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Motivation and setting of the problem

Let CS be a cone in RN with vertex 0 and opening S ⊂ SN−1,
where S is a smooth subdomain on the sphere.

Goal: Construct p harmonic functions in CS in the form of
separable variables

u(x) = r−βω(σ) : −∆pu := −div
(
|Du|p−2Du

)
= 0

Motivation: Such functions are fundamental to describe the precise
behaviour near a conical boundary point of solutions of

−∆pv = f (x , v) in Ω,

Typically, the (possibly singular) behaviour at those points is
described by comparison with explicit solutions in the cone.
[Krol, Maz’ya, Tolksdorf, Kichenessamy-Véron,...]
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One can check: u(x) = r−βω(σ) is p-harmonic in the cone CS

(and zero on the lateral boundary) if and only if (β, ω) satisfy
−div

(
(β2ω2 + |∇ω|2)

p−2
2 ∇ω

)
=

= β (β(p − 1) + p − N) (β2ω2 + |∇ω|2)
p−2

2 ω

ω = 0 on ∂S

(1)
where ∇ and div are covariant derivative and divergence operator
on SN−1.

Theorem (P. Tolksdorf ’83)

There exists a unique β̃ := β̃
S
< 0 such that the problem (1)

admits a positive solution ω ∈ C 1(S̄) ∩ C 2(S). Furthermore ω is
unique up to an homothethy.
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[L.Véron, Colloquia Mathematica Societatis Jànos Bolyai]:
The same proof of Tolksdorf applies when β > 0 (existence
and uniqueness of βS > 0: u = r−βω(σ) is p-harmonic in the
cone CS)

⇒ construction/behaviour of singular solutions

Recently, new interest in this result has come from the study
of the boundary isolated singularities for the equation

−∆pu = uq , q > p − 1

[Bidaut Véron-Jazar-Véron, Bidaut Véron-Borghol-Véron,
Bidaut Véron-Ponce-Véron (p = 2)]

The construction of positive sol. in the form u = r−βω(σ)
would serve as model for the singular behaviour in conical
boundary points.
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In particular, [Bidaut Verón-Jazar-Véron] prove that

A necessary condition for ∃ of sol. u = r−β ω(σ) of

−∆pu = uq in the cone CS

is that β = p
q−(p−1) < βS

Note that this is a condition relating q and S (opening of the
cone): q − (p − 1) > p

βS

(the condition is also sufficient in dimension N = 2)

• Unfortunately, the explicit value of βS is rarely known.
(Ex: p = 2, S = S+ half sphere, then βS = N − 1)
However, the role of βS is important as that of an eigenvalue.
(similarly, βS also appears in Liouville type problems in cones)

→ Qn: what do we know about βS?
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• In the approach of P. Tolksdorf, there is no appearing of an
eigenvalue problem. His theorem is a consequence of the results for
solutions in the cone.

The existence of (β, ω) is deduced by constructing a self-similar
sol. in the unit cone (u(R x) = Rβ u(x)) and defining

ω(σ) := u(Rσ)
Rβ

(uniqueness of β, ω is proved next using Harnack
inequalities in the infinite cone)

Pb: Is there an intrinsic construction of (β, ω) ? Does this problem
have an independent meaning on SN−1? Note that problem

−div
(

(β2ω2 + |∇ω|2)
p−2

2 ∇ω
)

=

= β (β(p − 1) + p − N) (β2ω2 + |∇ω|2)
p−2

2 ω

ω = 0 on ∂S

is a kind of “nonlinear eigenvalue problem” (invariant by dilations
of ω) - but it is not variational !
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When p = 2, the equation

−div
(

(β2ω2 + |∇ω|2)
p−2

2 ∇ω
)

=

= β(β(p − 1) + p − N)(β2ω2 + |∇ω|2)
p−2

2 ω

is exactly an eigenvalue problem

−∆gω = β(β + 2− N)ω in S ⊂ SN−1 (2)

where ∆g is the Laplace-Beltrami operator.

β(β + 2− N) = λ1,S

when λ1,S is the first eigenvalue on S .

Note in the case p = 2:
• ω is precisely an eigenfunction
• β is not precisely an eigenvalue, but is obtained in terms of λ1

(β solves an equation F (β, λ1) = 0)
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∃ of sol. u(x) = r−βω(σ) −→ eigenvalue-type problems in SN−1.
What if p 6= 2? Key point: set

v = − 1

β
lnω

Then the equation

−div
(

(β2ω2 + |∇ω|2)
p−2

2 ∇ω
)

=

= β(β(p − 1) + p − N)(β2ω2 + |∇ω|2)
p−2

2 ω

is transformed into

−div
((

1 + |∇v |2
) p−2

2 ∇v
)

+ β(p − 1)
(
1 + |∇v |2

) p−2
2 |∇v |2

= − (β(p − 1) + p − N)
(
1 + |∇v |2

) p−2
2 in S

Divide by
(
1 + |∇v |2

) p−2
2 .....
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We see that v = − 1
β lnω solves

