
ISSN 0278�6419, Moscow University Computational Mathematics and Cybernetics, 2009, Vol. 33, No. 3, pp. 109–116. © Allerton Press, Inc., 2009.
Original Russian Text © Ghasemi Kamalvand, Kh.D. Ikramov, 2009, published in Vestnik Moskovskogo Universiteta. Vychislitel’naya Matematika i Kibernetika, 2009,
No. 3, pp. 5–11.

109

1. It is well known that every Hermitian (or real symmetric) matrix can be reduced to tridiagonal form
by a unitary (respectively, real orthogonal) similarity transformation. This theoretical fact underlies such
popular methods for solving systems of linear equations with Hermitian matrices as the conjugate gradient
method, MINRES, and SYMMLQ. Every complex symmetric matrix can be brought to tridiagonal form
by a unitary congruence transformation, and this fact is also used in the practical solution of linear systems
(for instance, the CSYM algorithm proposed in [1] is worthy of notice).

Let us make our point more exact. The above�mentioned unitary reduction to tridiagonal form is
meant as a finite sequence of elementary unitary similarities or congruences or an equivalent of such a
sequence (like the Lanczos algorithm or CSYM), which can be described as a finite process that preserves
unitary similarity or congruence and employs only arithmetic operations and quadratic radicals. For brev�
ity, any process of this type will be called a finite orthogonal process. The finiteness of the procedure is
important; otherwise, every Hermitian or symmetric matrix could be brought even to a diagonal form.

A condensed form of an n�by�n matrix A is understood as a matrix that is unitarily similar or congruent
to A and has a large number of zero entries. In addition to the above�mentioned tridiagonal form, an
example of a condensed form can be the Hessenberg matrix. In this communication, we deal with a spe�
cific type of condensed forms, namely, block tridiagonal matrices with square diagonal blocks whose (pos�
sibly different) orders are bounded by a number k � n.

The classical fact on the possibility of unitary tridiagonalization of Hermitian matrices is a particular
case of the following result proved in [1].

Theorem 1. A normal n�by�n matrix A can be brought by a finite orthogonal process to the block tridiagonal
form
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where the diagonal blocks H11, H22, … are square and their orders are generically given by the consecutive
integers 1, 2, …. If A satisfies the equation

(2)

where g(x, y) is a polynomial of degree m � n, then, starting from i = m, the orders of the diagonal blocks Hii

in matrix (1) stabilize at the value m.

An equivalent formulation of condition (2) is the requirement that the entire spectrum of A belong to
a plane algebraic curve of degree m (see [2]). For instance, the spectrum of a Hermitian matrix lies on the
real axis, that is, curve of degree one; hence, m = 1.

An analog of Theorem 1 concerning the reduction to a block tridiagonal form by unitary congruence
transformations was proved in [3]. This result holds for conjugate�normal matrices, which are defined by
the equality

and play the same role in the theory of unitary congruences as normal matrices do with respect to unitary
similarities.

The reduction to a block tridiagonal form is also possible for certain types of matrices that are not nor�
mal or conjugate�normal. Let us write an n�by�n matrix A as

(3)

where 

Theorem 2. Let A be a matrix of form (3), where the skew�Hermitian matrix  has the rank k ≥ 1. Then,
A can be brought by a finite orthogonal process to the block tridiagonal form (1) in which the orders of the diag�
onal blocks Hii do not exceed k + 1.

Theorem 2 is a restatement of the result proved in [4]. Note that the matrix A in this theorem is not

normal if the matrices  and  do not commute.

The reduction described by Theorem 2 is effected by unitary similarity transformations. However, an
analogous fact holds for unitary congruences if one now deals with (skew�symmetric) perturbations of
symmetric matrices rather than (skew�Hermitian) perturbations of Hermitian matrices.

Theorem 3. Let A be an n�by�n matrix written as

(4)

where S = ST, K = –KT. If the skew�symmetric matrix K has rank k ≥ 1, then A can be brought by a finite
orthogonal process to the block tridiagonal form (1) in which the orders of the diagonal blocks Hii do not exceed
2k + 1.

Our aim in this paper is to extend Theorems 2 and 3 so that low�rank perturbations could be examined
not only for Hermitian and symmetric matrices but for any normal (respectively, conjugate�normal)
matrix that can be brought to a block tridiagonal form. Moreover, we allow for general perturbations rather
than only skew�Hermitian (respectively, skew�symmetric) ones.

