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Aim of the talk:
Pb 1: describe the singular limit

Auy — Auy + |Vuyrl9 = f(x) in Q
uy=20 on 00

- What happens as A — 07

Pb. 2: Large time behavior of the viscous H-J equation

ur — Au+ |Vul9 = f(x) in Q
u=0 ondQx(0,T), [or u=g € C(09Q)] (2)
u(0) = uy in Q.

- What happens as t — 0o? Convergence Vs Blow-up rate/profile of u(t)

Range of exponent: 1 < g < 2.

Note: No sign condition on 1y and on f
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A well known fact: the limit problem

—Au+ |Vu|? = f(x) in Q
u=0 on 092

may have no solutions.
There are two main reasons for failure of existence:

o the regularity of f (local effects: is the integrability of nonlinear term
consistent with the linear potential of ) ?
(see deep results in [Hansson-Mazja-Verbitsky], [Mazja-Verbitsky],...)

o the size of f (global effects: also related to the
Hamilton-Jacobi-Bellmann character).

Note: both reasons depend on superlinearity (and coerciveness) of first
order terms. Indeed, the problem

—Au+ H(x,Du)=f
has solution for every f provided H has (at most) linear growth
(if f is smooth, even linear+log®, o < 1; actually, if H < h(|Dul),
= i =)
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Ex: when g = 2 existence depends on eigenvalues [Kazdan-Kramer]:

{—Au+|Vu2:f(x) e {—Av:—f(x)(v—l—l)

U| =0 V| =0
a0 a0

If f < —\; (first eigenvalue), then there is no solution.

More precisely: when g = 2 there exists a solution if and only if
)\1(—A + f,Q) > 0.
On the other hand:

o If ||f]|o is sufficiently small, 3 a solution:

—Au+ |Vu|? = f(x) in Q
u=20 on 02

(e.g. [Alvino-Lions-Trombetti], [Hansson-Mazja-Verbitsky], [Ferone-Murat],
[Maderna-Pagani-Salsa])

e if we add A\ u, with A > 0, there always exists a solution.
(see [Boccardo-Murat-Puel] for general results).
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Therefore: let f € L>(Q),

o If A > 0, there always exists a solution of

{)\U—Au+|qu: f(x) in Q 3)
u=0.

@ There always exists a solution of

ur — Au+ [Vul? = f(x) in Q ()
u=0 ondQx(0,T), u(0) = u in Q.

- What happens to the solutions of (3) when A — 0 ?
- What happens to the solutions of (4) when t — oo 7

There is a deep relation between these two limits (so-called ergodic
behaviour) related to the stochastic interpretation of (3), (4)

[Bensoussan-Frehse, Arisawa-PL Lions, Evans, Alvarez-Bardi, Lions-Souganidis,
Barles-Souganidis...]
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The typical behavior in the periodic case:
@ 7 a unique constant ¢y such that the problem
— Av +|Vv|7+ ¢ = f(x) (5)
has a solution (periodic).

@ One has

. . u(t
lim Auy = lim Q:co
A—0 t—oo t

@ Moreover, in the periodic case one has
u(x,t) — ot > v
where v is a solution of (5).
The constant ¢y is so-called ergodic constant

(connection with control of diffusion processes and ergodicity of
deterministic/stochastic dynamics in invariant domains)
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Dynamic interpretation: solutions of the evolution problem can be
represented in terms of diffusion processes.
Ex: (purely heat equation)

tl7y
u(x, t) = Ex {/0 f(X;)dr + uo(Xt)} ,

where X; is a standard Brownian motion starting with Xy = x.
Traditionally the “ergodic behavior” means that

1 T
lim ?/ f(X¢)dt s constant w.r.t. Xy = x
0

(and equal to the mean of f w.r.t. to the invariant measure). Such a
constant is the ergodic constant.
On the other hand we have

uy = Ex {/ f(Xt) e_>‘t dt}
0
and it is known that

lim /\/ f(X)e Mdt = lim 7/ f(X;)d
A—0 0 T—o0
—_ ————
ux(x) xT)
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@ From a PDE’s point of view, the fact that

u(t)

Auy —  constant, e —  constant

is due to gradient bounds:
u may blow-up but Vu remains bounded.

