
Conjugate Gradient and Preconditioned Conjugate Gradient iterations

Let ek be the error at step k of an iterative method in approximating the
solution x of a linear system Ax = b, i.e. ek = x−xk . Choose a vector dk 6= 0

and set ek+1 = ek − ωdk. Let H be a positive definite matrix and consider
the inner product (u,v)H = uT Hv. Then the value of ω for which ‖ek+1‖H is
minimum is

ω = ωk =
(ek,dk)H

‖dk‖2
H

.

(‖ek+1‖2
H = ‖ek‖2−2ω(ek,dk)H +ω2‖dk‖2

H). So, we have the iterative scheme

x0 ∈ R
n, xk+1 = xk +

(ek,dk)H

‖dk‖2
H

dk, k = 0, 1, 2, . . . . (it)

Note that each of the three conditions:

1) ‖ek+1‖H minimum,
2) (ek+1,dk)H = 0,
3) F (xk + ωdk) minimum, F (y) = 1

2y
T Hy − yT HA−1b

yields the value ω = ωk, i.e. such conditions are equivalent. (Note that A−1b is
the global minimum for F , and the contours of F are neighborhoods of A−1b

in the metric induced by the norm ‖ · ‖H). Moreover, for ω = ωk we have

4) ‖ek+1‖2
H = ‖ek‖2

H − ‖ωkdk‖2
H ,

5) limk ‖ek‖H = l{dk},H ≥ 0,
6) limk→+∞ ‖ωkdk‖H = 0.

Suitable choice of H and {dk} make l{dk},H = 0, i.e. make (it) convergent to
x = A−1b.

Choice H = AT A . . . H = I . . . . . .

Choice H = A.

G method

Assume A, in the system Ax = b we have to solve, positive definite. Then
the choices H = A and dk = rk = b − Axk yield l{dk},H = 0 (use 6)). The
method so obtained is called steepest descent (or Gradient) since dk = rk =
−∇F (xk) and F decreases along −∇F (xk) more rapidly than in any other
direction (in a neighborhood of xk). However, in general the contours of F are
far from being spheres, so the steepest descent direction (which is orthogonal
to such contours) is far from pointing to A−1b. In particular, from 4) and the
Kantorovich inequality,

1 ≤ zT AzzT A−1z

(zT z)2
≤ (λmax + λmin)2

4λmaxλmin

(λmax = maxλ(A), λmin = min λ(A)), we have the following result

‖x− xk‖A

‖x− x0‖A
≤
(

λmax

λmin
− 1

λmax

λmin
+ 1

)k

that states that G can be very slow when λmax

λmin
>> 1.
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CG method

Assume A, the coefficient matrix of our system Ax = b, positive definite
(recall that A and b are real). In the general scheme choose H = A, d0 = r0 =
b−Ax0, dk = rk + βk−1dk−1, k = 1, 2, . . ., (rk = b−Axk) where βk−1 is such
that

(dk,dk−1)A = 0

(dk conjugate to dk−1). Here below is the algorithm we obtain:

x0 ∈ R
n, r0 = b − Ax0, d0 = r0.

For k = 0, 1, . . . , {
τk =

d
T
k rk

dT
k

Adk

xk+1 = xk + τkdk

rk+1 = b − Axk+1 = rk − τkAdk

βk = − r
T
k+1Adk

dT
k

Adk

dk+1 = rk+1 + βkdk

}

known as Conjugate Gradient (CG) algorithm.
Remarks. Note that

0 = (x − xk+1)
T Hdk = (x − xk+1)

T Adk = rT
k+1dk, rT

k+1dk+1 = ‖rk+1‖2
2.

As a consequence, if at step s we have rs = b − Axs 6= 0, then ds 6= 0, τs is
well defined and not zero . . .: the algorithm works.

If r0, . . ., rm−1 are non null and rm = 0, then βm−1 = 0, dm = 0, τm cannot
be defined, but it doen’t matter since xm = A−1b. This hypothesis is effectively
verified, in fact there exists m ≤ n = the order of A, such that rm = 0 (see
below).

