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ABSTRACT 

It is generally known that any Hermitian matrix can be reduced to a tridiagonal 
form by a finite sequence of unitary similarities, namely Householder reflections. 
Recently A. Bunse-Gerstner and L. Elsner have found a condensed form to which any 
unitary matrix can be reduced, again by a finite sequence of Householder transforma- 
tions. This condensed form can be considered as a pentadiagonal or block tridiagonal 
matrix with some additional zeros inside the band. We describe such a condensed 
form (or, more precisely, a set of such forms) for general normal matrices, where the 
number of nonzero elements does not exceed 0(n3/‘), n being the order of the 
normal matrix given. Two approaches to constructing the condensed form are out- 
lined. The first approach is a geometrical Lanczos-type one where we use the 
so-called generalized Krylov sequences. The second, more constructive approach is an 
elimination process using Householder reflections. Our condensed form can be 
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thought of as a variable-bandwidth form. An interesting feature of it is that for normal 
matrices whose spectra lie on algebraic curves of low degree the bandwidth is much 
smaller. 0 Elsevier Science Inc., 1997 

1. INTRODUCTION 

The main incentive of the present paper has been the desire to find for 
any normal matrix A a condensed form which contains as many zeros as 
possible and, as opposed to the diagonal form, is reachable by a finite 
sequence of elementary unitary transformations. One can immediately point 
to such a form, namely the Hessenberg form. The problem with this form is 
that one does not use normality to obtain a Hessenberg matrix from the initial 
matrix A. This is even true for the case when A is a unitary matrix, i.e., the 
reduction to Hessenberg form exploits in no way this special property of A. 
Unitarity of an upper Hessenberg matrix has however been exploited for the 
eigenvalue problem. We mention 121 as an example of a whole series of 
papers on this subject. Meanwhile, in the recent paper [3] the authors have 
shown how to modify, for a unitary matrix A, the Householder reduction in 
such a way as to obtain the new condensed form. Compared with the 
Hessenberg form, it is much more symmetrical in profile and much less 
populated. In fact, this form can be considered as a pentadiagonal or block 
tridiagonal matrix with some additional zeros inside the band. 

2. A GENERALIZED LANCZOS PROCEDURE 

It is well known that another way to arrive at the Hessenberg form is the 
Amoldi process, where one is dealing with vector sequences of the form 

v, Av, A2v,. . ., A”‘-lv (1) 

and their linear spans, the so-called Krylov subspaces 

Xm( A, v) = span{v, Au,. . . , A”-‘v} . (2) 

Again in this approach normality cannot be exploited, since it amounts to a 
special relation between A and its conjugate A*, and Krylov subspaces (2) do 
not take A* into account. 

Below we introduce a generalization of the Amoldi procedure based on 
using vectors 

v, Av, A*v, A2v, A*, Au, AA*v, A*2v, A3v,. . . (3) 
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instead of vectors (1). The general description of the sequence (3) can be 
given in terms of words in two variables s and t [6, p. 751. Such a word is an 
expression of the form 

W( s, t) = S”ltfllS”‘2tn2.. . s”‘ktnk, (4) 

with integers m,, nl,. . . , mk, nk > 0. The degree of the word W(s, t) is the 
number m, + n, + *** +mk + nk. We order the words first according to 
their degree. Words of the same degree are ordered lexicographically. If 
A E C mX n is given, we define 

W( A, A*) = A”I( A*)“‘A”‘z( A*)““. . . A-( A*)“‘. (5) 

All the vectors of the sequence (3) have the form 

uk = W,( A, A*)v. (6) 

The index k refers to the ordering of the words as outlined above. This 
describes (3) more precisely. Here ui = v corresponds to the only word W, 
of degree 0, vectors u2 = Au and ua = A*v are associated with the words 
W, = s and W, = t of degree 1, and so on. Generally, vectors uk, 2”’ < k < 
2 mfl correspond to all the words of degree m. We call them the mth Zayer 
of the sequence (3). 

For a normal matrix A, the number of different vectors in a layer is 
drastically reduced. Since A and A* commute, all the vectors in the mth 
layer can be written as 

u = A*( A*)%, cw+p=m. 

So there are only m + 1 vectors in this layer. This case will be dealt with 
more extensively in the next section. 

