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1 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
2 Dipartimento di Matematica “Ulisse Dini”, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy
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A classical result in the theory of one complex variable is Fatou’s theorem:

Theorem 1: (Fatou [F]) Let f ∈ Hol(∆,∆) be a holomorphic self-map of the unit disk ∆
in the complex plane. Then f(ζ) has non-tangential limit at a.e. point σ ∈ ∂∆.

As satisfying as it is from several points of view, this theorem leaves open the question
of what happens at a specific point σ0 ∈ ∂∆. Of course, to get a sensible statement one
needs to make some assumptions on the function f . In 1920, Julia ([Ju]) identified the
right hypotheses, showing how to get the existence of the non-tangential limit at a given
boundary point using Schwarz’s lemma. But the real breakthrough is due to Wolff ([W])
in 1926 and Carathéodory ([C]) in 1929, who proved that under Julia’s hypotheses the
derivative too admits non-tangential limit at the specified boundary point. Their results
are collected in the following statement, the Julia-Wolff-Carathéodory theorem:

Theorem 2: (Julia-Wolff-Carathéodory) Let f ∈ Hol(∆,∆) and σ0 ∈ ∂∆ be such that

lim inf
ζ→σ0

1− |f(ζ)|
1− |ζ|

= α < +∞. (1)

Then:
(i) f has non-tangential limit τ0 ∈ ∂∆ at σ0;
(ii) f ′ has non-tangential limit ατ0σ0 at σ0.

See, e.g., [A2] for proofs and applications. By the way, it should be remarked that the
lim inf in (1) is always strictly positive.

The aim of this note is to describe a general framework allowing the generalization
of the Julia-Wolff-Carathéodory theorem (in short, the JWC theorem) to several classes
of bounded domains in Cn. The framework is known to work at least in the following
cases: the unit ball Bn of Cn (Hervé [H] and Rudin [R]); strongly convex domains ([A1]);
strongly pseudoconvex domains ([A3]); polydisks (Jafari [J], and [A4]); and some complex
ellipsoids ([AT]). All the needed ingredients are available in general weakly convex domains,
and so it might be valid in that setting too.

The main idea, in the spirit of Krantz’s generalizations of Fatou’s theorem (see [Kr]),
is that the boundary behavior of holomorphic functions defined on (or with values in) a
bounded domain must be controlled by the boundary behavior of the intrinsic Kobayashi
distance and metric of the domain. To substantiate this idea, we need a way to define a
suitable generalization to several variables of the notion of non-tangential limit, general-
ization expressed in terms of the Kobayashi metric and distance.
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Actually, it turns out that two such generalizations will be needed: one defined via
approach regions (similar to what Korányi, Stein, Krantz and others have done, but not
exactly the same); and a second one defined via approaching curves (similar to what Čirka,
Cima-Krantz and others have done, but not exactly the same).

But first of all let us recall the definition of the Kobayashi metric and distance (see,
e.g., [A2, JP] for details, proofs, history and much more). Let X be a complex manifold;
the Kobayashi (pseudo)metric κX :TX → R

+ is defined by

κX(z; v) = inf
{
|ξ|
∣∣ ∃ϕ ∈ Hol(∆, X) : ϕ(0) = z, dϕ0(ξ) = v

}
for all z ∈ X and v ∈ TzX. This is a (in general only upper semicontinuous, often
continuous, almost never hermitian) Finsler metric on X, that is it satisfies

κX(z;λv) = |λ|κX(z; v) (2)

for all z ∈ X, v ∈ TzX and λ ∈ C. Its main property is that it is contracted by holomorphic
maps: if f ∈ Hol(X,Y ) and (z; v) ∈ TX then

κY
(
f(z); dfz(v)

)
≤ κX(z; v).

In particular, Schwarz’s lemma implies that κ∆ is the Poincaré metric on ∆—and thus
the Kobayashi metric can be regarded as a natural generalization of the Poincaré metric
to n-dimensional complex manifolds.