@ The constant ¢y has a role in homogenization for first order
problems (see [Evans], [Lions-Souganidis], [Alvarez-Bardi]).
Ex: X
—eAu. + H(Vue, g) =0

Setting u. = up +ev(Z%), if we solve (for a unique constant cp)
X

co— Av+ H(Viug+Vv,y)=0 y =2

then co = H(Vup) is the so-called " effective Hamiltonian" .
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What happens in case of Dirichlet boundary conditions?
Is it possible that u(x, t) ~ cpt + v(x), as in the periodic case ?:
(and which problem ¢ and v should solve?)

Some hints:

@ There are cases when u(t) is bounded and cases when u(t) blows-up.

ex: in some cases, there is a stationary solution (if ||f||c is small)

(cfr. [Souplet-Zhang '06])
@ u is always controlled from above:
up—Au+Vul!=f = u—-Au<f

Therefore, if blow-up occurs, this means v — —oc.

A. Porretta Large time profiles for viscous H-J equations



@ Heuristics: if u(x, t) ~ ot + v(x), then we should have:
(I) Co < 0.

(ii) Since u = 0 on the lateral boundary, in the limit we should have

v(x) = u(x,t) — cot = —cot = 400 on 9.

(iii) Therefore, v should satisfy

|. =
g V) = oo,

{ —Av+|Vv|?+ ¢ = f(x) in Q,

blow-up at infinity — large solutions of elliptic PDE

Pb: Existence/uniqueness of (¢, v)?
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The ergodic problem

Thm [Lasry-Lions '89]: Let 1 < g < 2. There exists a unique constant co
such that the problem

—Av+|Vv|T+ ¢ =1f(x) in Q, (6)
v(x) = +oo as  x — 9N

admits a solution v € W2 (Vp < o0). Moreover the solution v is unique

up to an additive constant.

@ The condition 1 < g < 2 is sharp in order that large solutions exist.
If g > 2 a similar ergodic result holds for the maximal solutions v,
but in that case v is bounded
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Rmk: The constant ¢y is characterized by [LL] as the ergodic constant of
a control problem with state constraint:

G = lim inf E, 7/ cla(X,)| 7 }dr

T—o0
where
X = a( X 2dB
{;’;t a(X;)dt + v/2dB, al)eA <= X, €Q Vt>0as.
0 =X

As we will see: the behaviour of uy and of u(t) will be described in terms
of (¢p, V)
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A remarkable fact: Existence of stationary solutions of the Dirichlet pb.
depends on the ergodic constant ¢y of the state constraint pb.

— ¢p = ¢o(f) plays a similar role as an eigenvalue

Theorem

There exists a solution of the Dirichlet problem

—Ap + |Vl = f(x) in Q
p=0 ondQ,

if and only if co(f) > 0.

e Moreover, ¢y can also be characterized as
co=sup{c € R : 3 subsolutions of — Ap+ |Vp|7+c="f}

(recall PL Lions [Arma '80]: if 3 a subsolution = 3 a solution)
o When g = 2 we have cg = A1(—A + f) (cfr. [Kazdan-Kramer])

e The same holds for any boundary data g € L°°(9). Actually,
co = co(f) is independent of boundary values.
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The ergodic limit A — 0

Consider now the behavior of uy sol. of

Auy — Auy + |Vuy |9 = f(x) in Q, (8)
uy=0 on 0.

We can now distinguish the two situations in terms of ¢y(f):

(i) c0 > 0 <= there exists a (unique) solution of the limit problem

—Ap + |Vp|? = f(x) in Q )
=0 on 0N

then ||uy|loo is bounded and we have stability: uy — .

