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Aim of the talk:

Pb 1: describe the singular limit{
λuλ −∆uλ + |∇uλ|q = f (x) in Ω

uλ = 0 on ∂Ω
(1)

- What happens as λ→ 0?

Pb. 2: Large time behavior of the viscous H-J equation
ut −∆u + |∇u|q = f (x) in Ω

u = 0 on ∂Ω× (0,T ), [or u = g ∈ C (∂Ω)]

u(0) = u0 in Ω .

(2)

- What happens as t →∞? Convergence Vs Blow-up rate/profile of u(t)

Range of exponent: 1 < q ≤ 2.

Note: No sign condition on u0 and on f

A. Porretta Large time profiles for viscous H-J equations



A well known fact: the limit problem{
−∆u + |∇u|q = f (x) in Ω

u = 0 on ∂Ω

may have no solutions.

There are two main reasons for failure of existence:

• the regularity of f (local effects: is the integrability of nonlinear term
consistent with the linear potential of f ) ?
(see deep results in [Hansson-Mazja-Verbitsky], [Mazja-Verbitsky],...)

• the size of f (global effects: also related to the
Hamilton-Jacobi-Bellmann character).

Note: both reasons depend on superlinearity (and coerciveness) of first
order terms. Indeed, the problem

−∆u + H(x ,Du) = f

has solution for every f provided H has (at most) linear growth

(if f is smooth, even linear+logα, α ≤ 1; actually, if H . h(|Du|),∫∞ ds
h(s) =∞)
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Ex: when q = 2 existence depends on eigenvalues [Kazdan-Kramer]:{
−∆u + |∇u|2 = f (x)

u|∂Ω
= 0

v = e−u − 1

{
−∆v = −f (x)(v + 1)

v|∂Ω
= 0

If f ≤ −λ1 (first eigenvalue), then there is no solution.

More precisely: when q = 2 there exists a solution if and only if
λ1(−∆ + f ,Ω) > 0.

On the other hand:

• If ‖f ‖∞ is sufficiently small, ∃ a solution:{
−∆u + |∇u|q = f (x) in Ω

u = 0 on ∂Ω

(e.g. [Alvino-Lions-Trombetti], [Hansson-Mazja-Verbitsky], [Ferone-Murat],

[Maderna-Pagani-Salsa])

• if we add λ u, with λ > 0, there always exists a solution.
(see [Boccardo-Murat-Puel] for general results).
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Therefore: let f ∈ L∞(Ω),

If λ > 0, there always exists a solution of{
λu −∆u + |∇u|q = f (x) in Ω

u = 0 .
(3)

There always exists a solution of{
ut −∆u + |∇u|q = f (x) in Ω

u = 0 on ∂Ω× (0,T ), u(0) = u0 in Ω .
(4)

- What happens to the solutions of (3) when λ→ 0 ?

- What happens to the solutions of (4) when t →∞ ?

There is a deep relation between these two limits (so-called ergodic
behaviour) related to the stochastic interpretation of (3), (4)

[Bensoussan-Frehse, Arisawa-PL Lions, Evans, Alvarez-Bardi, Lions-Souganidis,

Barles-Souganidis...]

A. Porretta Large time profiles for viscous H-J equations



The typical behavior in the periodic case:

∃ a unique constant c0 such that the problem

−∆v + |∇v |q + c0 = f (x) (5)

has a solution (periodic).

One has

lim
λ→0

λ uλ = lim
t→∞

u(t)

t
= c0

Moreover, in the periodic case one has

u(x , t)− c0t → v

where v is a solution of (5).

The constant c0 is so-called ergodic constant
(connection with control of diffusion processes and ergodicity of
deterministic/stochastic dynamics in invariant domains)
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Dynamic interpretation: solutions of the evolution problem can be
represented in terms of diffusion processes.
Ex: (purely heat equation)

u(x , t) = Ex

{∫ t⊥τx

0

f (Xτ ) dτ + u0(Xt)

}
,

where Xt is a standard Brownian motion starting with X0 = x .
Traditionally the “ergodic behavior” means that

lim
T→∞

1

T

∫ T

0

f (Xt)dt is constant w.r.t. X0 = x

(and equal to the mean of f w.r.t. to the invariant measure). Such a
constant is the ergodic constant.
On the other hand we have

uλ = Ex

{∫ ∞
0

f (Xt) e
−λt dt

}
and it is known that

lim
λ→0

λ

∫ ∞
0

f (Xt)e
−λtdt︸ ︷︷ ︸

uλ(x)

= lim
T→∞

1

T

∫ T

0

f (Xt)dt︸ ︷︷ ︸
u(x,T )
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From a PDE’s point of view, the fact that

λ uλ → constant ,
u(t)

t
→ constant

is due to gradient bounds:
u may blow-up but ∇u remains bounded.