−∆gv − (p − 2)D
2v∇v ·∇v
1+|∇v |2 + β(p − 1)|∇v |2 = − (β(p − 1) + p − N)

We immediately remark:

In the equation of v , the case p = 2 and p 6= 2 are very similar

the principal part is an elliptic operator independent of β

The number (β(p − 1) + p − N) has a role of “ergodic
constant”:
given any β > 0, is there a unique λβ such that the equation

−∆gv − (p − 2)D
2v∇v ·∇v
1+|∇v |2 + β(p − 1)|∇v |2 = −λβ

has a solution v ?
Important: with the boundary behaviour v → +∞ on ∂S !
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When p = 2, the problem{
−∆gv + β|∇v |2 = −λβ
v(σ)→ +∞ as σ → ∂S

is related to a state constraint problem for the Brownian motion
(see [J.M. Lasry-P.L.Lions ’89]).

This is a classical connection (through logarithmic tranform)
between the first eigenvalue and the ergodic constant of
stochastic control problems{
−∆u = λ1 u in Ω

u = 0 on ∂Ω

v=− ln u↔

{
−∆v + |∇v |2 = −λ1 in Ω

v → +∞ on ∂Ω

So-called stochastic control interpretation of the first eigenvalue
[C.J. Holland ’77]

(see also Donsker-Varadhan, J.M.Lasry-P.L.Lions ’89, W.H.
Fleming-McEneaney ’95, W. H. Fleming-S.J. Sheu ’97, ....)
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The heart of our approach is the following

Theorem (P-V)

Let S ⊂ SN−1 be a smooth bounded open subdomain. Then for
any β > 0 there exists a unique λβ > 0 such that the problem{

−∆gv − (p − 2)D
2v∇v ·∇v
1+|∇v |2 + β(p − 1)|∇v |2 = −λβ

v(σ)→ +∞ as σ → ∂S

admits a solution v ∈ C 2(S).

Furthermore, v is unique up to an additive constant.

This result has an intrinsic independent interest:

• Our proof applies replacing SN−1 with a general
N − 1-dimensional Riemannian manifold (M, g).

• This result extends [J.M.Lasry-P.L.Lions ’89] (where p = 2 and
S ⊂ RN). It seems new when p 6= 2 even in the euclidean case.
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The proof of this Theorem stands on the following steps:

As is typical for ergodic-type problems, we start from solutions
of{
ε vε −∆gvε − (p − 2)D

2vε∇vε·∇vε
1+|∇vε|2 + β(p − 1)|∇vε|2 = 0

vε(σ)→ +∞ as σ → ∂S

and then we let ε→ 0.

What happens in such models is that
- vε has a complete blow-up as ε→ 0

On the other hand,

-ε vε remains bounded (locally)

-|∇vε| remains locally bounded due to the barrier effect of the
absorption term.
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Therefore we have

(i) ‖εvε‖∞ ≤ C

(ii) ε∇vε → 0 locally uniformly, hence, up to subsequences,

ε vε converges to a constant λβ

If we fix σ0 ∈ S , then, locally uniformly,

vε(·)− vε(σ0) converges to a function v

and v solves

λβ −∆gv − (p − 2)
D2v∇v · ∇v

1 + |∇v |2
+ β(p − 1)|∇v |2 = 0

with the boundary behaviour v → +∞ on ∂S
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Key point: Compactness relies on interior gradient estimates:

For every compact subset S ′ ⊂⊂ S , we have

‖∇vε‖L∞(S ′) ≤
K

dist(S ′,S)

To get the gradient bound, we use the (intrinsic) Weitzenböck
formula

1

2
∆g |∇v |2 = ‖D2v‖2 +∇(∆gv) · ∇v + Riccg (∇v ,∇v)

and the classical Bernstein’s method . Since

‖D2v‖2 ≥ 1
N−1 |∆gv |2

∆gv = (p − 2)

∇|∇v|2︷ ︸︸ ︷
D2v∇v ·∇v

1+|∇v |2 + β(p − 1)|∇v |2

we find an equation satisfied by |∇v |2 where we apply max.
principle.
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Uniqueness of (λβ, v)

[Rmk: Uniqueness of (λβ, v) implies that the convergence
holds for the whole sequence vε]

- The uniqueness of λβ is a consequence of the strong
maximum principle.

Rmk: A(v) : = −∆gv−(p−2)
D2v∇v · ∇v

1 + |∇v |2
is nondegenerate

A(v1)− A(v2) + β
[
|∇v1|2 − |∇v2|2

]
= −(λ1

β − λ2
β)

λ1
β 6= λ2

β ⇒ v1 − v2 ≡ const.
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-Uniqueness of v can be proved with a typical argument for “large
solutions ” [Bandle, Marcus, Véron]

Detailed estimates on the boundary behaviour of v , ∇v allow to
compare v1 with (1 + ε)v2

⇒ uniqueness (up to an additive constant) of the boundary
blow-up solution v .