(i) c0 <0 <= there exists no solution of (9) — blow-up
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Theorem (P. '10)

Let1 < q<2 andf € L>®. Let uy be sol. of (8).
(i) If co > O then uy converges uniformly to stationary solution.
(ii) If o <0, then

ux(x) = —o0 for every x € Q,
Auy — ¢ locally uniformly in Q,

and
vy 1= U + ||un||le = vo  locally uniformly,

where ¢y is the unique constant such that

—Av+|Vv|?+ ¢ = f(x) in €,
lim v(x) = +o0,
x—0Q

admits a solution, and vy is the unique solution such that
inn vo(x) = 0.

4
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Rough explanation in terms of stochastic control:

if X; is a process satisfying the SDE

dXt = a(Xt) + \/EdBt,
Xo=x€ Q7

the sol. uy of (1) can be represented as

) = inf £ { [ [F0) 4 2alax] 1]

where E, is the expectation conditioned to Xy = x, 74 is the exit time
from €.

When A — 0, uy remains bounded unless 7, — co — state constraint pb.

Indeed, if f is very negative inside, the control will try to push the
process in the interior to realize the minimum. This leads the exit time
problem towards the state constraint problem.
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Proof of this result relies on various steps:

Auy — Auy + [Vuy |7 = f(x) in Q,
uy=0 on 0.

1N urlloo < ||flloe by max. principle.
@ Interior gradient estimates (Bernstein's technique):
[Vuy| is (locally) uniformly bounded.
— hence )\ uy must converge to a constant c.
o If there exists a sol. ¢ of the limit problem, then ||ux|lco < 2||¢]]co-
By standard compactness (e.g. [Boccardo-Murat-Puel]), uy — .
o If there exists no solution ¢, then necessarily min uy — —oo.

We prove that minimum points of uy remain sufficiently far from the
boundary. Hence

Uy + [[ua]loo ~ ur(x) — ua(xx) S IVurllx — x|,

which is bounded if {x)} remains in compact sets. Then

ux + [|ur]|o is bounded in W5
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@ Local compactness yields
ux + ||ux]leo = v locally uniformly,
where v solves

—Av+|Vv|?+c = f(x) and minv = 0.
and on the boundary v(x) — 400 as x — 0.

@ The result of [Lasry-Lions] implies that ¢ = ¢, v is unique —
convergence for the whole sequence.

A. Porretta Large time profiles for viscous H-J equations



Large time behavior

[G.Barles-A.P.-T. Tabet Tchamba '10]

ur — Au+ |Vul? = f(x) in Q,
u=0 ondQx(0,T), u(0) = up .

where 1 < g <2, f € WH>°(Q) and up € L=(Q).

Theorem 1

(i) If co > 0 then u(t) converges uniformly to the stationary solution

(i) If co <0, then

u(t) = —oo for every x € Q,

@ — C locally uniformly

Rmk: When ¢y > 0, the convergence to the stationary state holds at
exponential rate (see [P-Zuazua '12], [Benachour-Dabuleanu Hapca
-Laurencot '07] if f = 0)
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Concerning the blow-up profile and blow-up rate, our main result is the
following:

Theorem 2
(i) If o <0 and 3 < q <2, then
u(x,t) — cot = v locally uniformly

where v is a solution of the ergodic problem.

(i) lIf g <0and1l< g< % or if cg = 0, it may happen that

u(x,t) — ot = —oo

v

@ Recall: in the periodic case (as well as in the case g > 2) it is always
true that u(t) — ot — v, where v is a sol. of the ergodic problem.
A new threshold g = % appears here; the blow-up rate is influenced

by the profile of blow-up solutions .

o Case (ii) happens e.g. in star-shaped domains whenever
co(f) + [Ifllwre <0
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Idea: compare u — ¢yt with a blow-up sol. v of the ergodic problem

