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Abstract
For large prime numbers p, computing discrete logarithms of elements of the

multiplicative group (Z/pZ)∗ is at present a very difficult problem. The security of
certain cryptosystems is based on the difficulty of this computation. In this exposi-
tory paper we discuss several generalizations of the discrete logarithm problem and
we describe various algorithms to compute discrete logarithms.

1 Introduction

For a prime number p, the multiplicative group (Z/pZ)∗ is cyclic of order p−1.
Generators of (Z/pZ)∗ are called primitive roots mod p. Let p be a prime and let g
denote a primitive root modulo p. Then for every x ∈ (Z/pZ)∗ we have

x = ga,

for some integer a. This integer is called the discrete logarithm of x and is denoted
by logx. Since it depends on the primitive root g, one often writes logg x rather
than logx. Since the discrete logarithm is only unique modulo p−1, we view it as
an element of the additive group Z/(p− 1)Z. Just as for the usual logarithm, we
have for x,y ∈ (Z/pZ)∗ that

logxy = logx+ logy.

Here is an explicit example. Let p = 10000000259. Since (p− 1)/2 is prime, it is
easy to see that g = 2 is a primitive root modulo p. We have
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Università di Roma “Tor Vergata”, Dipartimento di Matematica, Via della Ricerca Scientifica, I-
00133 Roma, ITALY
e-mail: schoof@mat.uniroma2.it

1
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log3 = 9635867242,
log5 = 227891530,
log7 = 1803320787,

...

illustrating the fact that there is no simple minded formula for logx in terms of x.
Indeed, the discrete logarithms of the first few primes appear like random numbers
in the interval from 0 to p−1.

Given a prime number p, a primitive root g ∈ (Z/pZ)∗ and an exponent a
in Z/(p− 1)Z, the element x = ga can be computed efficiently by repeated squar-
ings and multiplications. On the other hand, given a large prime number p and a
primitive root g ∈ (Z/pZ)∗, there are at present no good methods to compute the
discrete logarithm of a given element x ∈ (Z/pZ)∗. In other words, computing the
exponent a ∈ Z/(p−1)Z for which x = ga, is a very difficult problem. In particular,
there is no polynomial time algorithm known to perform this calculation. There do,
however, exist subexponential algorithms.

Designing good algorithms to compute discrete logarithms is a problem that is
of interest in itself. It is also relevant for applications in cryptography. The secu-
rity of the Diffie-Hellmann key exchange protocol [6] relies on the assumption that
computing discrete logarithms is very hard. More precisely, the working hypothesis
of this protocol is that given a prime number p, a primitive root g modulo p and
elements x and y in (Z/pZ)∗, but not their discrete logarithms a and b, it is very
hard to compute the element gab.

In this expository paper we describe some methods for computing discrete loga-
rithms. We do not pretend to present the best known ones, but merely try to give the
main ideas behind the most commonly used algorithms. In section 2 we describe a
natural generalization of the discrete logarithm problem and we discuss the baby-
step-giant-step method due to Dan Shanks and a probabilistic method due to John
Pollard. Section 3 is dedicated to the subexponential index calculus algorithm. In
section 4 we discuss the discrete logarithm problem for multiplicative groups of fi-
nite fields of relatively small characteristic. In particular, we describe recent work
of Antoine Joux and others. Finally in section 5, we discuss the discrete logarithm
problem for groups of points of elliptic curves over finite fields. This is relevant for
applications in cryptography.

I thank Hendrik Lenstra for several useful comments on an earlier version of this
paper.
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2 Exponential algorithms

Following ideas in [11, section 7], we consider the following general problem. It
is a natural extension of the discrete logarithm problem.

Problem. Given a finite set S, a finite abelian group A and a group homomorphism

f : ZS −→ A,

determine the kernel of f .

In applications, the group A is the multiplicative group of a finite field or the mul-
tiplicative group (Z/nZ)∗ of the finite ring Z/nZ. It can also be an ideal class group
of a number field, or the group of points of an elliptic curve or of an abelian variety
over a finite field. In general, we assume that A is given to us in such a way that we
can efficiently compose elements, calculate inverses and test for equality. Usually
we even require that every element in A has a unique, easily computable “reduced”
representative. But in general we do not suppose that we know the structure or even
the cardinality of A. In most applications we know an upper bound for #A. Since
Hom(ZS,A) is naturally isomorphic to AS, the map f can be specified by giving #S
elements in A indexed by s ∈ S. The kernel of f is a free group of the same rank
as ZS. It can be described by giving #S generators.