The subspace 

L,(A,v) =span(W(A,A*)u:degree(W) <m} (7) 

is called the mth generalized Krylov subspace. We denote its dimension by 
1 m, and call w,,, = I, - E,_ i the width of the mth layer. Here we set 
formally wg = 1. It is obvious that for normal A one has w, < m + 1. The 
width of the mth layer can be less than m + 1. We give two examples below. 
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EXAMPLE 1. For a Hermitian matrix A we have Au = A*v; therefore 
Wl = 1. Moreover, for any m, all the vectors in the mth layer coincide with 
the vector Amu, and w, = 1 as long as A”v is not a linear combination of 
the previous Krylov vectors. The same conclusion, i.e., w,” < 1 for any ml 
holds for a slightly more general class of normal matrices, namely for the 
matrices A of the form 

A = aH + PI, H = H*. (8) 

EXAMPLE 2. For a unitary matrix A we have generically w1 = 2. On the 
other hand, the vector AA*v in the second layer is just v; therefore w2 < 2. 
It is easily seen that w,,, Q 2 for any m. The same is true for the matrices A 
of the form 

A = CUV + /31, w*=z. (9) 

In the Lanczos-type procedure below we construct a sequence of orthog- 
onal vectors vl, v2, v3,. . . from the sequence (6). Having found the orthogo- 
nal and nonzero vectors v 1, . . . , v, , we set 

grn = span{ 01, . . . ) urn}. 

If Pw is the orthogonal projection of a vector w onto a subspace 3, then 
w - Pw is the perpendicular from w on Z? and is denoted by 

orth, w . 

ALGORITHM 1 (The generalized Lanczos procedure). 

1. Choose a random nonzero vector v. Let v1 = v. 
2. Assume that orthogonal and nonzero vectors vl,. . . , v, have already 

been found, which constitute an orthogonal basis of the linear span of the 
first k, vectors ul,. . . , uk m of the sequence (6). If the perpendicular 

Orth$,” uk + 1 m 

is nonzero, take it as the vector v,+ 1. Otherwise, try 

orth.2?m uk + 2 ) m 

and, if it is nonzero, take it as v,+ 1, and so on. 
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Observe that we do not require our generalized Lunczos vectors vl, . . . , v, 
to be normalized. 

REMARK. If thz perpendiculars from the vectors uk of the current layer 
are all zero, then Xn, is a (common) invariant subspace of A and A*. In this 
case, we stop the procedure or repeat it with a new initial vector C 
orthogonalized with respect to S$. We give an illustration of how the 
procedure above works for two particular classes of normal matrices. 

EXAMPLE 3. For a Hermitian matrix A, the subspaces (2) coincide with 
the usual Krylov subspaces, and Algorithm 1 is essentially the classical 
Lanczos algorithm. The same assertion holds for all matrices of the form (8). 

EXAMPLE 4. As was indicated in Example 2, it is enough, for a unitary 
matrix A and even for a matrix A of the slightly more general form (9), to 
deal with two usual Krylov sequences 

and 

v, Av, A%, . . . 

A*v,(A*)‘v,..., 

switching alternatively from one to the other. If we have 

A”v c%$,, 
S. 

(A*)% E&-,- 

for m = 2s - 1, then Xm is an A-invariant subspace. 

From our construction the following two properties of the generalized 
Krylov subspaces (7) can be derived easily: 

1. For any x E L, we have 

2. For any generalized Lanczos vector V~ belonging to the mth layer, i.e. 
v1 E L, \ L,_ 1, the orthogonality relations 

Avl J- L-2, A*v, I L,_, 

hold. 
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Indeed, if y E L,_ 2 then 

(Aq, y) = (01, A*y) = 0 

and 

(A*q, y) = (q. Ay) = 0, 

since A* y and Ay E L,_ 1 and t+ is orthogonal to L, _ 1. 
The vectors in the (s + 1)th layer of the sequence (3) are obtained by 

applying A and then A* to the vectors of the 8th layer. Using this observa- 
tion and property 2 above, we can restate Algorithm 1 in a more Lanczos-like 
style. 

ALGORITHM 2. 