Alternative expressions for τk and βk hold:

τk =
dT

k rk

dT
k Adk

=
rT

k rk

dT
k Adk

(dk = rk + βk−1dk−1, rT
k dk−1 = 0),

βk = − r
T
k+1Adk

dT
k

Adk
= − r

T
k+1τ−1

k
(rk−rk+1)

dT
k

τ−1

k
(rk−rk+1)

=
−r

T
k+1rk+r

T
k+1rk+1

dT
k
rk

=
r

T
k+1rk+1

rT
k
rk

.

The latter identity uses the result

rT
k+1rk = 0

(residual at step k + 1 is orthogonal to residual at step k, exactly as in the
Gradient method) which is not obvious:

rT
k+1rk = rT

k+1(dk − βk−1dk−1) = −βk−1r
T
k+1dk−1

= −βk−1(rk − τkAdk)T dk−1 = βk−1τkd
T
k Adk−1 = 0.

First main result: If r0, r1, . . . , rp are non null, then

dT
l Adj = 0, rT

l rj = 0, 0 ≤ j < l ≤ p.
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That is, each new residual (search direction) is orthogonal (conjugate) to all
previous residuals (search directions). As a consequence, the residual rm must
be null for some m ≤ n, or, equivalently, CG finds the solution of Ax = b in at
most n steps.

Proof. . . .

A useful representation of the residuals. If r0, r1, . . . , rk−1 are non null, then
there exist polynomials sk(λ), qk(λ) such that

rk = sk(A)r0, dk = qk(A)r0,
sk(λ) = (−1)kτ0τ1 · · · τk−1λ

k + . . . + 1, τ0τ1 · · · τk−1 6= 0.

Proof (by induction). The equality r0 = s0(A)r0 holds if s0(λ) = 1; d0 =
q0(A)r0 holds if q0(λ) = 1. Moreover,

rk+1 = rk − τkAdk = sk(A)r0 − τkAqk(A)r0 = sk+1(A)r0

if sk+1(λ) = sk(λ) − τkλqk(λ), and

dk+1 = rk+1 + βkdk = sk+1(A)r0 + βkqk(A)r0 = qk+1(A)r0

if qk+1(λ) = sk+1(λ) + βkqk(λ). Finally, since

sk+1(λ) = sk(λ) − τkλ(sk(λ) + βk−1qk−1(λ)),

the coefficient of λk+1 in sk+1(λ) is −τk times the coefficient of λk in sk(λ).
Thus, by the inductive assumption, it must be (−1)k+1τ0τ1 · · · τk−1τk . Also,
the coefficient of λ0 in sk+1(λ) is equal to the coefficient of λ0 in sk(λ), which
is 1 by the inductive assumption.

Second main result: rk = 0 for some k ≤ #{distinct eigenvalues of A}.
Proof. Let µ1, µ2, . . . , µm be the distinct eigenvalues of A (m ≤ n = order of

A). Assume that CG requires more than m steps to converge. So, the vectors
r0, r1, . . . , rm are non null, and, by the First main result, orthogonal (⇒ linearly
independent). Let V be an orthonormal matrix whose columns are eigenvectors
of A, thus V T = V −1 and AV = V D for D diagonal with the eigenvalues of A
as diagonal entries. Observe that there is a degree-m polynomial which is null
in A,

m
∏

j=1

(A−µjI) =

m
∏

j=1

(V DV T−µjI) =

m
∏

j=1

V (D−µjI)V T == V

m
∏

j=1

(D−µjI)V T = 0.

As a consequence the matrices A0 = I , A, . . ., Am are linearly dependent. But
this implies that the dimension of the space

Sm+1(r0) = Span {r0, Ar0, . . . , A
mr0} = Span {r0, r1, . . . , rm}

is smaller than m + 1, which is absurd. It follows that one of the vectors ri,
i = 0, . . . , m, must be null.

