Then, for every E, 7 E Iw we have If(E) - f(v)1 
< 15 - 711, so f is continuous on IR. Also f(t) >, II- 151) for every 5 E Iw. Since 
f(0) = 1~ l/h and f(l+ l/6) z l/6, we have f(&,) = l/6 for some 
&, E w by the intermediate-value theorem. Let T = (S - &,Z)/I(S - 5Jl1. 
Then T is tridiagonalizable, it has norm one, and 

p*s - ss*11 1 
IlT*T- m*lI= I,s _ Eozll2 = m = OL. 

If a transformation T on H is tridiagonalized by some orthonormal basis, 
then the same basis tridiagonalizes T* and both Re T = (T + T*)/2 and 
Im T = (T - T*)/2i. Conversely, if an orthonormal basis simultaneously tridi- 
agonalizes both Re T and Im T, it tridiagonalizes T = Re T + i Im T. This 
shows that our earlier question is equivalent to “Which pairs of self-adjoint 
transformations are simultaneously tridiagonalizable?” (and to the equivalent 
question concerning pairs of Hermitian matrices). The latter formulation 
would seem to present a more tractable problem than the original, primarily 
because, for a given self-adjoint transformation A, all tridiagonalizing ortho- 
normal bases can be described. This is the substance of the famous Ianczos 
algorithm [4, 51. Some positive partial results to this reformulation are given 
in the next section, but before considering these, observe that if dim H = 3 
then things are easy. 



TRIDIAGONALIZATION OF MATRICES 157 

PROPOSITION 2.3. Zf dim H = 3, evey transformation T on H is tridi- 
agonali2.abl.e. 

Proof. Let fi E H be a unit eigenvector of T. The dimension of 
(fr, Tfl, T*f,) is at most two. Let f3 E ( fi. Tfl, T*f,) J_ be a unit vector. 
Then (f, ( fi) = 0. Let { fi, fi, f3} be an orthonormal basis for H. Then 
{ f,, fa, fa} tridiagonahzes T, since (Tfi 1 f3) = 0 and ( Tf3 1 f,) = 
(_& IT*&> = 0. n 

COROLLARY 2.3.1. Zf dim H = 3, every pair of self-adjoint transfm- 
tions on H is simultaneously tridiagonulizable. 

3. SIMULTANEOUS TRIDIAGONALIZATION 

We now describe some results concerning simultaneous tridiagonalization 
of pairs of self-adjoint transformations and related results. In the following, by 
a projection we mean a sekdjoint idempotent transformation, and by a 
symmety we mean a self-adjoint unitary transformation. First we show 
that tridiagonal unitary matrices are in fact quasidiagonal in the sense of 
Watters [8]. 

PROPOSITION 3.1. Zf U is a tridiugonul n X n unitary matrix, then U has 
theblockd@malfondiag(u,,u,,...,u,), whereu,isdtherl~lor2~2 
for each i = 1,2 ,..., k. 

Proof. The proof is by induction on n. For n = 1 or 2 there is nothing to 

prove. Suppose 

U= 

al bl 0 
Cl a2 b2 

0 c2 a3 

Note that IaIl2 + lb,12 = IaIl + )c112 = 1, so lb11 = JcJ. Also, )c112 + la212 + 
lb212 = lb112 + la212 + (c212 = 1, so lb21 = (c21. Suppose b,= c1 = 0 is false. 
Then both b, and ci are nonzero, and since alEI + b&i2 = 0, we have 
a&, = - b,Z,, so Iall = la,l. Now JaJ2 + lb,12 = (b,12 + )a212 + (c212 = 1 gives 
cs = 0. Thus b, = c2 = 0. Hence the result is true for n = 3. 
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Assume the result is true for every n < m. Let 

v= 

/ 

\ 

a1 b, 0 0 ... 0 0 

Cl a2 b, 0 ... 0 0 

0 c2a,b, ... 0 0 
. . . . . . . . 

6 i 6 iI ... a,-1 b,,_, 

0 0 0 0 ... C,_l a, 

The above argument again gives either hi= ci= 0 or b, = c2= 0. The 
argument is completed by using the induction assumption and the fact that if 

is unitary, then V, is unitary. 

COROLURY 3.1.1. lf P is a tridiugonul (Hermitian) projection matrix, 
then P bus the block diagonal form diag(p,, ~2,. . . , pk), where pi is either 
1x1 or 2x2 foreuchi=1,2 ,..., k. 

Proof. V = 2 P - Z is unitary. n 

The preceding proposition and its corollary show that tridiagonahty is a 
fairly strong imposition on a unitary or projection matrix. In view of this one 
might be led to believe that simultaneous tridiagonahty of a pair of unitaries 
or a pair of projections is a nontrivial imposition. For projections this is not 
the case; for unitaries it is (see the next example). 

THEOREM 3.2. Every pair of projections on H is simultaneously tridi- 
agonulizabb. 