1. Choose a random nonzero vector 0. Let vi = u. 

2. Assume that the orthogonal and nonzero vectors ui, . . . , v, have been 
found which constitute an orthogonal basis of the sth generalized Krylov 
subspace. Suppose that the vector vq, . . . , v, have been constructed by 
(implicitly) using the sth layer of the sequence (3). Then, for each of 
these vectors in turn, do the following steps: 

(a) Evaluate w = Au. 
(b) Orthogonalize w with respect to already accepted Lanczos vectors vi 

belonging to the (s - l)th, sth, and (s + 1)th layers. 
(c) If, after step (b), the vector w is nonzero, take it as the most recent 

Lanczos vector of the (s + I)th layer.’ 
(d) For the vector v in (a) evaluate w = A*v. 
(e) For the vector w in (d) repeat steps (b) and (c) above. 

We see that the vectors in the (s + I)th layer of the sequence (3) do not 
appear directly in Algorithm 2. Nevertheless, by applying A and A* to the 
vectors vq , . . . , v, we are still using (3) implicitly. Suppose the orthonormal 
basis of C” consisting of the generalized Lanczos vectors vi, . . . , v, (which 
we now assume to be normalized) has been constructed. We relate a linear 
operator &: C” * C” to the initial normal matrix A. Denote by B the 
matrix associated with M in the Lanczos basis vl, . . . , v,. We observe that B 
is a block tridiagonal matrix with diagonal blocks of sizes wi, i = 0, 1, . . . . It 
follows from Algorithm 2 that the number Ni of nonzeros in the i th column 
of B can be determined by this rule: find the index s of the layer to which vi 
belongs; then the nonzero elements in b, i can correspond only to the 
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Lanczos vectors uk in the (s - l)th, sth, and (s + 1jtl-1 layers. Therefore, 

Nj Q ws-i + w, + w~+~. (IO) 

The same bound is valid for the number Mi of nonzeros in the ith row of B: 

Mi =s w~-~ + w, + w~+~. (11) 

If, in Algorithm 2, we only obtain an orthogonal basis ui, . . . , up of some 
invariant subspace L of &, then the bounds (lo), (11) hold for the matrix B, 
of the induced operator til 2 in this basis. So B (or B,) is a variable-band- 
width matrix. 

3. THE NORMAL CASE 

We restrict ourselves to the normal case in the following. Here wi < i + 1, 
and hence by (10) the number of nonzero elements in each row and column 
of B is considerably reduced. We illustrate this by exhibiting the pattern of 
zeros in the general case and the normal case for 8 X 8 matrices: 

* * * 0 0 0 0 0 
* * * * * 0 0 0 
0 * * * * * * 0 

0 * * * * * * * 

0 0 * * * * * * 

0 0 * * * * * * 

0 0 0 * * * * * 

0 0 0 * * * * * 

and 

* * * 0 0 0 0 0 
* * * * * 0 0 0 
0 * * * * * 0 0 

0 * * * * * * * 

0 0 * * * * * * 

0 0 0 * * * * * 

0 0 0 * * * * * 

oooo**** 

This is not yet very impressive. However, we will see later that for normal 
matrices whose eigenvalues he on a algebraic curve even more zeros appear. 
For eigenvalues on an ellipse the following pattern arises: 

* * * 0 0 0 0 0 
* * * * 

; * * * * 
0 0 0 
0 0 0 

0 * * * * * * 0 

0 0 * * * * * 0 

0 0 0 * * * * * 

0 0 0 0 * * * * 
0 0 0 0 0 * * * 
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We establish below a bound for the maximal bandwidth in B. For this 
purpose, we will investigate the behavior of the numbers wi in more detail. 

We first remind the reader of some useful definitions and facts. The 
vectors ui, us,. . . , u, E C” are said to be linearly dependent over the linear 
subspace L c C” if there exist numbers (pi, cy2,. . . , a,, not all zero, such 
that 

We might write instead 

aylul + a2242 + .‘. + (Y,u, = 0 (mod L). (13) 

If this relation is possible only with (hi = o2 = -** = (Y,? = 0, then 
Ul, IA 2>“‘> u, are linearly independent over L. 