Let Π1
k be the set of all polynomials of degree exactly k whose graphic

pass through (0, 1). We now see that the polynomial sk(λ) in the expression
rk = sk(A)r0 is a very particular polynomial in the class Π1

k: it makes the norm
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of the vector pk(A)r0, pk ∈ Π1
k, minimum (for a suitable choice of the norm).

This result let us give estimates of the rate of convergence of CG, as precise as
good is the knowledge about the location of the eigenvalues of A. For example,
if it is known that the eigenvalues of A cluster around 1, then CG must converge
with a superlinear rate of convergence (see toe 1a).

Notice that rk = sk(A)r0 = r0 + ĥk, for a particular vector ĥk in the space
M = Span {Ar0, A

2r0, . . . , A
kr0}. Take a generic vector hk in this space. Then

‖r0 + hk‖2
A−1 = ‖r0 + ĥk + hk − ĥk‖2

A−1

= ‖r0 + ĥk‖2
A−1 + ‖hk − ĥk‖2

A−1 + 2(r0 + ĥk,hk − ĥk)A−1 .

Now observe that the latter inner product is null, in fact, for j = 0, . . . , k − 1,
0 = rT

k rj = rT
k A−1Arj = (rk , Arj)A−1 , that is, rk is A−1-orthogonal to the

space Span {Ar0, Ar1, . . . , Ark−1}, but this space is exactly M. The thesis

follows since hk − ĥk ∈ M. So we have:

‖r0 + hk‖2
A−1 = ‖r0 + ĥk‖2

A−1 + ‖hk − ĥk‖2
A−1 ≥ ‖r0 + ĥk‖2

A−1 .

In other words,

‖rk‖2
A−1 = ‖r0 + ĥk‖2

A−1 = min{‖r0 + hk‖2
A−1 : hk ∈ M}

= min{‖pk(A)r0‖2
A−1 : pk ∈ Π1

k}.
(m)

Comparison with GMRES. Notice that for any hk ∈ M we have

r0 + hk = b−A(x0 + z), z = −A−1hk ∈ Sk(r0) = Span {r0, Ar0, . . . , A
k−1r0}.

Thus, the vector xk generated by the CG method is of type x0 + ẑ where ẑ

solves the problem

‖b− A(x0 + ẑ)‖A−1 = min{‖b− A(x0 + z)‖A−1 : z ∈ Sk(r0)} (p)

(Sk(r0) is known as Krilov space). GMRES is a method able to solve Ax = b

in at most n steps under the only assumption det(A) 6= 0. (Like CG, GMRES
in order to be competitive must be used as an iterative method, i.e. less than
n steps must be sufficient to give a good approximation of x). In the k-th step
of GMRES it is defined a vector xk of type x0 + ẑ where ẑ solves exactly the
problem (p) but the norm involved is the euclidean one. So, CG is a minimal
residual algorithm different from GMRES|A pd.

It is easy to see that the condition (m) can be rewritten as follows:

‖x− xk‖2
A = min

pk∈Π1
k

‖pk(A)(x − x0)‖2
A.

Now we give a bound for the quantity ‖pk(A)(x − x0)‖2
A, pk ∈ Π1

k, which can
be evaluated if (besides A,b) also some information about the location of the
eigenvalues λi of A is given. Let vi 6= 0 be such that Avi = λivi, vT

i vj = δij .
Then

‖pk(A)(x − x0)‖2
A = (x − x0)

T Apk(A)2(x − x0) = (
∑

αivi)
T
∑

αiApk(A)2vi

= (
∑

αivi)
T
∑

αiApk(λi)
2vi = (

∑

αivi)
T
∑

αiλipk(λi)
2vi

=
∑

α2
i λipk(λi)

2 ≤ maxi |pk(λi)|2‖x− x0‖2
A.
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So, we obtain the following
Third main result: If xk is the k-th vector generated by CG when applied

to solve the pd linear system Ax = b, then

‖x− xk‖2
A = min

pk∈Π1
k

‖pk(A)(x − x0)‖2
A ≤ max

i
|pk(λi)|2‖x− x0‖2

A, ∀ pk ∈ Π1
k.

