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Outlines of the talk

Brief description of the Mean Field Games equilibrium system.
Coupling viscous Hamilton-Jacobi & Fokker-Planck.

Local coupling → weak solutions.

A weak setting for Fokker-Planck (uniqueness, renormalization)

Uniqueness for mean field games

The planning problem: an optimal transport for stochastic dynamics

Vanishing viscosity and first order case
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Mean Field Games

The Mean Field Games theory was introduced by Lasry-Lions and
Huang-Caines-Malhamé since 2006.

Main goal: describe dynamics with large numbers (a continuum) of
agents whose strategies depend on the distribution law

Typical features of the model:

- players act according to the same principles (they are indistinguishable
and have the same optimization criteria).

- players have individually a minor (infinitesimal) influence, but their
strategy takes into account the distribution of co-players.

Idea: introduce a macroscopic description through a mean field approach
as the number of players N →∞.

→ Limit of Nash equilibria of symmetric N-players games will satisfy a
system of PDEs coupling individual strategies with the distribution law
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The simplest form of the macroscopic model is a coupled system in a
time horizon T :{

(1) −ut −∆u + H(t, x ,Du) = F (t, x ,m) in (0,T )× Ω

(2) mt −∆m − div(mHp(t, x ,Du)) = 0 in (0,T )× Ω ,

where Hp stands for ∂H(t,x,p)
∂p .

(1) is the Bellman equation for the agents’ value function u.

(2) is the Kolmogorov-Fokker-Planck equation for the distribution of
agents. m(t) is the probability density of the state of players at
time t.

Typically: p 7→ H(t, x , p) is convex.

Model ex: H ' γ(t, x)|Du|q.
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Roughly, each agent controls the dynamics of a N-d Brownian motion

dXt = βtdt +
√

2dBt ,

in order to minimize, among controls βt , some cost:

inf J(β) := E

{∫ T

0

[L(Xs , βs) + F (Xs ,m(s))]ds + G (XT ,m(T ))

}

where m(t) is the probability measure in RN induced by the law of Xt .

The associated Hamilton-Jacobi-Bellman equation is

−ut −∆u + H(x ,Du) = F (x ,m(t))

where H = supβ[−β · p − L(x , β)]. The HJB eq. gives

• the best value infβ J(β) =
∫
u(x , 0)dm0(x),

where m0 is the probability distribution of X0.

• the optimal control through the feedback law: β∗t = b(t,Xt), where
b(t, x) = −Hp(x ,Du(t, x)). ,
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Recall: given a drift-diffusion process

dXt = b(t,Xt)dt +
√

2dBt

the probability measure m(t) (distribution law of Xt) satisfies

mt −∆m + div (bm) = 0

in a weak sense∫
Ω
ϕ(t, x)m(t, x)dxdt +

∫ t

0

∫
Ω
m(τ, x)L∗ϕ dxdτ =

∫
Ω
ϕ(0)m0

∀ϕ ∈ C 2 , ∀t > 0

where L∗ := ∂t −∆− b · D and m(0) = initial distribution of X0.

Hence, the evolution of the state of the agents is governed by their
optimal decisions b∗t = −Hp(·,Du(·)):

mt −∆m − div (mHp(x ,Du)) = 0
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This is the Mean Field Games system (with horizon T ):{
(1) −ut −∆u + H(x ,Du) = F (x ,m) in (0,T )× Ω

(2) mt −∆m − div(mHp(x ,Du)) = 0 in (0,T )× Ω ,

usually complemented with initial-terminal conditions:

-m(0) = m0 (initial distribution of the agents)

-u(T ) = G (x ,m(T )) (final pay-off)

+ boundary conditions (here for simplicity assume periodic b.c.)

Main novelties are:

the backward-forward structure.

the interaction in the strategy process: the coupling F (x ,m)

Rmk 1: This is not the most general structure.

Cost criterion L(Xt , αt ,m(t))→ H(x ,m,Du).

Rmk 2: In special cases, the system has a variational structure (so-called
mean field control systems) → optimality system
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Two coupling regimes are usually considered:

(i) Nonlocal coupling with smoothing effect (ex. convolution):
F ,G : RN × P1 → R are smoothing on the space of probability
measures. Ex: F (x ,m) = Φ(x , k ?m)

→ solutions are smooth & Uniqueness of smooth solutions if
m 7→ F (x ,m) increasing, p 7→ H(x , p) convex [Lasry-Lions].