The results obtained in this paper imply that the perturbed matrices can still be brought to block tridi�
agonal form, albeit the bound on the size of a diagonal block deteriorates proportionally to the rank of the
perturbation matrix. These results are stated in Section 4. In Section 2, we recall the construction of the
generalized Lanczos process, which underlies the proofs of Theorems 2 and 3. In Section 3, we discuss the
relationship between the reductions to condensed forms based on unitary similarities and unitary congru�
ences, respectively. This relationship, as well as the generalized Lanczos process, is used for proving the
theorems in Section 4.

2. The Lanczos algorithm is a technique for reducing a Hermitian matrix A to tridiagonal form. The
main idea of this algorithm is to orthonormalize the power sequence
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where x is a given or arbitrarily chosen initial vector. Suppose that a linear operator � acting in Cn is asso�
ciated with the matrix A. Then, the matrix of this operator with respect to the orthogonal basis constructed
in the Lanczos algorithm is the desired tridiagonal form.

If A is a normal nonhermitian matrix, then one should instead inspect the generalized power sequence

(5)

It is convenient to regard sequence (5) as consisting of segments of lengths 1, 2, 3, 4, …, respectively. The
kth segment called the kth layer can be described as the set of vectors u = Wk(A, A*)x, where Wk(s, t) varies
over the set of kth degree monomials in the (commuting) variables s and t. The symbol W0(s, t) denotes
the empty word; thus, W0(A, A*)x is simply the vector x.

The essence of the generalized Lanczos process is the orthonormalization of sequence (5). With this
process, we associate the following notation and terminology: the subspace

(6)

is called the mth generalized Krylov subspace. Its dimension is denoted by �m. The scalar ωm = �m – �m – 1

(m ≥ 1) is called the width of the mth layer. We set ω0 = 1.

Sequence (5) is certainly not constructed explicitly (just as the conventional power sequence is not
constructed explicitly in the classical Lanczos algorithm). An implicit construction of this sequence and
its orthogonalization are performed as follows. Suppose that we have already found an orthonormal basis
q1, q2, …,  in the subspace �m(A, x); moreover, the last vectors , …,  in this basis have been

obtained using the vectors in the mth layer of sequence (5). Now, in a certain order, we construct the vec�
tors , …, , , …, , which are then orthogonalized to the current orthonormal

system.

From this description, we can easily derive the following properties of the generalized Krylov subspaces
(see [2, Section 2]):

(1) If x ∈ �m, then

(2) If q� ∈ �m\�m – 1, then

As before, we associate with A the linear operator � acting in the n�dimensional space. Suppose that
the application of the generalized Lanczos process to A and the initial vector x produces the orthonormal
basis q1, …, qn. Then, properties (1) and (2) imply that the matrix of � with respect to this basis has block
tridiagonal form (1). Furthermore, the orders ni of the diagonal blocks Hii are determined by the scalars
ωi; namely,

In particular, n1 is always one.

The idea of the generalized Lanczos process is also applicable to a nonnormal matrix A. An important
distinction from the normal case is that A and A* do not commute any longer. Therefore, the kth layer of
the generalized power sequence should now be defined as the set of vectors u = Wk(A, A*)x, where Wk(s, t)
is an arbitrary kth degree monomial in the noncommuting variables s and t. As a result, the bound

which is valid for all the normal matrices, is replaced by the inequality

If this inequality realistically describes the situation with a specific matrix A, then the use of the general�
ized Lanczos process for such a matrix is hardly reasonable. However, for some classes of nonnormal
matrices, the scalars ωi can be bounded by a small constant for all i. Theorem 2 specifies one of such
classes.
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3. The block tridiagonal matrix (1) constructed in the preceding section using the generalized Lanczos
process is unitarily similar to the original matrix A. In this section, we discuss the reduction to condensed
forms based on unitary congruences.

We begin with the case of a conjugate�normal matrix A. With such a matrix, we associate the matrix

(7)

of the double order. (The bar over the symbol of a matrix or a vector means entry�wise conjugation.) It is
easy to verify that matrix (7) is normal in the conventional sense.