So, if S ⊂ R, pk ∈ Π1
k, Mk ∈ R are known such that λi ∈ S ∀ i and |pk(λ)| ≤ Mk

∀λ ∈ S, then ‖x − xk‖A ≤ Mk‖x− x0‖A.

Let us see two applications of the latter result. As consequences of the
first application we observe that CG (considered as an iterative method) has
a linear rate of convergence, is in general faster than G, and is competitive
(f.i. with direct methods) if λmax and λmin are comparable. However, as a
consequence of the second application, the latter condition is not necessary: the
rate of convergence of CG remains high (so, CG remains competitive) if most

of the eigenvalues are in [λmin, λ̂] with λmin and λ̂ comparable. Further useful
applications of the Third main result hold. In particular, as a consequence of
one of these (see toe 1a), it can be stated that CG has a superlinear rate of
convergence if most of the eigenvalues of A are in the interval S = [1− ε, 1 + ε]
(. . .).

(1)

S = [λmin, λmax], pk(x) =
Tk

(

λmax+λmin−2x
λmax−λmin

)

Tk

(

λmax+λmin

λmax−λmin

) ⇒

‖x− xk‖A < 2

(

√

µ2(A) − 1
√

µ2(A) + 1

)k

‖x− x0‖A, µ2(A) =
λmax

λmin
.

(2)

S = [λmin, λ̂] ∪ {λi : λi > λ̂}, rλ̂ = #{i : λi > λ̂},

pk(x) = Πi: λi>λ̂

(

1 − x

λi

) Tk−r
λ̂

(

λ̂+λmin−2x

λ̂−λmin

)

Tk−r
λ̂

(

λ̂+λmin

λ̂−λmin

) ⇒

‖x− xk‖A < 2





√

λ̂/λmin − 1
√

λ̂/λmin + 1





k−r
λ̂

‖x − x0‖A, k ≥ rλ̂.

The applications (1) and (2) of the Third main result suggest an idea. When
λmin and λmax are not comparable and the eigenvalues of A are uniformly dis-
tributed in the interval [λmin, λmax] (in this case all n steps of CG are required
in order to give a good approximation of x), replace the given system Ax = b

with an equivalent system Ãx̃ = b̃, Ã = E−1AE−T , x̃ = ET x, b̃ = E−1b,
det(E) 6= 0, where the matrix E is such that µ2(Ã) < µ2(A) and has one of the
following properties

• µ2(Ã) << µ2(A)

• Ã has much less distinct eigenvalues than A
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• Ã has the eigenvalues much more clustered (around 1) than A

Then apply CG to Ãx̃ = b̃.
If such matrix E can be found, then the pd matrix P = EET is said pre-

conditioner.
Note that E−T ÃET = P−1A, so one could look directly for a pd matrix P

such that the (real positive) eigenvalues of P−1A have the required properties.
For example, in order to obtain something of type P−1A ≈ I (which would result
in a very high increase of the CG rate of convergence) one could choose P as
an approximation A of A. We shall see that applying CG to Ãx̃ = b̃ requires,
for each step, a surplus of computation: solve a system of type Pz = hk.
This computation must not make CG slow, in other words P must be a lower
complexiy matrix than A. Also notice that E1 and E2, E1 6= E2, E1E

T
1 = E2E

T
2 ,

define matrices Ã1 = E−1
1 AE−T

1 and Ã2 = E−1
2 AE−T

2 , Ã1 6= Ã2, with the same
spectrum. For this reason one prefers to call preconditioner P instead of E.

A final remark. The vector x = A−1b we are looking for is also the minimum
point of the function F (z) = 1

2z
T Az − zT b. Analogously, x̃ = Ã−1b̃ is the

minimum point of the function F̃ (z) = 1
2z

T Ãz − zT b̃. The preconditioning
technique replaces the (sections of the) contours of F with the more spherical
(sections of the) contours of F̃ , and this results in a more efficient minimization
when using gradient-type methods.