Assume that uk,, . . . , uk, is a subset of ur, . . . , u, maximal with respect to 
linear independence over L. Letting, for simplicity, k, = I,. . . , k, = t, we 
can then represent ut+ i, . . . , u, as linear combinations (over L) of the 
vectors ui, . . . , ut: 

U t+1 = %+1,1 1 u + *+* SC f+l,t~t (mod LL 

24, = C,lUl + **a +c,,u, (mod L). 

On the other hand, if q linear relations are given, 

d,,u, + d12UZ + *** +dl,vU, = 0 (mod L), 

(14) 
dqpl + dq2uz + .-- +dysu, = 0 (mod L), 

and these relations are independent (which means that rank of the matrix 
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is equal to q), then no more than s - 9 of the vectors ui, . . . , u, can be 
independent over L. The reason is that (14) permits us to express 9 of the 
vectors ui,..., U, as linear combinations (over L) of the rest of U’S. We are 
already now to prove the following statement. 

THEOREM 1. There exists an integer m, z 0 such that 

% =m+l, m < m,, (15) 

(16) 

Proof. The relation (15) holds as long as all the vectors 

Amv, A”-iA*u,. . ., (A*)%, (17) 

which constitute the mth layer of the sequence (3), are linearly independent 
over the (m - 11th generalized Krylov subspace L,_ 1. Assume now that 
there exist exactly 9 linear relations for the vectors (I7), 

c&A”v + &A”-lA*v + a.0 +di,,+i( A*)mv = O(mod L,_,) (18) 

for i = l,..., 9, which are independent. Applying A to each of the relations, 
we have 

&~~+lv + ~,,A”A*v + ... +di ,+iA( A*)“v = 0 (mod L,) (19) 

for i = 1,. . . ,9. These are 9 independent linear relations for the vectors 

A”‘+%, A’“A*u,..., A(A*)mv,(A*)m+lu (20) 

in the (m + I)th layer of (3). If in (18) s < m + 1 is the maximal index for 
which di, # 0 for some i E 1,. . . , 9, then multiplying the ith equation of 
(18) by A* gives a new relation for (20). This is independent of the equations 
(191, as it is the only one containing explicitly the term A”‘+ l-S(A*)Sv. 
Therefore, no more than m + 2 - 9 - 1 = m + 1 - 9 = w,,, vectors of the 
(m + l)th layer are linearly independent over L,. This shows (16). Choose 
now m, as the maximal integer for which (15) holds. Then in the next layer 
there exists at least one linear relation; hence from now on (16) holds. H 
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REMARK 1. In Example 7 in Section 4 we give an illustration of the case 
when m, -+z n. An easy consequence of Theorem 1 is 

COROLLARY 2. For any m, 

w,<&, (21) 

where n is the order of the normal matrix A. 

Proof. Obviously w = w,,,, = m, + 1 is the maximal member of the 
sequence (w,,,). Then, according to the proof of Theorem 1, the vectors of the 
first m, layers are linearly independent and hence 

z (i + 1) = w’w2+ ‘) < ?Z. 

i=O 

This implies (21). ??

We return now to the matrix B constructed from A by the generalized 
Lanczos procedure. We call this matrix the condensed form of the matrix A. 
This notion is not quite correct, as B depends also on the starting vector D. 
If, in Algorithm 2, only a proper invariant subspace of A is found, then the 
results below hold for the corresponding matrix B, of order n, smaller than 
n. 

COROLLARY 3. The number of nonzero entries of each row and column in 
the condensed form B of the norm& matrix A is bounded by 36. 

Proof. This assertion is an immediate consequence of the bounds (21), 
(lo), and (11). ??

We remark however that with some efforts we can improve this bound to 
&FZ for n > 2. 

COROLLARY 4. The number of nonzeros in the condensed form B is 
bounded by \/Isn312. 

Proof. This follows immediately from Corollary 3. ??
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REMARK. Of course, there might be only O(n) nonzero elements, for 
example for Hermitian or unitary matrices. On the other hand O(n3”) 
might be quite a realistic bound in a situation when in no layer do we have 
linear dependencies between the generalized Krylov vectors (3). Indeed, our 
condensed form contains disjoint square blocks of order 1,2, . . . , w where 
w=w m, = O(G). Th ere ore, f the number of nonzeros of B cannot be less 
than 

l2 + 22 + ... +w2 = w(w + I)(2w + I) 
6 

-= O(n3’2). 