The constant c0 has a role in homogenization for first order
problems (see [Evans], [Lions-Souganidis], [Alvarez-Bardi]).
Ex:

−ε∆uε + H(∇uε,
x

ε
) = 0

Setting uε = u0 + εv( x
ε ), if we solve (for a unique constant c0)

c0 −∆v + H(∇xu0 +∇v , y) = 0 y =
x

ε

then c0 = H(∇u0) is the so-called ”effective Hamiltonian” .
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What happens in case of Dirichlet boundary conditions?

Is it possible that u(x , t) ∼ c0t + v(x), as in the periodic case ?:

(and which problem c0 and v should solve?)

Some hints:

There are cases when u(t) is bounded and cases when u(t) blows-up.

ex: in some cases, there is a stationary solution (if ‖f ‖∞ is small)

(cfr. [Souplet-Zhang ’06])

u is always controlled from above:

ut −∆u + |∇u|q = f ⇒ ut −∆u ≤ f

Therefore, if blow-up occurs, this means u → −∞.
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Heuristics: if u(x , t) ∼ c0t + v(x), then we should have:

(i) c0 ≤ 0.

(ii) Since u = 0 on the lateral boundary, in the limit we should have

v(x) = u(x , t)− c0t = −c0t → +∞ on ∂Ω.

(iii) Therefore, v should satisfy{
−∆v + |∇v |q + c0 = f (x) in Ω,

lim
x→∂Ω

v(x) = +∞ ,

blow-up at infinity −→ large solutions of elliptic PDE

Pb: Existence/uniqueness of (c0, v)?
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The ergodic problem

Thm [Lasry-Lions ’89]: Let 1 < q ≤ 2. There exists a unique constant c0

such that the problem{
−∆v + |∇v |q + c0 = f (x) in Ω ,

v(x)→ +∞ as x → ∂Ω
(6)

admits a solution v ∈W 2,p
loc (∀p <∞). Moreover the solution v is unique

up to an additive constant.

The condition 1 < q ≤ 2 is sharp in order that large solutions exist.
If q > 2 a similar ergodic result holds for the maximal solutions v ,
but in that case v is bounded
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Rmk: The constant c0 is characterized by [LL] as the ergodic constant of
a control problem with state constraint:

c0 = lim
T→∞

inf
A

Ex
1

T

∫ T

0

{
f (Xt) + c |a(Xt)|

q
q−1

}
dt

where{
dXt = a(Xt)dt +

√
2dBt

X0 = x
a(·) ∈ A ⇐⇒ Xt ∈ Ω ∀t > 0 a.s.

As we will see: the behaviour of uλ and of u(t) will be described in terms
of (c0, v)
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A remarkable fact: Existence of stationary solutions of the Dirichlet pb.
depends on the ergodic constant c0 of the state constraint pb.

−→ c0 = c0(f ) plays a similar role as an eigenvalue

Theorem

There exists a solution of the Dirichlet problem{
−∆ϕ+ |∇ϕ|q = f (x) in Ω

ϕ = 0 on ∂Ω,
(7)

if and only if c0(f ) > 0.

• Moreover, c0 can also be characterized as

c0 = sup {c ∈ R : ∃ subsolutions of −∆ϕ+ |∇ϕ|q + c = f }

(recall PL Lions [Arma ’80]: if ∃ a subsolution ⇒ ∃ a solution)

• When q = 2 we have c0 = λ1(−∆ + f ) (cfr. [Kazdan-Kramer])

• The same holds for any boundary data g ∈ L∞(∂Ω). Actually,
c0 = c0(f ) is independent of boundary values.
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The ergodic limit λ→ 0

Consider now the behavior of uλ sol. of{
λuλ −∆uλ + |∇uλ|q = f (x) in Ω ,

uλ = 0 on ∂Ω.
(8)

We can now distinguish the two situations in terms of c0(f ):

(i) c0 > 0 ⇐⇒ there exists a (unique) solution of the limit problem{
−∆ϕ+ |∇ϕ|q = f (x) in Ω

ϕ = 0 on ∂Ω
(9)

then ‖uλ‖∞ is bounded and we have stability: uλ → ϕ.