If S consists of one element, then f is determined by f (1) = x ∈ A. Determining
the kernel of f is the same problem as determining the order of the element x ∈ A.
An algorithm that solves this problem for the group A = (Z/nZ)∗ can be used to
factor the integer n. See [13, Lemma 5]. If #S = 2 and f is therefore given by two
elements x,y ∈ A, determining the kernel of f is the same as finding all relations
between x and y that are of the form xkym = 1 with (k,m) ∈ Z2. In particular, if A
is a cyclic group of order m generated by x, so that y = xa for some a ∈ Z, then the
kernel of f is the subgroup generated by (m,0) and (a,−1)∈Z2. Determining ker f
is therefore the same problem as computing the ‘discrete logarithm’ a of y.

In general, the difficulty in computing the kernel of a group homomorphism f :
ZS −→ A does not depend on the group structure of the finite abelian group A, but
rather on the way it is presented. For instance, if A is the additive group Z/nZ of
integers modulo n, presented in the usual way, the problem is very easy. It can be
solved using at most O(#S) gcd computations in the ring Z, which can be efficiently
calculated by means of the Euclidean algorithm. Indeed, when #S = 1 the kernel
of f : Z −→ Z/nZ is generated by n/d, where d = gcd( f (1),n). For larger S one
proceeds inductively, dealing in a similar way with one element of S at the time. On
the other hand, if A is the cyclic multplicative group F∗p or the group E(Fp) of an
elliptic curve over Fp for some large p, there are no methods known to compute the
kernel of a homomorphism f : ZS −→ A that are of a comparable efficiency.

Let f : ZS −→ A be a homomorphism. Since both A and S are finite sets, the
problem of determining the kernel of f is a finite issue. The straightforward naive
algorithm to solve it, runs as follows. First assume that #S = 1. In other words, we
are given an element in x ∈ A and we wish to compute its order. This can be done by
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computing the powers 1,x,x2, . . . of x until xi is equal to the neutral element 1 ∈ A.
The exponent i is then the order of x and generates ker f . When S is larger and f is
determined by elements x,y,z, . . . ∈ A, we first list the elements of the subgroup H
generated by x as above. Next we list all elements in the cosets yiH for i = 0,1,2, . . .
The smallest exponent i for which yiH = H gives rise to a relation of the form
yi = x j and hence to an element in the kernel of f . Next one puts H = 〈x,y〉 and lists
all elements of the cosets ziH . . . etc. This method uses O(#A#S) operations in A.
Since eventually all elements of A may be listed, the amount of memory required
is O(#A).

If we can compute a proper non-trivial subgroup B of A, then the problem of
computing the kernel K of f : ZS −→ A can be reduced to two similar problems
involving the subgroup B and the quotient group B′ = A/B. More precisely, writing
π for the canonical map A−→ B′ and K′ for the kernel of the composite map π · f :
ZS −→ A −→ B, we have the following commutative diagram with exact rows and
columns

0 0y y
ker f

∼=−→ Ky y
0 −→ K′ −→ ZS π· f−→ B′y f

y f ‖
0 −→ B −→ A π−→ B′ −→ 0.

The group K′ is isomorphic to ZS′ for some finite set S′ having the same cardinality
as S. The map f maps K′ to B. Since the kernel of the homomorphism f : K′ −→ B,
is isomorphic to K, we can compute K by first computing the kernel K′ of π · f :
ZS −→ B′ and then the kernel of f : K′ −→ B.

The groups B and B′ are smaller than A. Since B is contained in A, one can ef-
ficiently compose elements, calculate inverses and test for equality in B. Therefore,
if one is also able to do this in the group B′ = A/B, then it is usually a good idea to
make this reduction. This observation is due to Pohlig-Hellmann [16]. It applies for
instance, if one knows a section j : B′ −→ A of π so that A ∼= B×B′. In this case
equality tests in B′ can be performed in A. Another example is the case when A is
cyclic and we know a proper divisor d of the order of n = #A. Then we can take
B = dA and compute in B′ = A/dA exploiting the isomorphism B′ ∼= (n/d)A given
by multiplication by n/d. It follows that computing the kernel of f : ZS −→ A is
relatively easy when all prime divisors of #A are small. Therefore, in this paper one
should keep in mind groups A, for which #A is divisible by at least one large prime
number.