4. AN ELIMINATION PROCEDURE FOR THE CONDENSED 
FORM 

We are going now to give another algorithm for reducing a general matrix 
A to the condensed form B described above. In contrast to Algorithms 1 and 
2, this one is based on using Householder transformations. 

We need to introduce some notation (e.g. [3]). For any A E C”‘” its 
columns and rows are denoted by the corresponding small letter as 
a,,,a,,,...,a,, and al*.a2*,...,an*, respectively. For 1 < j < n we 
denote by P(j, z) the Householder transformation which eliminates the 
entries j + 1 through n in the vector z and does not change the first j - I 
entries of z. 

1. 
2. 

3. 

4. 

ALGORITHM 3. 

Let 1, = 2, k = 1. As long as k < n, do the following. 
Let m = (k + 1)/2. Check the entries Z,_ 1 + 1 through n in the 
column a,, of the current matrix A. If all these entries are zero, let 
1, = Z,_ i, k + k + 1, and go to step 3. Otherwise, find the Householder 
transformation Pk = P(Z, _ I, a * ,> and perform the similarity 

A + Pk AP, . (22) 

Let 1, = Z,_ 1 + 1. If Z, = n, go to step 4; otherwise, k + k + 1 and go 
to step 3. 
Let m = k/2. Check the entries Z,_ 1 + 1 through 12 in the row a, * of 
the current matrix A. If all these entries are zero, let I, = 1, _ 1, k * k 
+ 1, and go to step 2. Otherwise, find the Householder transformation 
Pk = P(Z,_ i, a, +. > and perform the similarity (22). Let 1, = 1, _ 1 + 1. If 
I, = n, go to step 4; otherwise, k + k + 1 and go to step 2. 
Stop the procedure. 
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It can be shown formally (see e.g. [9] and [4]) that the resulting matrix is 
up to scaling the condensed form B determined by Algorithm 2 with the first 
column of P, as starting vector. We will not use this result here, but explain 
the behavior of Algorithm 3 directly. 

This algorithm applied to a general matrix A will generically eliminate 
n - 2 entries in the first stage, n - 3 in the second stage, and so on, so that 
it stops after n - 2 stages, having eliminated (n - 1Xn - 2)/2 elements. 
This is completely analogous to the transformation to Hessenberg form. 

In this form, however, normality of A has a strong effect on the 
algorithm. This is not obvious. We therefore hasten to show how normality 
does influence it. We do that at first for the particular classes (8) and (9), and 
then for some related classes, and also for general normal matrices. 

EXAMPLE 5. Let A at the beginning of Algorithm 3 be a matrix of the 
form (8). After the first stage of the algorithm we have I, = 3 and the current 
column a,, has zero entries 3 through n. Then (8) shows that the current 
row a, * has also zero entries 3 through n. Therefore, we let 1, = 3, and do 
no similarity at the second stage of the procedure. At the third stage, we 
eliminate entries 4 through n in the column a * 2, and let I, = 4. Again by (8) 
we have that in the current row a2 * entries 4 through n are already zero. So 
we let 1, = 4 and pass to the fifth stage, and so on. The result is a tridiagonal 
matrix. 

EXAMPLE 6. Let A at the entry of Algorithm 3 be a matrix of the form 
(9). Then the first three stages run according to the general prescription with 
I, = 3, Z, = 4, 1, = 5. Now, if A is just unitary, then already after the second 
stage the appearance of additional zeros could be registered. Indeed, in the 
column a, 1 entries 3 through n are zero. Setting the reducible case aside, we 
can count on entry 2 being nonzero. Since, after the second stage, columns 4 
through n have the first entry zero, their orthogonality with a * 1 means that 
the second entry in each of these columns is also zero. In fact, this is exactly 
what has been mentioned on p. 753 of [3]. It follows that, excepting the 
assignment I, = 5, we can omit the fourth stage. But the fifth stage can also 
be omitted, again with the exception of the assignment I, = 5. This follows 
from the orthogonality of a, * and rows 5 through n, assuming again that the 
(1,3) entry is not zero. After that, the sixth stage and the seventh one go 
along the general rules, and so on. All that is said above is also true for a 
matrix A of the form (91, since such a matrix essentially differs only by a 
diagonal shift from a purely unitary one. 
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EXAMPLE 7. Consider the plane quadric of the form 

a,,r2 + 2a,,xy + a2,y2 = 1. 