The Finsler property (2) allows one to use κX to measure the length of curves, exactly
as in Riemannian geometry. The infimum of the (Kobayashi) length of curves connecting
two points gives the Kobayashi (pseudo)distance kX :X ×X → R

+ of X. It might happen
that kX(z1, z2) = 0 even though z1 6= z2 (for instance, it is easy to check that kCn ≡ 0);
but if this is not the case, that is if kX is a true distance, we say that X is (Kobayashi)
hyperbolic. If moreover kX is a complete distance, then X is complete hyperbolic. For
instance, all bounded domains in Cn are hyperbolic, and all convex and strongly pseudo-
convex domains are complete hyperbolic.

Again, the Kobayashi distance is contracted by holomorphic maps: if f ∈ Hol(X,Y )
and z1, z2 ∈ X then

kY
(
f(z1), f(z2)

)
≤ kX(z1, z2).

In particular, k∆ is the Poincaré distance of ∆.
The contracting property (which is a built-in Schwarz-Pick lemma) is what makes the

Kobayashi metric and distance so useful. Unfortunately, as it often happens with intrinsic
objects defined by computing the extremal of some functional, the Kobayashi metric and
distance are easy to estimate but very hard to compute explicitly. Anyway, a wealth of
informations about them is available, particularly in strongly pseudoconvex and in convex
domains; again, see [A2, JP] for details.

Now we can get back to the generalizations of the non-tangential limit. One way
of defining the non-tangential limit in the unit disk is using Stolz regions. A Stolz re-
gion S(σ,M) ⊂ ∆ of vertex σ ∈ ∂∆ and amplitude M > 1 is the egg-shaped region given
by

S(σ,M) =
{
ζ ∈ ∆

∣∣∣∣ |σ − ζ|1− |ζ|
< M

}
; (3)
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notice that S(σ,M) is defined by taking the ratio of the distance |σ − ζ| from ζ to σ with
the distance 1−|ζ| from ζ to the whole boundary of ∆. Then f : ∆→ C has non-tangential
limit L ∈ C at σ iff f(ζ)→ L as ζ → σ inside any Stolz region of vertex σ.

Korányi ([K]), in 1969, discovered that the right generalization of Stolz regions in the
unit ball Bn of Cn is not a cone-shaped region but the following set:

K(x,M) =
{
z ∈ Bn

∣∣∣∣ |1− (z, x)|
1− ‖z‖

< M

}
,

where x ∈ ∂Bn, M > 1, (· , ·) is the canonical hermitian product of Cn, and ‖ · ‖ is
the euclidean norm. Contrarily to the one-dimensional case, K(x,M) is non-tangential
at x only in the direction orthogonal to the boundary, being instead parabolically tangent
to ∂Bn along the complex-tangential directions.

Using these regions, and their analogues in more general domains, Korányi and
Stein ([KS, S]) have successfully generalized Fatou’s theorem to several complex variables
(see also [Kr]); but their definitions were mostly in euclidean terms, and so unsuitable to
our needs.

An alternative approach is the following. Let D ⊂⊂ Cn be a complete hyperbolic
domain; fix a base point z0 ∈ D, and let kD denote the Kobayashi distance of D. If z ∈ D,
then kD(z, w) tends to +∞ as w tends to x ∈ ∂D; therefore the normalized number

lim sup
w→x

[
kD(z, w)− kD(z0, w)

]
can be thought of as a (always finite, possibly negative) “distance” from z ∈ D to x ∈ ∂D
(computing it in the unit disk, for instance, we see that it actually is half the logarithm of
such a “distance”, explaining the negative values).