Next we describe a more efficient algorithm to compute the kernel of a homomor-
phism f : ZS −→ A. It is the baby-step-giant-step algorithm due to Dan Shanks [20].
It is deterministic and uses O(#S

√
#A) operations and equality tests in the group A.

It also requires the storage of O(
√

#A) elements of A. We explain the algorithm in
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the case #S = 1. For larger S, the idea remains the same, but, as in our description
above of the naive algorithm, the details are more cumbersome to write down [3].
Any homomorphism f : Z−→ A is determined by the element x = f (1) of A. Let a
be the integer part of

√
#A+1. We first make baby-steps. This means that we make

a list of the elements xi for 0≤ i < a. If for some i in this range, xi is the neutral ele-
ment of A, we are done: the smallest such i is the order of x and generates the kernel
of f . If this is not the case, we make giant steps: we put y = xa and compute y j for
1≤ j ≤ a. Each time we check whether y j is in the list that we made. In order to be
able to do this efficiently, we assume that the elements in A are presented in some
unique “reduced” way and that the list of the elements xi for 0≤ i≤ a is sorted with
respect to this presentation. Since the order of x is at most #A < a2, it is bound to
happen that for some j, the element y j is in the list. If it does, we have xi = y j = xa j

for some i = 0,1, . . . ,a. The first value of j for which this happens has the property
that a j− i is the order of x and hence generates the kernel of f .

There are also probabilistic algorithms to compute the kernel of f : ZS −→ A.
They have the same running time as the baby-step-giant-step algorithm. The ad-
vantage of the probabilistic algorithms is, that they do not require making lists of
size
√

#A. We describe the so-called ρ-algorithm, due to John Pollard [17]. Once
again we explain the algorithm only in the case #S = 1. In this case, we put x = f (1)
and make a random, or rather pseudorandom, walk by evaluating elements of the
form xni for i = 0,1,2, . . . with 1 = n0 < n1 < n2 . . .. This means that for each i, the
next element xni+1 is computed in a pseudorandom fashion from the element xni ∈ A.
By the birthday paradox, one expects that xni = xn j for two distinct values of i, j that
are O(

√
#A). Moreover, this can be detected efficiently using the cycle detection

algorithm, attributed to R.W. Floyd by Donald Knuth [9, p.7]. The order of x di-
vides ni−n j. In practice the quotient is small, so that the order of x can be computed
easily.

3 Index calculus

Index calculus is a method to compute discrete logarithms and, more generally,
to determine kernels of homomorphisms f : ZS −→ A, that applies when A is the
multiplicative group of a finite field. In this section we assume that A = F∗p for some
large prime p. In the next section we consider the case where A is the multiplicative
group of a finite field of small characteristic.

Before considering the map f , we do a precomputation and use the index calculus
algorithm to compute the kernel of

h : ZT −→ F∗p,

where T is the set of the primes l ≤ X for some bound X < p and h is the homomor-
phism that, for any prime l ≤ X , maps the l-th basis vector of ZT to l (mod p). The
kernel of h consists of the vectors (xl)l∈T ∈ ZT that satisfy
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∏
l∈T

lxl = 1 in Z∗p

and hence
∑
l∈T

xl log l ≡ 0 (mod p−1),

where log l denotes the discrete logarithm of l with respect to any fixed primitive
root in F∗p. The algorithm to determine kerh runs as follows. Pick random expo-
nents e(l) ≥ 0 with ∑l∈T e(l) bounded by some power of log p, that is sufficiently
large in the sense that the products ∏l∈T le(l) exceed p. Then check whether the re-
mainder modulo p of ∏l∈T le(l) is “X-smooth”. In other words, check whether its
factorization in the ring Z is of the form ∏l∈T l f (l). If it is, we obtain the relation

∏
l∈T

le(l) = ∏
l∈T

l f (l), in F∗p.

It follows that the vector (e(l)− f (l))l∈S is in the kernel of h:

∑
l∈T

(e(l)− f (l)) log l = 0, in Z/(p−1)Z.