Here all, a12, a22 E R, and the curve (23) is a hyperbola if 

and an ellipse if 

all%2 - a12 2 <o, 

a,, > 0, %lU22 - UT2 > 0. 

Letting 

2+2 z-z 
x=2’ Y’ 2i ) 

we can obtain the complex form of Equation (23): 

cz2 + .z2 + 2dzZ = 4. 

91 

(23) 

(24) 
Here 

c = a,, - $2 - (2q,)i, d= a11 + a22. 

Now, we can define a class of normal matrices by the relations 

AA* = A*A, cA2 + zA*2 + 2dAA* = 41. (25) 

These are exactly normal matrices with eigenvalues belonging to the curve 
(24). Unitary matrices are just a particular case of this definition correspond- 
ing to c = 0, d = 2 [i.e., an = us2 = 1, al2 = 0 in (2311. 

Let us see now how Algorithm 3 proceeds when applied to a general 
normal matrix A. The first four stages run according to the general descrip- 
tion, and I, = 3, 1, = 4, I, = 5, I, = 6. It is easily seen that, after the fourth 
stage is completed, the column a * 1 is orthogonal to columns 6 to n. We 
assume that the entry ul,a is nonzero. Now, by normality the row u1 * is also 
orthogonal to rows 6 to n, so entries 6 to 12 of the column a * 3 are zero and 
we can skip the fifth stage, letting only I, = 6. Stage 9 is the next one in 
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which due to normality no elimination takes place. Here the column (I * 2 is 
orthogonal to columns 9 to n; by normality the same holds for the corre- 
sponding rows, and, assuming a,,, 5 # 0, we get that entries 9 to rr of column 
5 are zero. Hence this elimination step is skipped, leaving only 1, = 9. 

Similarly, in stages 11,15,17,19,23 no elimination takes place provided 
that the entries a3, 6, a4, 8, a5, 9, a6 1o, a7 12 are nonzero. The vanishing of one 
of those entries indicates that ‘& ~‘rn (and hence by Theorem 1 also 
wk 5 m for all k > m) where m is the index of the current layer. Let us 
explain this: Denote by Pk the linear span of the first k coordinate vectors 
e,, . * * > ek in C”. Obviously Ae, EY’;. Now a,, 3 = 0 means A*er E_YZ also, 
so that wi Q I. Similarly u2,s = 0 gives A*eZ •2~. Hence A*Ae, E A*PZ 
cP4, which shows dimspan(e,, Ae,, A*e,, A’e,, A*Ae,} < 4. This implies 
wa < 2. 

Let us now discuss the behavior of Algorithm 3 for matrices of the class 
(25). Taking into consideration the form the matrix A assumes after the first 
stages, we have 

Ae, Ep2, A*ei EP~, A’e, E AL$ Cp4, AA*ei E ATs CL?s. 

(26) 

Now we are able to prove that entries 6 through n of the third row of A are 
zero. Assuming the (1,3) entry is nonzero (otherwise wi Q 1 and the 
statement is true anyhow), we can write 

e3 = oA*el + pei + ye, (27) 

with (Y f 0. We multiply this relation by A*. This leads to 

A*es = oA*‘ei + PA*ei + yA*e, ELZs. (28) 

In the last implication we have used that by (25) and c # 0 

A*2el = pA2el + dA*el + Tel EL?C5 (29) 

holds for some p, u, and 7. By (28) our claim is proved. 
This fact could easily be predicted. Indeed, Equation (25) implies the 

linear dependence (over L,) of th e vectors in the second layer of the 



CONDENSED FORM FOR NORMAL MATRICES 

sequence (31, which means that wa = 2. Recall that this equality implies 

93 

w, < 2 for all m > 2. 

Therefore, the condensed form B of a matrix A from the class (25) is a band 
matrix with the bandwidth Q 7. 