Furthermore, in several complete hyperbolic domains (strongly pseudoconvex do-
mains, polydisks, and the like; see, e.g., [A2]) it is known that kD(z0, z) goes to infinity
exactly as − 1

2 log d(z, ∂D) as z tends to ∂D. Therefore a possible generalization of a Stolz
region is given by the K-region of vertex x ∈ ∂D, amplitude M > 1 and pole z0 ∈ D
defined by setting

Kz0(x,M) =
{
z ∈ D

∣∣ lim sup
w→x

[
kD(z, w)− kD(z0, w)

]
+ kD(z0, z) < logM

}
;

notice that changing the pole amounts to a shifting of the amplitudes, and so it is not
relevant.

An easy computation shows that in the unit ball K0(x,M) is exactly the set K(x,M)
defined by Korányi. Furthermore, it is not difficult to prove (see [A3, 4]) that in strongly
pseudoconvex domains our K-regions are comparable with Korányi-Stein admissible re-
gions, and that in convex domains they are comparable with Krantz’s admissible regions.
Therefore, if we say that a function f ∈ Hol(D,Cm) has K-limit L at x ∈ ∂D if f(z)→ L
as z → x inside any K-region of vertex x, we have recovered in terms of the Kobayashi
distance only the admissible limit defined by Korányi-Stein in euclidean terms.
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Now, in condition (1) of Theorem 2, 1 − |ζ| is the euclidean distance d(ζ, ∂∆) of ζ
from the boundary ∂∆. Recalling again that kD(z0, ·) is comparable to − 1

2 log d(·, ∂D), it
is then natural to replace (1) by the following condition:

lim inf
z→x

[
kD(z0, z)− k∆

(
0, f(z)

)]
< +∞.

Indeed, this is exactly what we need to generalize Julia’s part of the Julia-Wolff-Carathéo-
dory theorem:

Theorem 3: ([A1]) Let D ⊂⊂ C
n be complete hyperbolic. Take f ∈ Hol(D,∆) and

x ∈ ∂D such that
lim inf
z→x

[
kD(z0, z)− k∆

(
0, f(z)

)]
< +∞. (4)

Then f has K-limit τ ∈ ∂∆ at x.

It is worth pointing out that similar statements hold for holomorphic maps f :D1 → D2

under suitable hypotheses on D2 (e.g., if D2 is strongly pseudoconvex). The proof is just
an application of the contracting property of the Kobayashi distance.

Unfortunately, as already remarked by Rudin in the unit ball, the K-limit is not
suitable for the generalization of the Wolff-Carathéodory part of the JWC theorem. To
single out the correct replacement it is necessary to examine another classical one-variable
result, the Lindelöf principle:

Theorem 4: ([Li]) Let f ∈ Hol(∆,∆) be so that there is a continuous curve γ: [0, 1)→ ∆
ending at σ0 ∈ ∂∆ such that f

(
γ(t)

)
→ L ∈ C. Then f has non-tangential limit L at σ0.

In other words, for a bounded holomorphic function defined on the disk the existence
of the limit along a given curve forces the existence of the limit along any non-tangential
curve.

It turns out that there are several ways to generalize the Lindelöf principle to several
variables. Let D ⊂⊂ Cn; if x ∈ ∂D, an x-curve is a continuous curve γ: [0, 1) → D such
that γ(t)→ x as t→ 1−. Then a Lindelöf principle is a statement of the following kind:

“Let x ∈ ∂D. Then there are a class S of x-curves and a subclass R ⊆ S such
that the following holds: for every f ∈ Hol(D,∆), if there is a curve γo ∈ S such
that f

(
γo(t)

)
→ L ∈ C as t→ 1−, then f

(
γ(t)

)
→ L as t→ 1− for all γ ∈ R.”

Čirka ([Č]) has been the first one to prove a Lindelöf principle in several variables,
defining classes S and R in euclidean terms in domains with C2 boundary. Later on, Cima
and Krantz ([CK]) obtained another Lindelöf principle using both the euclidean structure
and the Kobayashi distance to define the classes S and R. In [A1] another approach has
been suggested, using projection devices.