Let us write the preconditioned version of the CG algorithm, well defined
once that A, b and the preconditioner P are given.

Let us apply CG to the system Ãx̃ = b̃:

x̃0 ∈ R
n, r̃0 = b̃ − Ãx̃0, d̃0 = r̃0.

For k = 0, 1, . . . , {
τ̃k =

r̃
T
k r̃k

d̃T
k

Ãd̃k

x̃k+1 = x̃k + τ̃kd̃k

r̃k+1 = b̃ − Ãx̃k+1 = r̃k − τ̃kÃd̃k

β̃k =
r̃

T
k+1r̃k+1

r̃T
k
r̃k

d̃k+1 = r̃k+1 + β̃kd̃k

}

Note that the convergence rate of the sequence {x̃k} can be evaluated by using
the following results

‖x̃ − x̃k‖Ã < 2





√

µ2(Ã) − 1
√

µ2(Ã) + 1





k

‖x̃ − x̃0‖Ã, µ2(Ã) =
λ̃max

λ̃min

,

‖x̃− x̃k‖Ã < 2





√

˜̂
λ/λ̃min − 1

√

˜̂
λ/λ̃min + 1





k−r˜̂
λ

‖x̃− x̃0‖Ã, k ≥ r˜̂
λ

:

if µ2(Ã) << µ2(A) or Ã has most of the eigenvalues λ̃i in [λ̃min,
˜̂
λ] and

˜̂
λ/λ̃min <<

λmax/λmin, then x̃k → x̃ = ET x with a greater rate than xk → x.
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Now we obtain each row of the preconditioned CG method. Define xk =
E−T x̃k , rk = b − Axk, and dk = E−T d̃k. Then

r̃k = b̃− Ãx̃k = E−1b− E−1AE−T (ET xk)
= E−1rk = ET E−T E−1rk = ET hk,hk = P−1rk,

r̃T
k r̃k = rT

k E−T E−1rk = rT
k hk,

d̃T
k Ãd̃k = d̃T

k E−1AE−T d̃k = dT
k Adk.

Thus

τ̃k =
rT

k hk

dT
k Adk

. (row1)

Moreover, we have

x̃k+1 = ET xk+1 = ET xk + τ̃kET dk ⇒
xk+1 = xk + τ̃kdk,

(row2)

r̃k+1 = E−1rk+1 = E−1rk − τ̃kE−1AE−T ET dk ⇒
rk+1 = rk + τ̃kAdk,

(row3)

β̃k =
rT

k+1hk+1

rT
k hk

(row4)

(row3.5: hk+1 = P−1rk+1),

d̃k+1 = ET dk+1 = ET hk+1 + β̃kET dk ⇒
dk+1 = hk+1 + β̃kdk.

(row5)

Finally, in order to initialize the algorithm, set:

x0 = E−T x̃0, r0 = b− Ax0,

d0 = E−T d̃0 = E−T r̃0 = E−T ET h0 = h0.
(row0)

Regarding the convergence rate of the sequence {xk}, generated by the al-
gorithm row0 and, for k = 0, 1, . . ., rows1, 2, 3, 3.5, 4, 5, note that

‖x̃k − x̃‖2
Ã

= (x̃k − x̃)T Ã(x̃k − x̃) = (ET xk − ET x)T E−1AE−T (ET xk − ET x)

= (xk − x)T A(xk − x) = ‖xk − x‖2
A.

Thus the bounds for ‖x̃− x̃k‖Ã obtained above, can be rewritten as follows

‖xk−x‖A

‖x0−x‖A
≤ 2

(√
µ2(Ã)−1√
µ2(Ã)+1

)k

, µ2(Ã) = λ̃max

λ̃min

,

‖xk−x‖A

‖x0−x‖A
≤ 2

(

√

˜̂
λ/λ̃min−1

√

˜̂
λ/λ̃min+1

)k−r˜̂
λ

, k ≥ r˜̂
λ
.