Repeating this procedure, we occasionally find that ∏l∈T le(l) is X-smooth, hence
obtain a non-trivial relation and thus a non-zero vector in the kernel of h. Once we
have obtained a bit more than #T vectors, it is reasonable to expect that the vectors
that we found, generate the kernel.

It remains to choose the value of X . If X is very small with respect to p, there
are very few X-smooth numbers in the set {1,2, . . . , p− 1}. Since the remainders
of the products ∏l∈T le(l) appear to be distributed randomly in this set, it is difficult
to obtain relations and the algorithm may be time consuming. On the other hand,
if X is very large, it is much easier to find X-smooth numbers and vectors in kerh.
However, since we need more than #T relations, we need to find many more of them
and the algorithm may also be time consuming.

The optimal value of X is somewhere in the middle. It depends on the probability
that a random natural number less than p is X-smooth. Writing X = p1/u for some
u > 1, this probability is roughly u−u. See [4]. A back of an envelope computation
shows that the optimal value for u is approximately u = 2

√
log p/ log log p. With

this choice of u, computing the kernel of f involves

exp(2
√

log p log log p)

elementary operations with numbers that have O(log p) digits. Therefore this is a
subexponential algorithm.

With this choice of u, the set of primes l ≤ X almost certainly generates F∗p, so
that f is surjective. Therefore the induced map

h : (Z/(p−1)Z)T −→ F∗p
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is also surjective and hence split. This means that the kernel of h is the zero set of a
single linear equation ∑l∈T alXl ≡ 0 (mod p−1), with coefficients al equal to log l
with respect to the primitive root g that is given by g = ∏l∈T lyl . Here (yl)l∈T is
any vector for which one has ∑l∈T alyl = 1 in Z/(p− 1)/Z. The equation can be
computed efficiently using linear algebra over the ring Z/(p−1)Z. This completes
the description of the precomputation.

In order to explain how to determine the kernel of the given homomorphism

f : ZS −→ F∗p,

we consider first the case that #S = 1. In this case f is determined by the element
x = f (1) ∈ F∗p and the kernel of f is generated by the order of x in the group F∗p. To
compute the kernel, pick random products x∏l∈T le(l) with T as above and check
whether the factorization in Z of the remainder modulo p is of the form ∏l∈T l f (l).
If this happens, we obtain the relation

x∏
l∈T

le(l) = ∏
l∈T

l f (l), in F∗p.

This implies that

logx = ∑
l∈T

( f (l)− e(l)) log l, in Z/(p−1)Z.

Since we already have computed log l for every l ∈ T , we can now evaluate logx.
The order of x in the group F∗p is equal to the order of logx in the additive group
Z/(p−1)Z. It is therefore equal to p−1 divided by gcd(p−1, logx).

The method for #S > 1 is based on this. One computes the discrete logarithm of
f (s) for each element s ∈ S. Composing f : ZS −→ F∗p with the discrete logarithm
gives a homomorphism from ZS to the additive group Z/(p− 1)Z. As remarked
above, determining the kernel of such a homomorphism is easy and can be done by
means of linear algebra over Z.

4 Finite fields

Recently there has been great progress in solving the discrete logarithm problem
for finite fields of small characteristic. Indeed, in [1,5,7,8] algorithms are described
that almost run in polynomial time. As in the previous section, the algorithms pro-
ceed by first computing the logarithms of a set of elements –the factor base– that
are, in some sense, small. Next one uses this to solve the problem of computing the
discrete logarithm of an individual element that is not in the factor base. Here we
describe the first phase following Antoine Joux and his collaborators [1]. For the
second phase we refer to the papers mentioned above for more details.



8 René Schoof

As a typical example of the method, we discuss the case of a finite field of Q= q2k

elements, where q is a prime power and k is of the same order of magnitude as q.
See [1] for a precise description of the range of finite fields for which the algorithm
is effective. Let Fq2 denote the subfield of q2 elements of FQ. Note that if k and q are
approximately equal, q2 is small with respect to Q = q2k. Therefore, making a list
of all elements of Fq2 can be done in time polynomial in logQ. As a consequence,
computing discrete logarithms of elements in F∗q2 can be done in time polynomial
in logQ as well. Therefore, the Pohlig-Hellmann argument of section 2 reduces
the problem of computing discrete logarithms in the group F∗Q to the problem of
computing discrete logarithms in the group A = F∗Q/F∗q2 .