Proof: Take (u1,m1), (u2,m2) solutions,

−(u1 − u2)t −∆(u1 − u2)+[H(Du1)− H(Du2)]=F (m1)− F (m2) ×(m1 −m2)

(m1 −m2)t −∆(m1 −m2)− div [m1Hp(Du1)−m2Hp(Du2)]=0 ×(u1 − u2)

Subtract → second order disappear by duality....:∫ T

0

∫
Ω
m1 [H(x ,Du2)− H(x ,Du1)− Hp(Du1)D(u2 − u1)] dxdt

+
∫ T

0

∫
Ω
m2 [H(x ,Du1)− H(x ,Du2)− Hp(Du2)D(u1 − u2)] dxdt

+
∫ T

0

∫
Ω

[F (x ,m1)− F (x ,m2)] [m1 −m2] dxdt

= −
∫

Ω
[(u1 − u2)(m1 −m2)] dx |T0

....... = 0 from initial-terminal conditions
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(ii) Local coupling: F = F (x ,m(t, x)).
→ regularity of sol.’s is very difficult and mostly unknown.

Existence of smooth solutions if:

(i) the Hamiltonian H is globally Lipschitz

(ii) the coupling m 7→ F (x ,m) has a mild growth or p 7→ H(x , p)
has a mild growth
([Lasry-Lions], [Gomes-Pimentel-Sanchez Morgado])

([Cardaliaguet-Lasry-Lions-P.]) In the model case (purely quadratic)
H(x , p) = |p|2, solutions are smooth for any F (x ,m) ≥ 0.

([Lasry-Lions]) Existence of weak solutions under much more general
growth conditions (ex: F (x ,m) ≥ 0 + any power growth w.r.t. m).
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Goal: build a complete theory of weak solutions (existence, uniqueness,
stability...)

Motivations:

Convergence of numerical schemes

(cfr. [Achdou-Capuzzo Dolcetta], [Achdou-Camilli-Capuzzo Dolcetta])

Convergence of long time asymptotics

(cfr. [Cardaliaguet-Lasry-Lions-P.])

Most results were proved assuming to reach smooth solutions. But
any stability argument will naturally get at weak solutions....
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Characterize solutions to the planning problem (prescribed initial
and final densities m(0) and m(T )):

−ut −∆u + H(x ,∇u) = F (x ,m) ,

mt −∆m − div (mHp(x ,∇u)) = 0 ,

m(0) = m0 , m(T ) = m1

Here, no condition is assumed on u at time T .

This is an optimal transport model for the distribution law m of the
stochastic flow.

The model case H(x ,Du) = 1
2 |Du|

2 was solved by P.L. Lions
through a change of unknown using the Hopf-Cole transform.
Numerical schemes were studied in [Achdou-Camilli-Dolcetta ’12].

In general, solutions (obtained through singular limit of standard
MFG systems) can only be proved to be weak.
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Main difficulties:

1. The typical setting for well-posedness of

(FP) mt−∆m+ div (mb) = 0 (t, x) ∈ (0,T )×Ω , Ω ⊂ IRN

is
b ∈ L∞(0,T ; LN(Ω)) , or b ∈ LN+2((0,T )× Ω)

or in general b ∈ Lr (0,T ; Lq(Ω)) with N
2q + 1

r ≤
1
2

([Aronson-Serrin] see also [Ladysenskaya-Solonnikov-Uraltseva]).

Under those conditions, plenty of results in the literature (linear and
nonlinear operators) & rigorous connections between FP equation and
stochastic flow (ex. [Krylov-Röckner ’07], [Figalli ’08]).

Pb. MFGames: b = Hp(x ,Du) ' |Du|q−1 is in the right class only if q is
small or Du highly integrable
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2. Uniqueness may fail for unbounded solutions of HJB:

∃ u ∈ L2(0,T ;H1
0 ) , u 6= 0 sol. of

{
ut −∆u + |Du|2 = 0

u(0) = 0

Counterexamples are constructed as u = log(1 + v), v solutions to{
vt −∆v = χ

v(0) = 0

provided χ is a concentrated measure (ex. χ = δx0 )
([Abdellaoui-Dall’Aglio-Peral]).
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Back to MFG system:{
−ut −∆u + H(x ,Du) = F (x ,m) ,

mt −∆m − div (mHp(x ,Du)) = 0 ,

Summary:
(i) HJB has no uniqueness of weak solutions

(ii) The drift in FP is not known to have the right summability

Desperate situation ?......