We fix a nonzero vector x ∈ Cn with which we associate the vector

(8)

of the double dimension. Consider the generalized power sequence generated by  and vector (8):

(9)

The symbols AL and AR stand for the matrices  and , respectively.

The upper halves of vectors (9) form the sequence

(10)

We split this sequence into layers defining the kth layer as the set of vectors corresponding to the kth layer

of sequence (9). Similarly, with the mth subspace �m( , v), we associate the subspace (A, x) formed

of the upper halves of the vectors z ∈ �m( , v). The dimension of (A, x) is denoted by , and the

scalar  =  –  (m ≥ 1) is called the width of the mth layer in (10). It is obvious that

(11)

where ωm is the width of the mth layer in (9).

Now, we perform an unusual orthogonalization of sequence (10). By analogy with the generalized
Lanczos algorithm, we can describe this process as follows. Suppose that we have already found an

orthonormal basis q1, q2, …,  in the subspace (A, x); moreover, the last vectors , …,  in

this basis have been obtained using the vectors in the mth layer of sequence (10). Then, in a certain order,

we construct the vectors , …, , , …, . Each of these vectors is orthogonalized

to the current orthonormal system formed of the conjugate vectors , , …. If the complete orthogonal�
ization results in a nonzero vector, this vector is normalized and, after applying conjugation once more,
becomes the new vector qj.

It can be shown that the subspaces  have similar properties to those of the generalized Krylov sub�
spaces (see properties (1) and (2) in Section 2):
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(2) If q� ∈ \ , then

The symbol  as applied to a subspace � denotes the subspace

Suppose that the application of the above process to the conjugate�normal matrix A and the initial vec�
tor x produces an orthonormal basis q1, …, qn in Cn. Define the unitary matrix

Then, properties (1) and (2) stated in this section imply the matrix equality

(12)

where H is a matrix of form (1) in which the orders of the diagonal blocks are determined by the scalars
. Rewriting (12) as

we conclude that A and H are unitarily congruent.
If we drop the requirement that A be conjugate�normal, the associate matrix (7) will not longer be nor�

mal. However, all the above constructions and definitions are still applicable with the distinction that the
width of the ith layer in sequence (9) generically increases to 2i. Inequality (11) relating the width of a layer
in (9) and the width of the corresponding layer in (10) remains also valid.

4. We first examine low�rank perturbations of normal matrices.
Theorem 4. Let N be a normal n�by�n matrix such that the generalized Lanczos process with an arbitrary

initial vector brings N to a block tridiagonal form in which the orders of the diagonal blocks do not exceed the
scalar ω0. Then, for every matrix R of rank k � n, the matrix

(13)

can be brought to a block tridiagonal form in which the orders of the diagonal blocks do not exceed  =
(2k + 1)ω0.

Proof. We write the perturbation matrix R as a sum of k dyads; that is,

Taking an arbitrary nonzero vector v ∈ Cn, we construct the sequence of subspaces �k according to the
following rules:

(14)

The right�hand side of (14) should be understood as the span of all the vectors in the indicated subspaces.
We show that the inclusions

(15)

and

(16)

hold for all k. If k = 0, then we have

where

Thus, inclusions (15) and (16) hold for k = 0.
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If k > 0 and z ∈ �k, we have

where

Since x1, y1, …, xk, yk ∈ �1 ⊂ �k (k > 1), it holds that

and

Now, we apply an orthonormalization process similar to the generalized Lanczos algorithm to the
chain of subspaces

(17)

Suppose that this process results in an orthonormal basis q1, …, qn in Cn. Split this basis into the parts (lay�
ers) that correspond to the quotient spaces

(18)

The dimensions of subspaces (18) play the same role as the scalars ωi do in the generalized Lanczos pro�
cess; namely, they determine the sizes of block rows and columns in the matrix H corresponding to the
underlying linear operator � in the basis q1, …, qn. Now, inclusion (15) means that at most one subdiag�
onal block is nonzero in each block column of H. This is the block adjacent to the diagonal block. Simi�
larly, inclusion (16) implies that, in each block row of H, only one superdiagonal block can be nonzero,
namely, the block adjacent to the diagonal block. In other words, H is a block tridiagonal matrix, and it
remains to estimate the sizes of its diagonal blocks.