We assume that the field with Q = q2k elements is represented as Fq2 [X ]/(φ(X)),
where φ(X) is an irreducible degree k polynomial in Fq2 [X ]. In order to have an
efficient algorithm, the polynomial φ(X) in FQ = Fq2 [X ]/(φ(X)) is supposed to
have a special shape: we want that

Xq ≡ r(X) mod φ(X),

for some rational function r(X) ∈ Fq2(X) whose numerator and denominator have
very small degrees. Examples are provided by the polynomials φ(X) = Xq−1− g
or Xq+1− g, where g is a generator of the cyclic group F∗q2 . In the first case we
have r(X) = gX and in the second r(X) = g/X . See [23]. Numerical experiments
suggest [1] that when k is close to q, one can find a rational function r(X) with
denominator and numerator of degree at most 2, for which Xq− r(X) is divisible by
an irreducible degree k polynomial φ(X). Since an algorithm of Lenstra [10] allows
one to compute an isomorphism between any presentation of the finite field FQ and
Fq2 [X ]/(φ(X)) in polynomial time, requiring φ(X) to have this special shape, is not
a serious restriction.

In the first phase of the algorithm we compute the discrete logarithms of the
elements in a factor base, which in this case consists of the images of all monic linear
polynomials in Fq2 [X ] in the group A = Fq2 [X ]/(φ(X))∗/F∗q2 . Putting T = Fq2 , this
means that we compute the kernel of the homomorphism

h : ZT −→ A,

that maps the basisvector eu corresponding to u ∈ T to the image of X − u in the
group A = (Fq2 [X ]/(φ(X)))∗/F∗q2 .

The identity
Xq−X = ∏

u∈Fq

(X−u)

implies that
r(X)−X = ∏

u∈Fq

(X−u), in Fq2 [X ]/(φ(X)).

The denominator of the rational function r(X)−X is equal to the one of r(X). For
the sake of exposition, we suppose that it factors into a product of linear polynomials
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in Fq2 [X ]. Its numerator has degree at most 3 and may or may not factor into a
product of linear polynomials in Fq2 [X ]. If it does, we obtain a multiplicative relation
in the group A between the elements of our factor base. The relation gives then rise
to an element in the kernel of the homomorphism h : ZT −→ A.

In order to get more relations, we apply automorphisms of the fraction field
Fq2(X) of Fq2 [X ]. The group PGL2(Fq2) acts on the right on Fq2(X) as follows:

f σ (X) = f (
aX +b
cX +d

), for any σ =

(
a b
c d

)
∈ PGL2(Fq2).

Applying σ ∈ PGL2(Fq2) to the identity above, we obtain the equality

(Xσ )q−Xσ = (Xq−X)σ = ∏
u∈Fq

(Xσ −u), in Fq2(X).

The group PGL2(Fq2) acts via linear fractional transformations on the left on the
projective line P1 and preserves the set of Fq2 -points P1(Fq2). We view Fq2 as a
subset of P1(Fq2). So we have P1(Fq2) = Fq2 ∪{∞}. For a function f ∈ Fq2(X), a
point u∈ P1(Fq2) and an automorphism σ ∈ PGL2(Fq2), we have f σ (u) = f (σ(u)).

The above identity for σ =

(
a b
c d

)
∈ PGL2(Fq2) then becomes

(cX +d)(aX +b)q− (aX +b)(cX +d)q = ∏
u∈σ−1(P1(Fq))−{∞}

(X−u).

It holds in the function field Fq2(X) up to multiplication by some λ ∈ F∗q2 . Note

that the set σ−1(P1(Fq)) consists of q+ 1 points and may or may not contain the
point ∞. Since Xq ≡ r(X) modulo φ(X), we have

(aX +b)q ≡ ar(X)+b and (cX +d)q ≡ cr(X)+d

in Fq2 [X ]/(φ(X)). Here we put t = tq for t ∈ Fq2 . This leads to the following relation

(cX +d)(ar(X)+b)− (aX +b)(cr(X)+d) = ∏
u∈σ−1(P1(Fq))−{∞}

(X−u). (∗)