m [Hp(x ,Du)Du − H(x ,Du)] ∈ L1(QT ) (1)

which comes from optimization:∫ T

0

∫
Ω

L(x ,Hp(x ,Du))mdxdt ' E

[∫ T

0

L(Xt ,Hp(Xt ,Du(t,Xt)))dt

]
<∞

Ex: (model case) H(x , p) quadratic → Hp(x ,Du)Du − H(x ,Du) ' |Du|2

(1)⇒ Hp(x ,Du) ∈ L2(m) , i.e. m |Hp(x ,Du)|2 ∈ L1
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Uniqueness for Fokker-Planck

Key point: we can consider solutions of Fokker-Planck

mt −∆m − div (bm) = 0

such that m ≥ 0, m|b|2 ∈ L1

In this framework, we can prove:

1 Weak (=distributional) solutions of (FP) are unique in this class

2 Weak solutions are renormalized solutions;

(in the sense of [Di Perna-Lions], extended to second order, see
[Boccardo-Diaz-Giachetti-Murat], [Lions-Murat], [Blanchard-Murat])

Moreover, we show that solutions can be regularized and obtained as
limit of smooth solutions.

Rmk: The importance of the class {m : b ∈ L2(m)} was also stressed in
[Bogachev-Da Prato-Röckner ’11], [Bogachev-Krylov-Röckner]
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The typical statement is the following (adapted to Dirichlet, Neumann,
or to entire space IRN under suitable modifications)

Theorem (P. ’14)

Let b ∈ L2(QT )N and m0 ∈ L1(Ω). Then the problem
mt −∆m − div(mb) = 0 , in (0,T )× Ω,

m(0) = m0 in Ω.

+ BC

(2)

admits at most one weak sol. m ∈ L1(QT )+: m|b|2 ∈ L1(QT ).

Moreover, in this case any weak solution is a renormalized solution,
belongs to C 0([0,T ]; L1) and satisfies (for a suitable truncation Tk(·)):

(Tk(m))t −∆Tk(m)− div(T ′k(m)mb) = ωk , in QT (3)

where ωk ∈ L1(QT ), and ωk
k→∞→ 0 in L1(QT ).
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A nonlinear look at a linear equation

The equivalence weak=renormalized follows from a nonlinear
argument.

(i) If m|b|2 ∈ L1, then

m = limεm
ε ,mε

t −∆mε − div(
√
mε Bε) = 0 , in (0,T )× Ω,

mε(0) = m0 , + BC

provided

Bε
L2

→
√
mb

(ii) The sequence mε converges in C 0([0,T ]; L1) and produces a
renormalized solution
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This is a very general principle for convection-diffusion problems
(e.g. nonlinear Am = − div (a(x ,m,Dm))){

mε
t + Amε = div (φ(t, x ,mε)) in QT

mε(0) = mε
0 , +BC

we have: if

|φ(t, x ,m)| ≤ c(1 +
√
m) k(t, x) , k ∈ L2(QT ) (4)

then

mε
0

L1

→m0 ⇒

{
mε → m in C 0([0,T ]; L1)

Tk(mε)→ Tk(m) in L2([0,T ];H1)

and m is renormalized solution relative to m0.
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One can apply this idea even in the Di Perna-Lions approach,
regularizing m by convolution:

mt −∆m − div(mb) = 0 ? ρε

⇒ mε := m ? ρε solves

mε
t −∆mε − div((mb) ? ρε) = 0

where Schwartz’s inequality + m ≥ 0 imply

|(mb) ? ρε| ≤ (m ? ρε)
1
2︸ ︷︷ ︸

√
mε

(
(m|b|2) ? ρε

) 1
2︸ ︷︷ ︸

Bε

with Bε converging in L2(QT ).

→ for purely second order operators, no need of commutators !
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Summary on FP:

the class of weak solutions m such that m|b|2 ∈ L1 gives:
uniqueness, renormalized formulation, solutions obtained by
regularization, estimates. Ex:

m0 > 0 , logm0 ∈ L1
loc(Ω)⇒ logm(t) ∈ L1

loc(Ω),

hence m(t) > 0 a.e.

the class m|b|2 ∈ L1 is consistent with the stochastic flow:

we are considering only trajectories Xt along which the drift is
L2-integrable: ∫ T

0

[E|b(Xt)|2] dt <∞

Possible development: one should prove uniqueness in law for
(SDE) under this condition and establish rigorously the connection
with a stochastic flow
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Mean Field Games


−ut −∆u + H(x ,∇u) = F (x ,m) ,

mt −∆m − div (mHp(x ,∇u)) = 0 ,

u(T ) = G (x ,m(T )) , m(0) = m0

• F ,G ∈ C 0(Ω× R)

• p 7→ H(x , p) is convex and satisfies structure conditions

Ex: H ' γ(t, x)|∇u|q, q ≤ 2.