Proof. Recall that we are assuming dim H > 3. The proof is by induction 
on n = dim H and uses the fact that for every pair of projections on H there 
exists a projection different from 0 and Z commuting with both. The latter 
result was first proved in [l] (another proof is given in [3]) as follows. Let E 
and F be projections on H. Define C (the closer~~s operator) by C = l- 
E - F + EF + FE = EFE +(l - E)(l - F)(l - E). It is enough to show that 
there is a nonscalar transformation commuting with both E and F (since the 
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commutant of { E, F } is generated as a von Neumann algebra by the 
projections it contains). Now C commutes with both E and F, so if C is 
nonscalar we are done. Assume that C is scalar. We may assume E f 0. 
Choose a nonzero vector x belonging to the range of E. Obviously, F leaves 
(x, Fx) invariant. Also, E leaves (r, Fr) invariant, since Ex = x and EFx = 
EFEr = Cx, where Cx is a scalar multiple of x. Thus the projection with 
range (r, Fr) commutes with both E and F and is nonscalar, since (r, Fx) 
is neither (0) nor H. 

The result is true for n = 3, by Corollary 2.3.1. Assume the result is true 
for every n < m, and let P and Q be projections on H, where dim H = m. 
Let R # 0, Z be a projection commuting with both P and Q. Let M be the 
range of R. By commutativity, M is a nontrivial reducing subspace of P and 
of Q. Relative to the decomposition H = M8 M ’ of H, P is represented by 
an opemtorentried matrix, say 

where PI : M + M is the restriction of P to M and Pz : M L + M L is the 
restriction of P to M I. Both P, and Pz are projections. Similarly Q has the 
representation 

with both Qi and Qs projections. There is an orthonormal basis 

{ xi, xs,. . . , xk } of M which simultaneously tridiagonalizes P, and Qi. This is 
obvious if dim M < 3, and it follows from the induction assumption other- 
wise. Similarly, there is an orthonormal basis { y,, ya, . . . , y, } of M ’ which 
simultaneously tridiagonalizes Pz and Qs. Clearly the orthonormal basis 

{ Xi, z 2, . . . . X,,Y,,Y,,..., y, } of H simultaneously tridiagonalizes P and Q. W 

COROLLARY 3.2.1. Evey pair of symmetries on H is simultaneously 
tridi4lgorMllizabl4?. 

Proof. If V is a symmetry, (V + Z)/2 is a projection. n 

It follows fairly easily from Proposition 3.1 that if two unitaries Vi and U, 
are simultaneously tridiagonalizable, then there exist eigenvectors fi and f2 
of U, and U2 respectively such that ( fi 1 f2) = 0. It follows that not every pair 
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of unitaries is simultaneously tridiagonalizable, as the following example 
shows. 

EXAIOLE. Let n >, 3, and define the n X n matrix P by P = (l/n)J, 
where J is the matrix whose every entry is one. Put V = 2P - I. Let 

w be distinct complex numbers of modulus one, and let U, [U,] 
ti’ U$e’ ‘k&r-y whose matrix relative to the usual basis of C ” is 
diag(q, 02,. . . , qJ [Vdiag(q,02,..., w,)V]. The eigenvectors of U, are the 
nonzero scalar multiples of the usual basis vectors, and the eigenvectors of U, 
are the nonzero scalar multiples of the column vectors of V. Since V has no 
zero entries, U, and U, are not simultaneously tridiagonalizable. 

The following proposition is used to show that, if T acts on H and if T 
and T* differ by a rank-one transformation, then T is tridiagonalizable. 

PROPOSITION 3.3. Zf P is a rank-one projection and A is a self&joint 
transfmtion on H, then P and A are simultaneously tridiagonulizable. 

Proof. Let e be a unit vector spanning the range of P, and let W(e) be 
the cyclic invariant subspace of A generated by e. Put q = dimW(e). Then 
{ e, Ae, A2e,. . . , A”-‘e } is a basis for W(e). Now W(e) is invariant under 
both A and P; in fact PW(e) ’ = 0. Thus, relative to the decomposition 
H = W(e)@W(e)‘, since A is selfadjoint, A and P are represented by 
operator-entried matrices of the forms, respectively, 

with Z3 and C selfadjoint transformations on W(e) and W(e) ’ respectively 
and with Q a rank-one projection on W(e). Since C is diagonalizable, it 
suffices to show that P and A are simultaneously tridiagonalizable if 
W(e) = H. But this is fairly obvious: The orthonormal basis {g,, g,,..., g,} 
obtained by applying the Gram-Schmidt process to {e, Ae, . . . , A”- ‘e } 
simultaneously tridiagonahzes A and P. For, if 1 Q id n - 2, then 
gi E (e, Ae,..., Ai-‘e), so Agi and Pgi (a scalar multiple of g,= e) both 
belong to (e, Ae ,..., A’e) = (g,,g, ,..., g,+r). Since A and P are self- 
adjoint, the result follows. n 

COROLLARY 3.3.1. Zf T is a transformation on H such that the linear 
span of T and T* contains a rank-one projection, then T is tridiagonalizable. 
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Proof. Let P be a rank-one projection such that P = UT + bT* for some 
scalars a and b. Here a and b are not both zero. Write T = A + iB with 
both A and B self-adjoint. Then P = (a + b)A + i(a - b)B, and a + b and 
u - b are not both zero. Suppose a + b z 0. By the preceding proposition 
some orthonormal basis simultaneously tridiagonalizes P and B. The same 
basis tridiagonalizes 

1 
A= -P-i 

u+b 

and hence T. If a - b Z 0 a similar argument gives the result. n 

COROLLARY 3.3.2. Zf T is a trunsf~tim cm H such that T - T* has 
rank at most one, then T is tiiagon&zabk. 