It holds in the ring Fq2 [X ]/(φ(X)) up to multiplication by some λ ∈ F∗q2 . The de-
nominator of the left hand side of this equation is equal to the one of r(X). The
numerator has degree at most 3 and it seems reasonable to expect that it varies
randomly when we vary σ . Numerical experiments have confirmed this [1]. Un-
der this assumption a positive proportion factors into a product of linear polyno-
mials in Fq2 [X ]. Indeed, this proportion is approximately 1/6. For other choices
of r(X), see [15]. A positive proportion of the relations (∗) are therefore mul-
tiplicative relations between the elements X − u of the factor base in the group
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A = (Fq2 [X ]/(φ(X)))∗/F∗q2 . They give rise to elements in the kernel of the homo-

morphism h : ZT −→ A.
The question is how many independent multiplicative relations between the ele-

ments X−u of the factor base we obtain in this way. The discrete logarithms of the
elements X−u of the factor base are a solution of the system of linear equations that
we obtain from the relations (∗). There is at present no proof that we obtain suffi-
ciently many relations for the linear system to have a unique solution over Z/MZ,
where M = #A. However, there are some heuristic arguments in this direction that
seem to be confirmed by experiments [1].

The subgroup of PGL2(Fq2) that preserves the subset P1(Fq) of P1(Fq2), is equal
to PGL2(Fq). Therefore, the set σ−1(P1(Fq)) and hence the right hand side of the
relation (∗), depends only on the left coset σ−1PGL2(Fq) rather than on σ−1 itself.
The number of cosets is equal to #PGL2(Fq2)/#PGL2(Fq) = q3 +q. It follows that
there are q3 +q different subsets σ−1(P1(Fq)) and hence q3 +q possibilities for the
right hand sides of the relations (∗). For a positive proportion the left hand sides
of (∗) factor into products of linear polynomials in Fq2 [X ]. Therefore one expects
many more than q2 relations between the elements X −u of the factor base, at least
when q is not very small. As a consequence we obtain many more than q2 elements
in the kernel of the homomorphism h : ZT −→ A.

The subsets σ−1(P1(Fq)) and therefore the right hand sides of the relations, are
very different from one another. Indeed, it easy to see that any two distinct subsets
σ−1(P1(Fq)) intersect in at most two points. Moreover, when σ runs over repre-
sentatives of the cosets of PGL2(Fq) in PGL2(Fq2) and P runs over the points of
P1(Fq2), the q3 +q by q2 +1 matrix mσ ,P given by

mσ ,P =

{
1, when P ∈ σ−1(P1(Fq));
0, otherwise.

has maximal rank q2+1. See [1]. In fact, it is not difficult to show that its rows span
a subgroup of index q+ 1 in Zq2+1. The matrix of the homogeneous linear system
we want to solve consists of the subset of rows of the matrix mσ ,P for which the
left hand side of (∗) factors completely, somewhat perturbed by the few non-zero
coefficients that come from the left hand side of (∗). Since the matrix mσ ,P has
maximal rank, it is perhaps not unreasonable to expect that our linear system has a
unique solution over Z/MZ, where M = #A.

It was pointed out by D. Wan et al. [5] that there is a problem with linear poly-
nomials X −u that divide (Xq− r(X))/φ(X). Indeed, the relations that we find, not
only hold modulo φ(X), but also modulo X −u. Typically the multiplicity of X −u
is the same on both sides of the relations (∗). This cancellation implies that the
logarithm of X−u does not appear in the linear system. Therefore it cannot be com-
puted this way. For instance, in the case φ(X) = Xq−1−g, we have r(X) = gX and
Xq−gX = Xφ(X). In this case, the logarithm of X may not at all appear in the linear
system. In this special case however, computing the logarithm of X is easy since its
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order in the group A is q−1, which is very small. See the original papers [1,8] for
ways to get around this problem in general.

5 Elliptic curves

Elliptic curve cryptography is based on the difficulty of solving the discrete loga-
rithm problem in the finite group E(Fq) of points of an elliptic curve E over a finite
field Fq. More generally, determining the kernel of a homomorphism

f : ZS −→ E(Fq),

is a difficult problem. Apart from some exceptional situations that we describe
below, the only methods that are available at present, are the baby-step-giant-
step method and the Pollard ρ-method that were discussed in section 2. Since
#E(Fq) ≈ q, both methods require O(

√
q) operations in the group E(Fq). This is

much more than the number of operations required by the subexponential index
calculus algorithm that was described in section 3. Therefore, in cryptographical
systems based on elliptic curves, key sizes can be made smaller, so that encryption
and decryption algorithms are faster.