Def. of weak solutions:

- u,m ∈ C 0([0,T ]; L1(Ω)), m |Du|q ∈ L1

-G (x ,m(T )) ∈ L1(Ω), H(x ,Du) ∈ L1, F (x ,m) ∈ L1,

- the equations hold in the sense of distributions.
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Theorem (case q = 2)

Assume that m 7→ G (x ,m) is nondecreasing, and let m0 ∈ L∞(Ω)+.

(i) If F , G are bounded below, then there exists a weak solution.

(ii) If in addition m 7→ F (x ,m) is nondecreasing, p 7→ H(x , p) is strictly
convex (at infinity), and logm0 ∈ L1

loc(Ω), then there is a unique weak
solution.

Rmk: The coupling functions F ,G have no growth restriction from above

• The case F = F (x) is included !! New viewpoint for{
ut −∆u + H(x ,Du) = F (x)

u∂Ω = 0 , u(0) = u0

Uniqueness ⇐⇒ mt −∆m − div (Hp(x ,Du)m) = 0 admits a sol. m
with Hp(Du) ∈ L2(m).

→ new uniqueness results even with F , u0 ∈ L1.
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Proof requires previous results for Fokker-Planck and the following crucial
lemma

Lemma (crossed integrability)

Given any two weak solutions (u1,m1) and (u2,m2), we have

F (mi )mj ∈ L1(QT ) , mi |Duj |2 ∈ L1(QT ) , ∀i , j = 1, 2 . (5)

Uniqueness is then proved with all the ingredients:

m is a weak solution to FP with drift Hp(x ,Du) ∈ L2(m)

→ m is unique and is a renormalized sol.

In addition, m > 0 a.e. provided logm0 ∈ L1
loc(Ω).

Since ut −∆u ∈ L1(QT ), a weak solution u is also renormalized
(L1 theory...)

Apply the Lasry-Lions argument to the renormalized system

Pass to the limit thanks to the crossed integrability lemma
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Similar result holds for q < 2 with minor variations.

Theorem (case q < 2)

Let m0 ∈ L∞(Ω)+.

(i) If F , G are bounded below, there exists a weak solution.

(ii) Assume in addition that m 7→ F (x ,m),G (x ,m) are nondecreasing and

F (x ,m) ' f (m) , G (x ,m) ' g(m) as m→∞

where f (s)s and g(s)s are convex.
If p 7→ H(x , p) is strictly convex (at infinity), and logm0 ∈ L1

loc(Ω), then
there is a unique weak solution which is bounded below.

We also have robust stability results on the nonlinearities

(i) F ε(x , s)→ F (x , s), G ε → G (x , s), Hε(x , p)→ H(x , p) (under
uniform structure assumptions)

(ii) m0ε → m0

Then (uε,mε)→ (u,m) weak solutions.
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[joint work with Y. Achdou] Existence of weak solutions can be
proved from the convergence of numerical schemes.

We use finite differences approximations of the mean field games
system as in [Achdou-Capuzzo Dolcetta]:

uk+1
i,j −u

k
i,j

∆t − (∆hu
k)i,j + g(xi,j ,

[
∇hu

k
]
i,j

) = F (mk+1
i,j ),

mk+1
i,j −m

k
i,j

∆t − (∆hm
k+1)i,j + Ti,j(uk ,mk+1) = 0,

where g is a monotone approximation of the Hamiltonian H as in
upwind schemes:

Ex (1-d): g = g
(

ui+1−ui
h , ui−ui−1

h

)
with g(p1, p2) increasing in p2

and decreasing in p1, g(q, q) = H(q).

while T is the discrete adjoint of the associated linearized transport:

T (v ,m) · w = mgp([∇hv ]) · [∇hw ]

Similar structure allows to have discrete estimates and compactness
as in the continuous model.
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The planning problem

Further application to Mean Field Games: the “(stochastic) optimal
transport problem”:

−ut −∆u + H(x ,∇u) = F (x ,m) ,

mt −∆m − div (mHp(x ,∇u)) = 0 ,

m(0) = m0 , m(T ) = m1

Here, no condition is assumed on u at time T .

This is an optimal transport model for the distribution law m of the
stochastic flow.