5. NORMAL NEARLY HERMITIAN MATRICES 

Another example where A and A* satisfy a quadratic equation is the 
following. Suppose that a given real normal matrix A has exactly one pair of 
complex conjugate eigenvalues u f ib, all the other eigenvalues being real. 
Then the pair of lines 

(x-u)y=O 

contains the spectrum of A. The complex form of this equation is 

z2 - 52 = 24 z - Z), 

which implies that A itself satisfies the matrix relation 

This means that 

and, according to Theorem 1, 

w, d 2, m > 2. 

Similar considerations apply to the case of r complex conjugate pairs of 
eigenvalues, where r is not too large. 

In fact, in the examples of this section we have not just stabilization of 
bandwidth, but a real decrease. The following theorem implies that the 
condensed form is finally tridiagonal. More precisely, w,,, < 1 for m > 2r. 
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THEOREM 2. Let A be nor&, 

A=SfK, s = s*, K= -Ice, SK = KS, (30) 

and 

k = rank K < - 
2 . 

Then w,,, Q 1 for m > k, so that the condensed form of A has a tridiagonal 
tail. 

Proof. Instead of studying linear dependences of the generalized Krylov 
sequence 

v, Au, A*v, A2v, AA*v, A*2v, A3v,. . . , 

we do the same for the matrix sequence 

I, A, A*, A2, AA*, A*2, A3,. . . 

and observe that for m = 0, 1, . . . the linear span of the matrices in the mth 
layer is also the span of the matrices 

S”, S”-‘K ,..., SK”-‘, K”. 

This replacement of the vector sequence by the matrix sequence is justified 
by the fact that for any 2) in whose eigenvector expansion no coefficient 
vanishes, linear dependence between terms of the vector sequence is equiva- 
lent to linear dependence between the corresponding terms of the matrix 
sequence. This shows also that for normal A important parameters of the 
condensed forms, namely the sizes of the diagonal blocks wi, do not generi- 
cally depend on the initial vector v. 

As S and K can be simultaneously diagonalized, we can easily see that the 
span of all products S’K”, s > 0, r 2 0 is a linear subspace _Y of C”~ ’ of 
dimension at most k. It can be less than k if eigenvalues coincide. The span 
of all those products in the first i layers is denoted by 

Mi = span{ SfmSKS, 0 < s < t < i} 
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and can be generated by the recursion 

M, = {o}, Mi = span{M,_i, KM,_,, S’-‘K}, i > 0. 

We claim 

M, = Mi+l * Mi+l = Mi+2. 
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obviously Mi = Mi+ 1 if and only if KM, C Mi and S’K E Mi. But then 

mi+1 =KMicMi 

and also 

S’+‘K = SS’K E SM, c Mi+l = Mi. 

Hence 

Mi+2 = span{Mi+i, ZUJZ,+~, S’+‘K} c Mi, 

and (31) follows. 
If we define now p to be the smallest natural number for which 

M, = Mr+i> then by the previous result p < k. Each of the further layers 
gives at most one new independent matrix, namely the corresponding power 
of S. Hence w m < 1 for m > p + 1. The dimension of Z+,,( A, V) is not more 
than (and is generically equal to) the dimension of 

span{S’-“K”, 0 < s < t < p} = span{MP, I, S, . . . , SP) 

and the latter is at most k + p + 1 < n, so that there are I-by-I diagonal 
blocks at the right lower comer of the condensed form. ??

Let us illustrate Theorem 2 in the case of a real normal matrix with T 
pairs of conjugate complex eigenvalues. If r = 1 and a + ib are the two 
nonreal eigenvalues, then K is a skew-Hermitian matrix commuting with A 
with eigenvalues +ib and n - 2 zero eigenvalues, hence of rank 2. In the 
second layer SK = aK, so that K, K2 span the space 9. This shows 
wi = wg = 2, and w,,, < 1 for m > 2. 
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For r = 2 and nonreal eigenvalues aj f ibj, j = 1,2, with a, # a2, 
b, z b, S and K are given in a suitable basis by 

S = diag(a,, a,, a2, a2, A,, . . ., A,), iK = diag(b,, -b,, b,, -b,,O ,..., 0) 

From this it is easy to see that the matrices K, SK, K ‘, SK 2 form a basis of 
9’. Hence we have wa = 1, wi = 2, w2 = 3, ws = 2, w,,, d 1 for m > 3. 