Suppose that E is an elliptic curve over a finite field Fq given by a Weierstrass
equation

Y 2 +a1XY +a3 = X3 +a2X2 +a4X +a6,

with coefficients ai ∈ Fq. See [21] for the basic properties of elliptic curves. We let
E(Fq) denote the group of points on E with coordinates in an algebraic closure Fq
of Fq. It is an infinite torsion group. The set E(Fq) of points on E with coordinates
in Fq is a finite subgroup. For every natural number n, we let E[n] denote the group
of points on E that are annihilated by n. In other words, we have

E[n] = {P ∈ E(Fq) : nP = 0}.

If n is not divisible by the characteristic p of Fq, the group E[n] is isomorphic
to Z/nZ×Z/nZ. The Weil pairing is a bilinear, antisymmetric and non-degenerate
pairing

en : E[n]×E[n]−→ µn.

Here µn denotes the subgroup of n-th roots of unity of F∗q. The pairing en is Galois
equivariant.

Suppose now that the group E(Fq) is cyclic of order n, coprime to p. Let Q∈E[n]
be a point of order n with the property that the subgroup it generates has trivial
intersection with E(Fq). Then the map

g : E(Fq)−→ µn
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given by g(P) = en(P,Q) is an injective group homomorphism. It can be efficiently
computed by means of an algorithm invented by Victor Miller [14]. In this way
the kernel of f : ZS −→ E(Fq) can be calculated by computing the kernel of the
composite homomorphism

ZS f−→E(Fq)
g−→µn ↪→ F∗qd .

Here d is the order of q modulo n. This approach is due to Menezes, Okamoto and
Vanstone [12]. It reduces the problem of computing the kernel of a homomorphism
ZS −→ E(Fq) to a similar problem involving the multiplicative group F∗qd rather
than E(Fq).

Since the Weil pairing is Galois equivariant, the field of definition of the point Q
contains Fqd . Since d is typically very large, computing in the group E(Fqd ) is very
costly and this approach is usually not very successful. However, in certain special
cases it can be very effective. An important example is provided by supersingular
elliptic curves over prime fields Fp. When p ≡ 1 (mod 4), the group E(Fp) of a
supersingular curve E is cyclic of order p+ 1. In this case µp+1 is contained in an
extension of Fp that has only degree d = 2. Therefore this method is very efficient.
With small modifications it also works when p ≡ 3 (mod 4) and more generally
when the order of q modulo n = #E(Fq) is small. In this situation, this use of the
Weil pairing is an efficient way to compute discrete logarithms or, more generally,
to compute the kernels of homomorphisms f : ZS −→ E(Fq).

An even faster algorithm was invented by I.A. Semaev [19] for elliptic curves
E over prime fields Fp, for which the group E(Fp) has order p. In this case an
isomorphism

g : E[p]−→ Z/pZ

is constructed as follows. We fix a non-zero point Q in E(Fp). For P ∈ E(Fp) we
put

g(P) =
f ′P
fP
(Q).

Here fP is a function on E whose divisor is equal to p(Q−∞). We let f ′P denote
the function for which we have the following equality of Kähler differentials: d fP =
f ′PdX . The map g can be efficiently computed by means of Miller’s algorithm. In
this way we can compute the kernel of f : ZS −→ E(Fp) by computing the kernel
of

ZS f−→E(Fp)
g−→Z/pZ.

Similar related algorithms have been proposed by Satoh and Araki [18] and by
Smart [22]. See Belding’s paper [2] for a relation between the algorithms described
in this section.
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1. Barbulescu, R., Gaudry, P., Joux, A. and Thomé, E.: A quasi-polynomial algorithm for discrete
logarithm in finite fields of small characteristic, In Nguyen, P., Oswald, E. (Eds) Eurocrypto
2014, LNCS 8441, 1–16, Springer 2014.

2. Belding, J.V.: A Weil pairing on the p-torsion of ordinary elliptic curves over K[ε], J. of
Number Theory, 128 (2008), 1874–1888.

3. Buchmann, J., Jacobson, M. and Teske, E.: On some computational problems in finite abelian
groups, Math. Comp. 66 (1997), 1663–1687.
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