LetD ⊂ Cn be a domain. A projection device at x ∈ ∂D is given by: a neighborhood U
of x in Cn; a holomorphic embedded disk ϕx: ∆ → D ∩ U , where ϕx is holomorphic
in the interior and continuous up to the boundary, with ϕx(∆) ⊂ D and ϕx(1) = x;
a device associating to every x-curve γ in D ∩ U an x-curve γx in ϕx(∆), that is, a
1-curve γ̃x = ϕ−1

x ◦ γx in ∆.
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Example 1: Assume that D is strongly convex. Then the euclidean projection device
at x ∈ ∂D is obtained by taking as U the whole of Cn, as ϕx a suitable parametrization
of the normal section D ∩ (x+Cnx) of D at x (where nx is the unit normal to ∂D at x),
and as γx the orthogonal projection of γ into the normal section.

Example 2: Assume that D is convex. Then the canonical projection device at x ∈ ∂D
is obtained by taking as U again the whole of Cn, as ϕx a complex geodesic with ϕx(1) = x,
and setting γx = px ◦γ, where px is a holomorphic retraction of D onto the image of ϕx (a
complex geodesic is a holomorphic isometry from ∆ endowed with the Poincaré distance
to D endowed with the Kobayashi distance; see [L, A2, JP] for background on complex
geodesics and holomorphic retractions).

Example 3: Assume that D is strongly pseudoconvex (or, more generally, locally
convexifiable at the boundary). Then a projection device at x ∈ ∂D is obtained by
localizing the previous examples, that is by taking U so that U ∩ D is biholomorphic to
a convex domain, and then using the ϕx and γx provided by either the euclidean or the
canonical projection device.

Given a projection device, we can define the classes S and R mentioned earlier as
follows: we shall say that an x-curve γ is special if kD

(
γ(t), γx(t)

)
→ 0 as t → 1−; and

that γ is restricted if γ̃x is a non-tangential 1-curve. Then the class S is the set of all
special x-curves, while class R is the set of all special restricted x-curves. Finally, we shall
say that a holomorphic map f ∈ Hol(D,Cm) has restricted K-limit L at x if f

(
γ(t)

)
→ L

as t→ 1− for all γ ∈ R.
It turns out that we have a Lindelöf principle no matter which projection device we

choose:

Theorem 5: ([A1]) Let D ⊂ C
n be a domain, and choose a projection device at a

point x ∈ ∂D. Let f ∈ Hol(D,∆) be a bounded function such that f
(
γo(t)

)
→ L ∈ C

as t→ 1− for a given special x-curve γo ∈ S. Then f has restricted K-limit L at x.

If D is strongly pseudoconvex and we use a projection device provided by Exam-
ple 3, it is not difficult to see that a special restricted curve approaches the boundary
non-tangentially in the normal direction, and asymptotically less than parabolically in
the complex tangential directions. In particular, a function having restricted K-limit L
at x ∈ ∂D necessarily has non-tangential limit L at x. On the other hand, if we use
the projection device provided by Example 2 it turns out that a special restricted curve
approaches the boundary asymptotically like the boundary of K-regions; in particular, a
function having K-limit L at x ∈ ∂D necessarily has restricted K-limit L at x (but the
converse does not hold: see [R, A4] for the relevant counterexamples).

So we have a huge family of Lindelöf principles. Unfortunately, they are not enough
for the generalization of the JWC theorem, because not all the functions needed there are
bounded. But there is a replacement: we shall say that a map f :D → C

m is K-bounded
at x ∈ ∂D if it is bounded in every K-region of vertex x (with the bound depending on
the amplitude of the K-region). Then we have the following:

Theorem 6: Let f ∈ Hol(D,C) be K-bounded at x ∈ ∂D. Assume that f
(
γo(t)

)
→ L

as t → 1− for a special restricted x-curve γo ∈ R, where we are using a projection device
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given by Example 2 or Example 3. Then f has restricted K-limit L at x.