—Av+ |Vv|?+ ¢ = f(x) in Q,

li =
g V) = Hees

Indeed, set i = u — ¢yt, it solves the equation
iy — A+ |Vil?=f -
a|an(o,T) =Gt
and one expects u — ¢pt =~ v(x) + .... (error terms).
Main steps towards Theorem 2:

@ (L°°-contraction) sup(u(t) — cot — v) is decreasing in t.
Q

@ local uniform bounds on |u(t) — cot — V|

@ compactness (after time rescaling) + strong maximum principle
(and Hopf lemma).
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The key point is the error estimate of the blow-up rate (bounds are
locally uniform):

e Case ¢y < 0:
0o(1) when 2 < g <2
u—cot =< O(log t) when g = 3
O(t3212qq) when 1 < g < 3
e Case ¢g = 0:
O(log t h =2
ot = (log 1) when g
O(t>79) when 1 < g <2

NB: The bound from above is trivial: u— cot < v + ||Up]| o-
The problem is the bound from below since v — —oc.

Idea: construct a subsolution using the graph v(x) as a propagating front.

A. Porretta Large time profiles for viscous H-J equations



Example of our construction in the case 2 star-shaped: we take

2—q

V(x,t) = r(t)tv(r(t)x)
with r(t) <1, r(t)T1last— o
This corresponds to a translation of the profile:
(i) ¥ is defined on % o Q
(i) The graph of v moves with velocity 1 — r(t)

(iii) The velocity r(t) is chosen in a way that ¥ is comparable to u — ¢yt
2
on the boundary: r(t)av(r(t)x) ~ —cot on 99 x (0, 1).

Important: since we know the blow-up rate of v near the boundary, this
will fix the velocity r(t)

N

indeed: v(x) ~ d(x)~“ implies ¥(x, t) ~ (1 —r(t))~* (a = Z=9).

Q

Q=

V(x,t)~ —ct = 1—r(t)=t”
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Computing the equation for ¥(x,t) = r(t)%17 v(r(t)x) we find
Ve — AV + | V0|9 = r(8)7T(F — co) + r'(t)....
=f—c—(1—r(t)(f—c)+ r(t)..
——
negligeable

hence
Ve — AV 4+ |VV|T =~ f — o £ K(1—r(t))

hence
u—ct~V(x,t)+ O(H(t)), H~ /0 (1 —=r(s))ds.

Since the velocity 1 — r(t) is fixed by the boundary rate: 1 — r(t) ~ t =,
we get
u—cot ~ v(r(t)x) + O(t'~ =)

Then u — ¢ot is (locally) bounded <— a <1

(since a = % this means g > 3)
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Conclusion, comments, work in progress

@ The existence of solutions to elliptic problems with superlinear first
order terms can be characterized in terms of a constant ¢y which
plays the role of first eigenvalue

@ Such constant is associated to boundary blow-up solutions (and to
stochastic control problems)

@ In case the stationary problem does not have solutions, ¢
determines the blow-up rate of the evolution problem.

@ The profile of the long time behavior may be detected from the
associated boundary blow-up solution (new thresholds in blow-up
rate appear related to singularity of the boundary profile).

It is essential here a precise knowledge of the qualitative behavior of
large solutions.
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e The blow-up profile in case 1 < g < 3 (whenever u(t) — cot — —00)
is not clear.. suggests to look closer at the radial case

@ As | suggested, ¢y plays the role of eigenvalue.... Indeed, a
Faber-Khran inequality has been recently proved
([Ferone-Giarrusso-Messano-Posteraro])

@ The case g > 2 is similar but different [T. Tchamba '11].

The blow-up rate is still determined by the ergodic constant ¢
related to maximal solutions (state constraint problems). But
maximal solutions are bounded ! Hence u(t) — ¢pt always converges.

@ (work in progress) Most results (e.g. the blow-up behavior @ —
when stationary solutions are missing) can be extended to p-Laplace
operator
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Thanks for the attention!