(ii) c0 ≤ 0 ⇐⇒ there exists no solution of (9) → blow-up
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Theorem (P. ’10)

Let 1 < q ≤ 2, and f ∈ L∞. Let uλ be sol. of (8).

(i) If c0 > 0 then uλ converges uniformly to stationary solution.

(ii) If c0 ≤ 0, then{
uλ(x)→ −∞ for every x ∈ Ω,

λ uλ → c0 locally uniformly in Ω,

and
vλ : = uλ + ‖uλ‖∞ → v0 locally uniformly,

where c0 is the unique constant such that{
−∆v + |∇v |q + c0 = f (x) in Ω,

lim
x→∂Ω

v(x) = +∞ ,

admits a solution, and v0 is the unique solution such that
min

Ω
v0(x) = 0.
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Rough explanation in terms of stochastic control:

if Xt is a process satisfying the SDE{
dXt = a(Xt) +

√
2dBt ,

X0 = x ∈ Ω ,

the sol. uλ of (1) can be represented as

uλ(x) = inf
A

Ex

{∫ τx

0

[
f (Xt) + γq|a(Xt)|

q
q−1

]
e−λt dt

}
where Ex is the expectation conditioned to X0 = x , τx is the exit time
from Ω.

When λ→ 0, uλ remains bounded unless τx →∞ → state constraint pb.

Indeed, if f is very negative inside, the control will try to push the
process in the interior to realize the minimum. This leads the exit time
problem towards the state constraint problem.
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Proof of this result relies on various steps:{
λuλ −∆uλ + |∇uλ|q = f (x) in Ω ,

uλ = 0 on ∂Ω.

‖λ uλ‖∞ ≤ ‖f ‖∞ by max. principle.

Interior gradient estimates (Bernstein’s technique):

|∇uλ| is (locally) uniformly bounded.

→ hence λ uλ must converge to a constant c .

If there exists a sol. ϕ of the limit problem, then ‖uλ‖∞ ≤ 2‖ϕ‖∞.
By standard compactness (e.g. [Boccardo-Murat-Puel]), uλ → ϕ.

If there exists no solution ϕ, then necessarily min uλ → −∞.

We prove that minimum points of uλ remain sufficiently far from the
boundary. Hence

uλ + ‖uλ‖∞ ∼ uλ(x)− uλ(xλ) . |∇uλ||x − xλ| ,

which is bounded if {xλ} remains in compact sets. Then
uλ + ‖uλ‖∞ is bounded in W 1,∞

loc .
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Local compactness yields

uλ + ‖uλ‖∞ → v locally uniformly,

where v solves

−∆v + |∇v |q + c = f (x) and min
Ω

v = 0.

and on the boundary v(x)→ +∞ as x → ∂Ω.

The result of [Lasry-Lions] implies that c = c0, v0 is unique →
convergence for the whole sequence.
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Large time behavior

[G.Barles-A.P.-T. Tabet Tchamba ’10]{
ut −∆u + |∇u|q = f (x) in Ω ,

u = 0 on ∂Ω× (0,T ), u(0) = u0 .

where 1 < q ≤ 2, f ∈W 1,∞(Ω) and u0 ∈ L∞(Ω).

Theorem 1

(i) If c0 > 0 then u(t) converges uniformly to the stationary solution

(ii) If c0 ≤ 0, thenu(t)→ −∞ for every x ∈ Ω,

u(t)
t → c0 locally uniformly

Rmk: When c0 > 0, the convergence to the stationary state holds at
exponential rate (see [P-Zuazua ’12], [Benachour-Dabuleanu Hapca
-Laurencot ’07] if f = 0)
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Concerning the blow-up profile and blow-up rate, our main result is the
following:

Theorem 2

(i) If c0 < 0 and 3
2 < q ≤ 2, then

u(x , t)− c0t → v locally uniformly

where v is a solution of the ergodic problem.

(ii) If c0 < 0 and 1 < q ≤ 3
2 or if c0 = 0, it may happen that

u(x , t)− c0t → −∞

Recall: in the periodic case (as well as in the case q > 2) it is always
true that u(t)− c0t → v , where v is a sol. of the ergodic problem.
A new threshold q = 3

2 appears here; the blow-up rate is influenced
by the profile of blow-up solutions .