We did not state the exact hypotheses on the domain D because at present we are not
yet able to give a general proof of this statement, but only case-by-case arguments. We can
prove it for strongly (pseudo)convex domains [A1, 3], polydisks [A4] and some complex
ellipsoids [AT]; the structure of the proof is always the same, but the technical details
involved seem to depend on the actual geometry of the domain—which is a pity. One of
the main open problems in this subject is exactly obtaining a general proof of Theorem 6.

We finally have all the necessary ingredients to state the generalization of the Wolff-
Carathéodory part of the JWC Theorem. Take f ∈ Hol(D,∆) so that (4) holds at x ∈ ∂D.
We know, by Theorem 3, that f has K-limit τ ∈ ∂∆ at x ∈ ∂D; we want to know what
happens to the partial derivatives of f .

There is an obvious observation to be made: the behavior of the partial derivative

∂f

∂v
=

n∑
j=1

vj
∂f

∂zj

might depend on the vector v. For instance, one could expect different behaviors according
to v being transversal or complex tangential to the boundary. Actually, it turns out that
the behavior of ∂f/∂v is controlled by the behavior of the Kobayashi metric κD(z; v).
Namely,

Theorem 7: Let D ⊂⊂ Cn be a “good” domain endowed with a suitable projection device
(see below) at x ∈ ∂D. Let f ∈ Hol(D,∆) be such that

lim inf
z→x

[
kD(z0, z)− k∆

(
0, f(z)

)]
< +∞

for one (and hence all) z0 ∈ D. Take v ∈ Cn, and let s ∈ R+ be such that

κD(z; v) = O

(
1

d(z, ∂D)s

)
(5)

as z → x in K-regions of vertex x. Then the function

d(z, ∂D)s−1 ∂f

∂v
(z) (6)

has restricted K-limit at x.

For instance, if D is strongly pseudoconvex, then s = 1/2 if v is complex tangential
to ∂D at x, and s = 1 otherwise. On the other hand, if D = ∆n then s = 1 always.

A “good” domain, roughly speaking, is a locally convexifiable domain where The-
orem 6 holds. Up to now, we have been able to prove Theorem 7 in strongly convex
domains ([A1]), and in several weakly convex circular domains ([A4, AT]); therefore, being
a local statement, it also holds in strongly pseudoconvex domains ([A3]) and, more gen-
erally, in domains whose boundary is locally biholomorphic to the boundary of a “good”
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domain. In all cases, we use the localized version (Example 3) of the canonical projection
device (Example 2).

Actually, the complete statement of Theorem 7 in each case is more precise. For
instance, there is always a direction νx (the “holomorphic normal direction”; usually,
νx = ϕ′x(1)) such that the limit of ∂f/∂νx is explicitly computable. Or, if D = ∆n and
v is tangent to a flat side of ∂∆n at x, then the limit is 0, as well as when D is strongly
convex and v is complex tangential to ∂D at x.

Furthermore, there are similar theorems for holomorphic maps with values in a second
domainD′ ⊂⊂ Cm, at least whenD′ is strongly (pseudo)convex. For instance, if f : ∆→ D′

satisfies the analogue of (4) at a point σ0 ∈ ∂∆, then d(ζ, ∂∆)1−s(f ′, v) has non-tangential
limit at σ0, where v ∈ Cm, s is defined as in (5), and (· , ·) is the canonical hermitian
product on Cm.

The main trick in the proof is to replace the non-holomorphic function d(z, ∂D) by a
holomorphic one of the form 1− p̃x(z), where p̃x ∈ Hol(D,∆) is such that

1− p̃x(z) = O
(
d(z, ∂D)

)
in K-regions. If D is convex, we use p̃x = ϕ−1

x ◦ px. Since, in all the worked out cases,
either s = 1 or the limit (6) is zero, the replacement of d(z, ∂D) by 1 − p̃x(z) does not
change the content of Theorem 7.

The proof then has two parts: first we show that (1 − p̃x)s−1∂f/∂v is K-bounded;
and next we show that (1− p̃x)s−1∂f/∂v has limit along a given special restricted x-curve,
usually t 7→ ϕx(t).