NB: the operator is quasilinear. To handle the ε-perturbation we
need precise gradient estimates: γ1

dist(σ,∂Σ) ≤ |∇v(σ)| ≤ γ2

dist(σ,∂Σ)

(here we use C 1,α estimates up to the boundary for p-Laplace
type equations)
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Back to Tolksdorf’s result. Recall that

v = − 1

β
lnω ↔ ω = e−β v

We proved that, for any given β > 0, there exists a unique λβ > 0: −div
(

(β2ω2 + |∇ω|2)
p−2

2 ∇ω
)

= β λβ(β2ω2 + |∇ω|2)
p−2

2 ω

ω = 0 on ∂S

So we rephrase Tolksdorf’s problem as:

u(x) = r−βω(σ) is p-harmonic in the cone

if and only if λβ = β(p − 1) + p − N
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Theorem (P-V)

There exists a unique β > 0 such that

λβ = β(p − 1) + p − N (3)

As a consequence, for any subdomain S there exists a unique
βS > 0 and a unique (up to dilation) positive ω ∈ C 1(S) ∩ C 2(S):
u(x) = r−βω(σ) is p-harmonic in the cone CS .

Remarks:

• As in the case p = 2: ω is an eigenfunction, β is not exactly an
eigenvalue but a solution of an equation F (β, λβ) = 0 where λβ is
an eigenvalue.

• When p = 2 we have λβ = λ1
β and (3) is the algebraic equation

β(β + 2− N) = λ1,S .
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Proof of Theorem 3 is simple using the ergodic problem

−∆gv − (p − 2)
D2v∇v · ∇v

1 + |∇v |2
+ β(p − 1)|∇v |2 = −λβ

to study the mapping β 7→ λβ.

Indeed, it is (intuitively, and rigorously !!) true that

• β 7→ λβ is decreasing (since λβ = lim
ε→0

ε vε)

• β 7→ λβ is continuous (stability of the ergodic constant
constant is consequence of its uniqueness)

• we have λβ → +∞ when β → 0.
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Therefore, the mapping

ϕ(β) : = λβ − β(p − 1)

is continuous, decreasing and such that ϕ(0) = +∞,
ϕ(+∞) = −∞.

By continuity, the equation

λβ − β(p − 1) = Y

has a unique sol. for every Y .

When Y = p −N we get the unique β > 0 which makes u = r−βω
p-harmonic in the cone.
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Remarks:

In the same way one can prove that ∃ ! β < 0 such that
u(x) = r−βω(σ) is p-harmonic in the cone (regular case, i.e.
Tolksdorf’s result)

Changing β into −β is equivalent to change Y = p − N into
Y ∗ = N − p

The monotonicity of the map β 7→ λβ gives a typical
monotonicity property of eigenvalues (also found in
Tolksdorf’s paper):

if S , S ′ ⊂ SN−1, S ⊂ S ′ ⇒ βS ≥ βS ′
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Comments and work in progress

Our proof of Tolksdorf’s result is not easier

However we provide an intrinsic interpretation of the unique
couple (βS , ωS) such that

u(r , σ) = r−βω(σ)

is p-harmonic in the cone CS , and a new construction of
(β, ω) (valid in general manifolds).

Our approach suggests that in some cases it can be useful to
embed eigenvalue problems into the family of ergodic
problems

Our construction can be useful to understand the role of βS in
the Lane-Emden-Fowler problem
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Back to the source problem in the cone CS :

−∆pu = uq , in the cone CS , with q > p − 1.

A positive solution u = r−β ω(σ) exists if and only if (β, ω) satisfy

−divg
(
(β2ω2 + |∇ω|2)p/2−1∇ω

)
=

= β(β(p − 1) + p − N)(β2ω2 + |∇ω|2)p/2−1ω + ωq

Recall the necessary conditions [Bidaut Véron-Jazar-Véron]:

β =
p

q − (p − 1)
and β < βS

The construction of βS now implies:

β < βS ⇐⇒ (β(p − 1) + p − N) < λβ

where λβ is the unique “eigenvalue”:

−divg
(

(β2ω2 + |∇ω|2)p/2−1∇ω
)

= βλβ(β2ω2 + |∇ω|2)p/2−1ω
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Now it is clear the analogy with the euclidean case:

∃ pos. sol. of −∆pu = λ up−1 + uq ⇒ λ < λ1(−∆p,Ω)

This suggests how to go further [P-V, work in progress]:

- β = p
q−(p−1) < βS (we are below the ”eigenvalue” λβ)

- q < N(p−1)+1
N−1−p

(Sobolev critical exponent in dim. N − 1, if p < N − 1)

then ∃ a sol. of

−divg
(
(β2ω2 + |∇ω|2)p/2−1∇ω

)
=

= β(β(p − 1) + p − N)(β2ω2 + |∇ω|2)p/2−1ω + ωq

(hence ∃ a separable sol. of −∆pu = uq).

If S is “star shaped with respect to the North pole”, then
there is no solution when q = N(p−1)+1

N−1−p
[Pohozaev type identity on the sphere]
(using ideas similar to [Bidaut Véron-Ponce-Véron])
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Thanks for the attention !

A. Porretta p-harmonic functions in the cone