Ex: (model case H = 1
2 |Du|

2, F = F (m)):

min
α∈L2(m dxdt)

∫ T

0

∫
Ω

1
2 |α|

2 m dxdt +
∫ T

0

∫
Ω

Φ(m)dxdt , [Φ =
∫ s

0
F (r)dr ]{

mt −∆m − div (αm) = 0

m(0) = m0 ,m(T ) = m1

(compare with deterministic case, F ≡ 0 [Benamou-Brenier])
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Theorem (P. ’13)

Under the above assumptions on F , H. Let m0,m1 ∈ C 1(Ω),
m0,m1 > 0,

∫
Ω
m0 dx =

∫
Ω
m1 dx = 1. Then, there exists a weak

solution (u,m) of the planning problem.

If in addition H(x , ·) is strictly convex, then the weak solution (u,m) is
uniquely characterized: m is unique, u is unique up to a constant.

• Uniqueness follows from the same method as before.

• Smoothness of solutions is open.

• Existence is not easy: this is an exact controllability result (bilinear
control) with representation of the optimal control. Ex. is obtained from
penalized MFG systems:

−(uε)t −∆uε + H(x ,Duε) = F (x ,mε) in QT

(mε)t −∆mε − div(mε Hp(x ,Duε)) = 0 in QT

mε(0) = m0 , uε(T ) = mε(T )−m1

ε ε→ 0

Here we use the variational structure..
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1. The structure of Hamiltonian system gives a kind of observability
inequality: any solution (u,m) satisfies∫

Ω

|Du(0)|2 dx ≤ C

{∫ T

0

∫
Ω

m |Du|2 dxdt + 1

}
(6)

where C = C (T ,H,m0).

2. Coupling the energy estimates of the system with the observability
inequality, we end up with a uniform bound

‖uε(t)‖L2(Ω) bounded, uniformly in [0,T ]

and in particular

‖uε(T )‖L2(Ω) =
1

ε
‖mε(T )−m1‖L2(Ω) ≤ C

so
mε(T )

ε→0−→m1

and the target will be achieved !!
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Vanishing viscosity and first order case

[joint work with Cardaliaguet, Graber & Tonon]

The vanishing viscosity limit is possible at least for F (x ,m) ' mγ and
leads to weak solutions of the first order system in the sense:

(i) u is a distributional subsolution:

−ut + H(x ,∇u) ≤ F (x ,m)

(ii) m is a distributional solution for the continuity equation

mt − div (mHp(x ,∇u)) = 0

(iii) mH(x ,Du),F (x ,m)m ∈ L1 and the energy equality holds∫ T

0

∫
Ω

mF (x ,m)dxdt +

∫ T

0

∫
Ω

m {Hp(x ,Du)Du − H(x ,Du)} dxdt

=

∫
Ω

m0 u(0)−
∫

Ω

uTm(T )
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Theorem (CGPT ’15)

Assume that

(i) p 7→ H(x , p) is strictly convex and H(x , p) ' |p|q at infinity, q > 1.

(ii) m 7→ F (x ,m) is increasing and F (x ,m) ' mγ at infinity.

Then, for smooth initial-terminal data m0, uT the first order system
−ut + H(x ,∇u) = F (x ,m) ,

mt − div (mHp(x ,∇u)) = 0 ,

m(0) = m0 , u(T ) = uT

admits a unique weak solution (u,m) in the sense that m is unique and u
is unique in {m > 0}.
Moreover, the solution can be obtained from the vanishing viscosity limit.

Ingredients of proof:

Integral estimates for sub solutions of HJ (possibly degenerate)

Characterization of the weak solution (u,m) as the unique minimizer
of optimal control problem (as in [Cardaliaguet],

[Cardaliaguet-Graber]).
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Further directions of research

Use the PDE results on weak solutions to prove uniqueness in law
for the associated trajectories of the SDE:

dXt = b(Xt)dt +
√

2dBt

More general MFG models, e.x. congestion models: H = |Du|2
mα

Multi-populations interactions, more general stochastic dynamics
(Levy processes,...), etc...

Optimal transport: a bridge with the deterministic case ?
−ut + H(x ,Du) = F (x ,m)

mt − div(mHp(x ,Du)) = 0

m(0) = m0 , m(T ) = m1

-F = 0→ optimal transport ([Benamou-Brenier], [Villani],...).

-F = F (m) increasing → results by P.L. Lions (totally different
method).
General results ? Is there some unifying framework ?
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