We end this paper describing the first part of the proof of Theorem 7 when D is a
convex circular domain—a special case where the main ideas are not obscured by too many
technical details.

A domain D ⊂⊂ Cn is circular if z ∈ D implies eiθz ∈ D for all θ ∈ R. In particular,
a convex circular bounded domain D is the unit ball for a norm |||·|||. It follows (see [A2,
JP]) that

d(z, ∂D) = 1− |||z|||

and

kD(0, z) =
1
2

log
1 + |||z|||
1− |||z|||

. (7)

Fix x ∈ ∂D; we shall use the canonical projection device, choosing ϕx(ζ) = ζx. Lempert’s
results ([L]; see also [A2, JP]) provide us with a holomorphic retraction px:D → ϕx(∆);
set p̃x = ϕ−1

x ◦ px. Of course, the pole of all K-regions will be the origin.
First of all we must show that the function

(
1−p̃x(z)

)
/d(z, ∂D) is K-bounded at x. In

fact, it is easy to check that if z ∈ K0(x,M) then p̃x(z) belongs to the Stolz region S(1,M),
and thus

|1− p̃x(z)| ≤M(1− |p̃x(z)|) = M(1− |||px(z)|||),

where the last equality follows from px = ϕx ◦ p̃x and (7). Now, an easy argument (see [A1,
Lemma 3.11]) using the contracting property of the Kobayashi distance shows that

∀z ∈ K0(x,M) 0 ≤ kD(0, z)− kD
(
0, px(z)

)
≤ logM ;
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therefore it follows that
1− |||px(z)||| ≤M2(1− |||z|||),

and thus

∀z ∈ K0(x,M) |1− p̃x(z)| ≤M3d(z, ∂D),

as claimed. Notice that kD(0, z) ≥ k∆

(
0, p̃x(z)

)
implies

|1− p̃x(z)| ≥ d(z, ∂D)

always. So we can (almost) forget d(z, ∂D) and work with 1− p̃x(z) only.
Now let f ∈ Hol(D,∆) be such that (4) holds. In particular, f has K-limit τ ∈ ∂∆

at x. Fix v ∈ Cn. For every z ∈ D let ψz ∈ Hol(∆, D) be a complex geodesic with
ψz(0) = z and ψ′z(0) = v/κD(z; v). Choose r ∈ (0, 1). Then

(
1− p̃x(z)

)s−1 ∂f

∂v
(z) =

(
1− p̃x(z)

)s−1
κD(z; v)(f ◦ ψz)′(0)

=
(
1− p̃x(z)

)s−1κD(z; v)
2πi

∫
|ζ|=r

f
(
ψz(ζ)

)
ζ2

dζ

=
1

2π

∫ 2π

0

f
(
ψz(reiθ)

)
− τ

p̃x
(
ψz(reiθ)

)
− 1
·
p̃x
(
ψz(reiθ)

)
− 1

p̃x(z)− 1
·
(
p̃x(z)− 1
d(z, ∂D)

)s
·d(z, ∂D)sκD(z; v)

reiθ
dθ.

We must show that the four factors in the integrand are K-bounded.
The fourth factor is bounded in K-regions by assumption, and we have already shown

that the third factor is K-bounded too. To prove the K-boundedness of the remaining two
factors we need three lemmas.

Lemma 8: Let D ⊂⊂ Cn be a convex circular domain, and take x ∈ ∂D and z ∈ D.
Then

lim sup
w→x

[
kD(z, w)− kD(0, w)

]
= lim
t→1−

[
kD
(
z, ϕx(t)

)
− k∆(0, t)

]
,

where ϕx(t) = tx.