Why clustering around 1 is good

Let A be a p.d. matrix and ε, 0 < ε < 1, be fixed.
Denote by λε

j the eigenvalues of A outside the interval [1 − ε, 1 + ε] and by
rε the number of such eigenvalues. Set S = [1 − ε, 1 + ε] ∪ {λε

j} and let pq be
the polynomial

pq(λ) =
∏

λε
j

(

1 − λ

λε
j

)

Tq−rε
((1 − λ)/ε)

Tq−rε
(1/ε)

, q ≥ rε
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where Tk(x) denotes the chebycev polynomial of degree k. ((b+a−2λ)/(b−a) =
(1− λ)/ε, (b + a)/(b− a) = 1/ε, if a = 1− ε, b = 1 + ε ). Notice that S is a set
containing all the eigenvalues of A, and pq has exactly degree q and pq(0) = 1.
Then one can say that if xq is the q-th vector generated by the CG method
when solving Ax = b, then

‖x− xq‖A ≤ (max
λ∈S

|pq(λ)|)‖x − x0‖A. (bound)

This bound for ‖x− xq‖A allows a better evaluation of the CG rate of conver-
gence with respect to the well known bound

‖x − xq‖A ≤ 2

(

√

µ2(A) − 1
√

µ2(A) + 1

)q

‖x − x0‖A, µ2(A) =
maxλ(A)

min λ(A)
(wkbound)

in case it is known that most of (almost all) the eigenvalues of A are in some
interval [1 − ε, 1 + ε] where ε is small (almost zero).

If, moreover, the n×n linear system Ax = b can be seen as one of a sequence
of increasing order linear systems, with the property that ∀ ε > 0 ∃ kε, nε such
that for all n > nε outside [1 − ε, 1 + ε] fall no more than nε eigenvalues of A,
then (bound) allows to prove the superlinear convergence of CG.

(Note that in general CG has a linear rate of convergence, as a consequence
of (wkbound)).

Let us prove these assertions, by evaluating maxλ∈S |pq(λ)|.
maxλ∈S |pq(λ)| = maxλ∈[1−ε,1+ε] |pq(λ)|

≤ (max...

∏

λε
j

∣

∣

∣1 − λ
λε

j

∣

∣

∣)(max...

∣

∣

∣

Tq−rε ((1−λ)/ε)
Tq−rε (1/ε)

∣

∣

∣)

= (max...

∏

λε
j

∣

∣

∣
1 − λ

λε
j

∣

∣

∣
) 1

Tq−rε (1/ε) .

Now first notice that

Tq−rε

(

1

ε

)

= Tq−rε

(

1+ε
1−ε + 1
1+ε
1−ε − 1

)

>
1

2





√

1+ε
1−ε + 1

√

1+ε
1−ε − 1





q−rε

.

Then denote by λ̂ε
j those eigenvalues λε

j satisfying the inequalities

λε
j < 1 − ε, λε

j <
1

2
(1 + ε)

and observe that

maxλ∈[1−ε,1+ε]

∏

λε
j

∣

∣

∣1 − λ
λε

j

∣

∣

∣ ≤ max...

∏

λ̂ε
j

∣

∣

∣1 − λ
λε

j

∣

∣

∣

=
∏

λ̂ε
j

(

1+ε
λ̂ε

j

− 1

)

.

So, we have

maxλ∈S |pq(λ)| ≤
∏

λ̂ε
j

(

1+ε

λ̂ε
j

− 1

)

2

(

√

1+ε
1−ε

−1
√

1+ε
1−ε

+1

)q−rε

≤ 2
(

1+ε
min λ(A) − 1

)#λ̂ε
j

(

√

1+ε
1−ε

−1
√

1+ε
1−ε

+1

)q−rε

≈
(

1+ε
minλ(A) − 1

)#λ̂ε
j εq

εrε2q−rε−1 ,
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where in the latter approximation we have used the following Taylor expansion

f(ε) =

√

1+ε
1−ε − 1

√

1+ε
1−ε + 1

=
ε

2
+

ε2

2
f ′′(0) + . . . .
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