Case (ii) happens e.g. in star-shaped domains whenever
c0(f ) + ‖f ‖W 1,∞ < 0
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Idea: compare u − c0t with a blow-up sol. v of the ergodic problem{
−∆v + |∇v |q + c0 = f (x) in Ω,

lim
x→∂Ω

v(x) = +∞ ,

Indeed, set ũ = u − c0t, it solves the equation{
ũt −∆ũ + |∇ũ|q = f − c0

ũ|∂Ω×(0,T )
= −c0 t

and one expects u − c0t ' v(x) + .... (error terms).

Main steps towards Theorem 2:

(L∞-contraction) sup
Ω

(u(t)− c0t − v) is decreasing in t.

local uniform bounds on |u(t)− c0t − v |
compactness (after time rescaling) + strong maximum principle
(and Hopf lemma).
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The key point is the error estimate of the blow-up rate (bounds are
locally uniform):

• Case c0 < 0:

u − c0t =


O(1) when 3

2 < q ≤ 2

O(log t) when q = 3
2

O(t
3−2q
2−q ) when 1 < q < 3

2

• Case c0 = 0:

u − c0t =

{
O(log t) when q = 2

O(t2−q) when 1 < q < 2

NB: The bound from above is trivial: u − c0t ≤ v + ‖u0‖∞.

The problem is the bound from below since u → −∞.

Idea: construct a subsolution using the graph v(x) as a propagating front.
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Example of our construction in the case Ω star-shaped: we take

ṽ(x , t) = r(t)
2−q
q−1 v(r(t)x)

with r(t) < 1, r(t) ↑ 1 as t →∞

This corresponds to a translation of the profile:

(i) ṽ is defined on Ω
r(t) ⊃ Ω

(ii) The graph of v moves with velocity 1− r(t)

(iii) The velocity r(t) is chosen in a way that ṽ is comparable to u − c0t

on the boundary: r(t)
2−q
q−1 v(r(t)x) ' −c0t on ∂Ω× (0, t).

Important: since we know the blow-up rate of v near the boundary, this
will fix the velocity r(t)

indeed: v(x) ' d(x)−α implies ṽ(x , t) ' (1− r(t))−α (α = 2−q
q−1 ).

ṽ(x , t) ' −c0t ⇒ 1− r(t) ' t−
1
α
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Computing the equation for ṽ(x , t) = r(t)
2−q
q−1 v(r(t)x) we find

ṽt −∆ṽ + |∇ṽ |q = r(t)
q

q−1 (f − c0) + r ′(t)....

= f − c0 − (1− r(t))(f − c0) + r ′(t)....︸ ︷︷ ︸
negligeable

hence
ṽt −∆ṽ + |∇ṽ |q ' f − c0 ± K (1− r(t))

hence

u − c0t ∼ ṽ(x , t) + O (H(t)) , H '
∫ t

0

(1− r(s))ds.

Since the velocity 1− r(t) is fixed by the boundary rate: 1− r(t) ' t−
1
α ,

we get

u − c0t ∼ v(r(t)x) + O(t1− 1
α )

Then u − c0t is (locally) bounded ⇐⇒ α < 1

(since α = 2−q
q−1 this means q > 3

2 )
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Conclusion, comments, work in progress

The existence of solutions to elliptic problems with superlinear first
order terms can be characterized in terms of a constant c0 which
plays the role of first eigenvalue

Such constant is associated to boundary blow-up solutions (and to
stochastic control problems)

In case the stationary problem does not have solutions, c0

determines the blow-up rate of the evolution problem.

The profile of the long time behavior may be detected from the
associated boundary blow-up solution (new thresholds in blow-up
rate appear related to singularity of the boundary profile).

It is essential here a precise knowledge of the qualitative behavior of
large solutions.
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The blow-up profile in case 1 < q ≤ 3
2 (whenever u(t)− c0t → −∞)

is not clear.. suggests to look closer at the radial case

As I suggested, c0 plays the role of eigenvalue.... Indeed, a
Faber-Khran inequality has been recently proved
([Ferone-Giarrusso-Messano-Posteraro])

The case q > 2 is similar but different [T. Tchamba ’11].

The blow-up rate is still determined by the ergodic constant c0

related to maximal solutions (state constraint problems). But
maximal solutions are bounded ! Hence u(t)− c0t always converges.

(work in progress) Most results (e.g. the blow-up behavior u(t)
t → c0

when stationary solutions are missing) can be extended to p-Laplace
operator
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Thanks for the attention!
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