Proof : First of all, it is easy to check that the function

t 7→ kD
(
z, ϕx(t)

)
− k∆(0, t)

is not increasing for t ∈ [0, 1); let hz(x) denote its limit as t→ 1−. By definition,

hz(x) ≤ lim sup
w→x

[
kD(z, w)− kD(0, w)

]
;

to prove the converse inequality we need to show that for every ε > 0 there is δ > 0 so
that if ‖w − x‖ < δ then

kD(z, w)− kD(0, w) < hz(x) + ε.
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Choose t0 < 1 so that

kD
(
z, ϕx(t)

)
− k∆(0, t) ≤ kD

(
z, ϕx(t0)

)
− k∆(0, t0) ≤ hz(x) + ε/2,

and then fix δ0 > 0 such that if y ∈ ∂D and ‖y − x‖ < δ0 then∣∣kD(z, t0y)− kD(z, t0x)
∣∣ < ε/2.

Now choose δ > 0 so that ‖w − x‖ < δ implies both |||w||| > t0 and∥∥∥∥ w

|||w|||
− x
∥∥∥∥ < δ0,

where |||·||| is the norm associated to D. Then

kD(z, w)− kD(0, w) = kD

(
z, |||w||| · w

|||w|||

)
− k∆(0, |||w|||)

≤ kD
(
z, t0

w

|||w|||

)
− k∆(0, t0)

≤ kD(z, t0x)− k∆(0, t0) + ε/2
≤ hz(x) + ε,

and we are done. �

Lemma 9: Let D ⊂⊂ Cn be a convex circular domain; take x ∈ ∂D and f ∈ Hol(D,∆).
Then

lim inf
z→x

[
kD(0, z)− k∆

(
0, f(z)

)]
= lim
t→1−

[
k∆(0, t)− k∆

(
0, f
(
ϕx(t)

))]
,

where ϕx(t) = tx.

Proof : First of all, it is easy to check that the function

t 7→ k∆(0, t)− k∆

(
0, f(tx)

)
is not decreasing in [0, 1); let h ∈ R ∪ {+∞} denote its limit as t→ 1−. Clearly,

lim inf
z→x

[
kD(0, z)− k∆

(
0, f(z)

)]
≤ h;

to prove the converse inequality we need to show that for every ε > 0 there is a δ > 0 so
that ‖z − x‖ < δ implies

kD(0, z)− k∆

(
0, f(z)

)
≥ h− ε.

Choose t0 > 0 so that

∀t ≥ t0 k∆(0, t)− k∆

(
0, f(tx)

)
≥ h− ε/2,
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and take δ0 > 0 so that if y ∈ ∂D is such that ‖y − x‖ < δ0 then∣∣k∆

(
0, f(t0x)

)
− k∆

(
0, f(t0y)

)∣∣ < ε/2.

In particular,

k∆(0, t)− k∆

(
0, f(ty)

)
≥ k∆(0, t0)− k∆

(
0, f(t0y)

)
≥ k∆(0, t0)− k∆

(
0, f(t0x)

)
− ε/2 ≥ h− ε

for all t ≥ t0.
Then choose δ > 0 so that ‖z − x‖ < δ implies |||z||| > t0 and∥∥∥∥ z

|||z|||
− x
∥∥∥∥ < δ0.

Then

kD(0, z)− k∆

(
0, f(z)

)
= k∆(0, |||z|||)− k∆

(
0, f

(
|||z||| · z

|||z|||

))
≥ h− ε,

and we are done. �

Lemma 10: Let D ⊂⊂ Cn be a convex circular domain; take x ∈ ∂D. For M1 > M > 1
set r = (M1 −M)/(M1 + M) < 1. If z ∈ K0(x,M) and ψz ∈ Hol(∆, D) is a complex
geodesic such that ψz(0) = z then ψz(∆r) ⊆ K0(x,M1), where ∆r = {ζ ∈ C | |ζ| < r}.