According to formula (14), the subspace �j is determined by the j th layer of the generalized power
sequence generated by N and v and by the ( j – 1)th layers of the sequences generated by N and the vec�
tors x1, …, xk, y1, …, yk. By the hypotheses of the theorem, the widths of all the layers in each of these
sequences do not exceed ω0. Consequently, the dimension of each subspace �j is bounded by the scalar

 = (2k + 1)ω0.

Assume that, for some k, sequence (17) stabilizes; that is,

If an orthonormal basis in Cn is not yet obtained, then �k is a nontrivial common invariant subspace of A
and A*. In this case, one should act exactly as in the conventional Lanczos algorithm; namely, choose a
nonzero vector that is orthogonal to �k and perform the same actions as those performed above with the
vector v. As a result, the current orthonormal system will be extended by new vectors. It is possible that,
to obtain a complete basis in Cn, this procedure has to be repeated. Suppose that the desired basis is finally
constructed. Then, the operator � has a block diagonal matrix H with respect to this basis. The argument
given above applies to each diagonal block, which proves the theorem in this case as well.

Now, we examine low�rank perturbations of conjugate�normal matrices.

Theorem 5. Let N be a conjugate�normal n�by�n matrix such that the process described in Section 3 and
started with an arbitrary initial vector brings N to a block tridiagonal form in which the orders of the diagonal
blocks do not exceed the scalar ω0. Then, for every matrix R of rank k � n, the matrix

(19)

can be brought to a block tridiagonal form in which the orders of the diagonal blocks do not exceed  =
2(4k + 1)ω0.

Az Nz γ1x1 … γkxk span N�k x1 … xk, , ,{ },∈+ + +=
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Proof. Instead of A, we consider the corresponding matrix . Substituting expression (19) into (7), we
obtain

(20)

The matrix  is normal, while  is obviously of rank 2k.

Suppose that the process described in Section 3 and started with the initial vector q1 generates an
orthonormal basis in Cn in which N has a block tridiagonal form. By assumption, the orders of the diagonal
blocks in this form do not exceed the scalar ω0.

Let us apply the generalized Lanczos process to the matrix  and the initial vector

(21)

Then, n orthonormal vectors in C2n will be obtained. Being split into layers, these vectors satisfy the rela�
tions

(22)

Here,  are the orders of the diagonal blocks in the block tridiagonal form of N, while ωi are the widths

of the layers in the generalized power sequence generated by the pair ( , v).

Starting with the one�dimensional subspace �0 = span{v}, we construct the same sequence of the sub�

spaces �k for  as in the proof of Theorem 4. Taking into account the relation rank  = 2k and using ine�
qualities (22), we conclude that the dimensions of quotient spaces (18) are bounded by the scalar

(23)

Moreover, the dimension of the maximal subspace among �k is at least n because these subspaces contain

the generalized Krylov subspaces for the pair ( , v).

Now, we project the subspaces

on Cn. In other words, we take the upper half q in each base vector

of these subspaces. The resulting set  of vectors in Cn can be split into layers in a natural way. Since
the width of any layer cannot increase in the process of projecting, scalar (23) is still an upper bound for
the width of the layer in the system .

Suppose that the vectors  are linearly independent. Then, without loss of generality, 
can be regarded as orthonormal vectors. The structure of the subspaces �k implies that A has a block trid�
iagonal form with respect to the basis , and the orders of the diagonal blocks in this form do not

exceed the scalar . In this case, the theorem is proved.

It remains to consider the case when projecting on Cn reduces the dimension; that is, an orthonormal
system

, m < n, (24)

rather than a basis is obtained. The span of this system is a common coninvariant subspace of A and AT.
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We choose a (unit) vector  that is orthogonal to each vector in system (24) and perform the same
operations as those performed above for the vector q1. Typically, this process converts system (24) into an
orthonormal basis

,

in Cn. In this basis, A has a block tridiagonal form, and the above bound  is valid for the orders of the
diagonal blocks. A distinction from the preceding case is that we now have the direct sum of two block trid�
iagonal submatrices.

It may happen that the system ,  is not yet a basis. Then, we choose a vector  that
is orthogonal to this system and repeat the above construction. In this way, we ultimately obtain an
orthonormal basis in Cn in which A has the desired form.

Remark. The results of Theorems 4 and 5 are of practical interest for solving systems of linear equations
only when the scalars ω0 and k are fairly small.
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