Proof. We may suppose that T - T* has rank one. Then T - T * is a 
nonzero scalar multiple of a rankone projection, and the result follows from 
Corollary 3.3.1. n 

We conclude with some results valid on four-dimensional space. 

PROPOSITION 3.4. Zf A is a self&joint trunsf~tion and P is a 
projection cm H, where dim H = 4, then A and P ure simultuneously tridi- 
ugcmulizubb. 

Proof. Let fi be a unit eigenvector of A. If fi is an eigenvector of P 
then, relative to the decomposition H = (f,) 6~ ( fi)' , A and P are repre- 
sented by operatorentried matrices of the forms, respectively, 

where us and p, are self-adjoint transformations on ( fi) * . By Corollary 
2.3.1, us and p, are simultaneously tridiagonalizable and the desired result 
easily follows. Suppose fi is not an eigenvector of P. Choose a unit vector 
fi E ( fi)’ such that ( fi, fi) = ( fi, Pfl); then choose a unit vector 

f3E(fiYf2)1 such that Afi E ( fi, fi, f3). Finally, choose a unit vector 
f4 E (fi, fi, f,)‘. Then { fi, fi, f3, f4> tridiagon~zes P, since (fi, fi) is an 
invariant and thus a reducing subspace of P, and this orthonormal basis 
obviously tridiagonalizes A. n 
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PROPOSITION 3.5. lf U is a unitary and P is a rank-one projection on H, 
where dim H = 4, then U and P are simultaneously tridiagonulizable. 

Proof. Let e be a unit vector spanning the range of P, and let A4 be any 
twodimensional reducing subspace of U. There must exist a unit vector 
fi E M orthogonal to e; otherwise M n (e) L = (0). Similarly, there exists a 
unit vector f4 E M L orthogonal to e. Let { f,, fi} be an orthonormal basis for 
M and let { f3, f4} be an orthonormal basis for ML. Then { fi, fi, f3, f4) 
tridiagonalizes U, and also P, since PfI = Pf4 = 0. n 

The following example shows that we cannot replace “ rankone projec- 
tion” by “ranl-two projection” in the preceding proposition. 

EXAMPLE. Let {e,, es, es, e4} be the usual basis for Q= 4, and let U be the 
unitary whose matrix relative to this basis is diag(w,, ws, ws, w4), where oi, 

as, w3, and w4 are distinct complex numbers of modulus one. The reducing 
subspaces of U are precisely those subspaces of the form (( ei : i E CT}) for 
some subset 8 of { 1,2,3,4}. Let P be the projection with range M = 
(( - 2,1,1,0),( - 1, - 4,2,3)). Relative to the usual basis the matrix of P is 

I 7 -2 -4 -1 
1 -2 7 -1 -4 

10 -4 -1 3 2 
-1 -4 2 3 

1 * 

Since every entry of this matrix is nonzero, U and P have no common 
reducing subspaces except (0) and 4= 4. Now M L = ((1, 1, 1, l),(O, 1, - 1,2)), 
and for every two-dimensional reducing subspace N of U we have M ’ f~ N 
=(O), since if any two of a,a+/3,a-/3,a+2p (a,PEC) are zero, then 
a=P=O. 

By Proposition 3.1 and its corollary, and bearing in mind that U and P 
have no common reducing subspaces except (0) and C4, if there were an 

orthonormal basis { fiS fi, f3, f4> simultaneously tridiagonalizing U and P, 

then, relative to this basis, the matrices of U and P would either have the 
forms, respectively, 

or these interchanged. Here “ * ” denotes a possibly nonzero entry. Consider 
the first possibility. In this case the matrix of P cannot have either of the 
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forms 

since then either fi or f4 would belong to a two-dimensional reducing 
subspace of U and to M I. Thus, since P has rank two, its matrix would have 
to be diag(l,O, 0,l). This contradicts U and P having no common reducing 
subspaces except (0) and C4. 

Finally, consider the second possibility. In this case, both fi and f4 
would be eigenvectors of U, so there would exist a permutation II of 

{I,2,3,4) such that fi E (e,& f, E (enc4,>r ad (fi, A> = (e,,czj, e,&. But 
then Pewcs E (e,,c,j, e,,c2,, e,,& and this contradicts the fact that the matrix of 
P relative to the usual basis has no zero entries. 

Hence U and P are not simultaneously tridiagonalizable. 

Note that, with U and P as in the above example, the unitary U and the 
symmetry V = 2P - 1 are not simultaneously tridiagonalizable. 

The author thanks L. I. Wallen jbr some useful discussions, V.L. Klee for 
his interest, and the refmee for his mggestims. 
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