Proof : Let δ = 1
2 log(M1/M) > 0; then ζ ∈ ∆r iff k∆(0, ζ) < δ. Then (by Lemma 8)

lim sup
w→x

[
kD
(
ψz(ζ), w

)
− kD(0, w)

]
+ kD

(
0, ψz(ζ)

)
= lim
t→1−

[
kD
(
ψz(ζ), tx

)
− k∆(0, t)

]
+ kD

(
0, ψz(ζ)

)
≤ 2kD

(
ψz(ζ), z

)
+ lim
t→1−

[
kD(z, tx)− k∆(0, t)

]
+ kD(0, z)

< 2k∆(0, ζ) + logM = logM1.

�

This is what we need to prove theK-boundedness of the two remaining factors. Indeed,
for the first one choose z ∈ K0(x,M) and set

1
2

logR = logM − kD(0, z);

in particular, being kD(0, z) ≥ k∆

(
0, p̃x(z)

)
, we have

R ≤M2 1− |p̃x(z)|
1 + |p̃x(z)|

≤M2|1− p̃x(z)|.
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Let
1
2

logα = lim inf
z→x

[
kD(0, z)− k∆

(
0, f(z)

)]
= lim
t→1−

[
k∆(0, t)− k∆

(
0, f(tx)

)]
,

where the latter equality follows from Lemma 9, and let τ ∈ ∂∆ be the K-limit of f at x.
Then

log
|τ − f(z)|
1 + |f(z)|

= lim
t→1−

[
k∆

(
f(z), tτ

)
− k∆(0, tτ)

]
− k∆

(
0, f(z)

)
≤ 2 lim

t→1−

[
k∆

(
f(z), f(tx)

)
− k∆

(
0, f(tx)

)]
≤ 2 lim

t→1−

[
kD(z, tx)− k∆

(
0, f(tx)

)]
= 2 lim

t→1−

[
kD(z, tx)− k∆(0, t)

]
+ 2 lim

t→1−

[
k∆(0, t)− k∆

(
0, f(tx)

)]
≤ log(αR),

(where the second inequality holds because f(tx)→ τ as t→ 1−) and we get∣∣∣∣ τ − f(z)
1− p̃x(z)

∣∣∣∣ ≤ 2αM2.

In particular, by Lemma 10 we get∣∣∣∣∣ τ − f
(
ψz(reiθ)

)
1− p̃x

(
ψz(reiθ)

) ∣∣∣∣∣ ≤ 2αM2
1 ,

where M1 > M is such that (M1 −M)/(M1 +M) = r, and the first factor is K-bounded.
For the second factor, we have already remarked that ψz(reiθ) ∈ K0(x,M1) implies

p̃x
(
ψz(reiθ)

)
∈ S(1,M1), and so∣∣∣∣∣1− p̃x

(
ψz(reiθ)

)
1− p̃x(z)

∣∣∣∣∣ ≤M1

1− |||px
(
ψz(reiθ)

)
|||

1− |||px(z)|||
.

Now,

1
2

log
1− |||px

(
ψz(reiθ)

)
|||

2(1− |||px(z)|||)
≤
∣∣∣kD(0, px(z)

)
− kD

(
0, px

(
ψz(reiθ)

))∣∣∣
≤ kD

(
px(z), px

(
ψz(reiθ)

))
≤ kD

(
z, ψz(reiθ)

)
= k∆(0, r),

and the second factor is K-bounded too. �

To finish the proof of Theorem 7 (assuming of course that Theorem 6 holds) one
should show that

(
1 − p̃x(z)

)1−s
∂f/∂v admits limit along a special restricted x-curve.

If v = x = ϕ′x(1), using the curve γ(t) = ϕx(t) we are reduced to a one-dimensional
situation, and the assertion follows from Theorem 2. In general, if D is Reinhardt (that
is, z = (z1, . . . , zn) ∈ D implies (eiθ1z1, . . . , e

iθnzn) ∈ D for all θ1, . . . , θn ∈ R) we can use
the argument of [A4, Proposition 4.9] to show that ∂f/∂v has limit along the given curve
γ, and thus Theorem 7 follows if s ≥ 1. If s < 1 (or D is not Reinhardt), a case-by-case
argument is again needed; see, for instance, [A1, Proposition 3.19].
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