We mention finally that the considerations of this section originated from 
a question posed to one of us by K. Veselid. Let H be a real normal 
unreduced upper Hessenberg matrix. If H has only one pair of conjugate 
complex eigenvalues, can this fact be recognized through the form of H? We 
have just seen that our condensed form reacts by shrinking its bandwidth to 
3. On the contrary, the Hessenberg form need not to convert itself into a 
matrix with reduced upper bandsize. This can be shown by counterexamples 
for any dimension n. 

6. CONCLUDING REMARKS 

REMARK 1. In Theorem 2 we have seen that the condensed form of a 
Hermitian matrix S perturbed by a very special low-rank matrix K [see (3011 
does not differ very much from the tridiagonal form, which is the condensed 
form of S. The problem of more general perturbations, still of low rank, will 
be treated among others in a subsequent paper. 

REMARK 2. In conclusion, we show that the condensed form B of a 
normal matrix A is invariant under the QR algorithm (see e.g. [7] or [ll]> 
given that no shift coincides with an exact eigenvalue of A. This result is 
folklore; see e.g., [3, p. 7641, where however no proof is given, We give here a 
short proof. Denote by B, the matrix obtained from B through one step of 
some version of the QR algorithm. Then 

B, = RBR-’ = Q*BQ, (32) 

where Q and R are a unitary and a right triangular factor, respectively, in the 
QR decomposition of some polynomial function in B, 

f(B) = QR- 

For example, f(A) = A - TZ for the single-step QR algorithm with T as a 
shift, and f(A) = A2 - (TV + T~)A + G-~T~ I for the double-step QR algo- 
rithm with the shifts TV and TV. 
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Notice that the left equality in (32) shows that the lower envelope of B, 
(for a definition of the envelope in the symmetric case see [6]) is the same as 
that for B. Now, for any function p, (32) implies 

‘PP,) = WW-’ = Q*4B)Q. (33) 

It is well known that the normality of B amounts to B* being a polynomial in 
B; see e.g., [8, p. 1101. Therefore 

B* = coo 

for some polynomial qO, and since B, is unitarily similar to B, we have also 

B:: = coo. 

Using (33) with CJY = (p,,, we obtain 

B: = RB*R-‘. 

This means that the upper envelope of B, (i.e., the lower envelope of B:) is 
the same as that for B. 

This result does not contradict the fact that nonsymmetric tridiagonal 
matrices do not stay tridiagonal under the QR algorithm. Also, it implies that 
normal band matrices are invariant under this algorithm. For other forms of 
symmetric matrices invariant under the QR algorithm we refer to [l]. 

REMARK 3. Finally, we would like to clarify the relation our results have 
to those by Vojevodin [lo] and Faber and Manteuffel 151. In terms of our 
paper the problem these authors treat is as follows: Describe the matrices 
that can be brought, through a unitary similarity, to Hessenberg form with 
few nonzero diagonals in the upper part. Their answer is: these matrices are 
normal with the spectrum on a line, if a single nonzero upper diagonal is 
allowed (Faber and Manteuffel), and normal with A* being a polynomial of 
degree s in A, if s nonzero upper diagonals are allowed (Vojevodin). In 
contrast to this, we search for a condensed form more symmetric relative to 
the main diagonal. Bandform with bandwidth > 3 is one of the possibilities. 
Such a form is reachable even if A* is not a polynomial of low degree in A. 
An example is unitary matrices, which by [3] can be reduced to pentadiagonal 
form. On the other hand, for an n X n unitary matrix U with simple 
spectrum, no polynomial in the equation 

u* = u-i =f(U) 

can have a degree lower than n - 1. 
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REMARK 4. There have been some numerical experiments with Algo- 
rithms 2 and 3. In the Diploma thesis [9] by Stefanie Krause it was shown 
that Algorithm 3 applied to normal matrices did work quite satisfactorily, also 
finding the small bandform, when the eigenvalues were constructed to lie on 
an ellipse. However, no proof of stability has been given. As was to be 
expected, Algorithm 2 required the use of reorthogonalizations and hence 
turned out to be numerically inferior to the elimination algorithm. 
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