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Motivation and setting of the problem

Let Cs be a cone in RN with vertex 0 and opening S C SN-1
where S is a smooth subdomain on the sphere.

Goal: Construct p harmonic functions in Cs in the form of
separable variables

u(x) = rPuw(o) : —~Apu = —div (|DulP~2Du) =0

Motivation: Such functions are fundamental to describe the precise
behaviour near a conical boundary point of solutions of

—Apv = f(x,v) in Q,

Typically, the (possibly singular) behaviour at those points is
described by comparison with explicit solutions in the cone.
[Krol, Maz'ya, Tolksdorf, Kichenessamy-Véron,...]

A. Porretta p-harmonic functions in the cone



One can check: u(x) = r~%w(c) is p-harmonic in the cone Cs
(and zero on the lateral boundary) if and only if (5,w) satisfy

—div ((62w2 + |vw|2)"%2vw) _
= B(B(p—1)+p— N) (FPw? + |Vw?) 7 w

w=0 ondS
(1)

where V and div are covariant derivative and divergence operator
on SN-1,

Theorem (P. Tolksdorf '83)

There exists a unique 3 := BS < 0 such that the problem (1)
admits a positive solution w € CY(S) N C?(S). Furthermore w is
unique up to an homothethy.
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e [L.Véron, Colloquia Mathematica Societatis Janos Bolyail:
The same proof of Tolksdorf applies when 5 > 0 (existence
and uniqueness of Bs > 0: u = r~%w(o) is p-harmonic in the
cone Cs)

= construction/behaviour of singular solutions

@ Recently, new interest in this result has come from the study
of the boundary isolated singularities for the equation

—Apu=uT, g>p—1

[Bidaut Véron-Jazar-Véron, Bidaut Véron-Borghol-Véron,
Bidaut Véron-Ponce-Véron (p = 2)]

The construction of positive sol. in the form u = r=8w(o)
would serve as model for the singular behaviour in conical
boundary points.
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In particular, [Bidaut Verén-Jazar-Véron| prove that

A necessary condition for 3 of sol. u=r=?w(c) of
—Apu = uf in the cone Cs

isthat 3= L5 < /s

Note that this is a condition relating g and S (opening of the
cone): g —(p—1) > £
(the condition is also sufficient in dimension N = 2)

e Unfortunately, the explicit value of 3s is rarely known.

(Ex: p=2, S =S, half sphere, then fs = N — 1)

However, the role of s is important as that of an eigenvalue.
(similarly, Bs also appears in Liouville type problems in cones)

— Qn: what do we know about (357

A. Porretta p-harmonic functions in the cone



e In the approach of P. Tolksdorf, there is no appearing of an
eigenvalue problem. His theorem is a consequence of the results for
solutions in the cone.

The existence of (8,w) is deduced by constructing a self-similar
sol. in the unit cone (u(R x) = R® u(x)) and defining
w(o) = ”(RR;U) (uniqueness of 3, w is proved next using Harnack

inequalities in the infinite cone)

Pb: Is there an intrinsic construction of (3,w) ? Does this problem
have an independent meaning on SV~1? Note that problem

—div (B2 + V)2 Vw) =
=B(B(p— 1)+ p— N) (B + |Vw) T w
w=0 ondS

is a kind of “nonlinear eigenvalue problem” (invariant by dilations
of w) - but it is not variational !
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When p = 2, the equation
—div ((5%2 + V) w) -
—2
= B(B(P—1)+p— N)(B?? + |Vu]) 7 w
is exactly an eigenvalue problem
—Ngw=pB(B+2—-N)w inScSNV? (2)
where A, is the Laplace-Beltrami operator.

B(B+2—N)= A5
when \; s is the first eigenvalue on S.

Note in the case p = 2:

e w is precisely an eigenfunction

e (3 is not precisely an eigenvalue, but is obtained in terms of \;
(5 solves an equation F(3, 1) = 0)
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3 of sol. u(x) = r-Pw(c) — eigenvalue-type problems in SN=1.
What if p #£ 27 Key point: set

v=—lnw

B
Then the equation
—div ((ﬁzwz + ‘Vw| ) 2 Vw> =
= B(B(p— 1) + p — N)(Fw? + [Ve]) T w

is transformed into

—div <(1+\Vvy )? >+,3(p— 1) (14 |Vv[? ) \va

=—Bp-1)+p-N)1+|VV)Z inS

Divide by (1 +|Vv]| ) .....
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We see that v = —% Inw solves

—Bgv = (P2 FNER + Blp— DIVVP == (B(p—1) + P~ N)

We immediately remark:
@ In the equation of v, the case p = 2 and p # 2 are very similar
@ the principal part is an elliptic operator independent of 3

@ The number (B(p — 1)+ p — N) has a role of “ergodic
constant”:

given any 3 > 0, is there a unique \g such that the equation
By~ (p— 2) 2T L 3(p DTV = A

has a solution v 7
Important: with the boundary behaviour v — +00 on 0S !
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When p = 2, the problem

—Agv+ BIVV]? = —Ag
v(o) = +oo as o — 0S

is related to a state constraint problem for the Brownian motion
(see [J.M. Lasry-P.L.Lions '89]).

This is a classical connection (through logarithmic tranform)
between the first eigenvalue and the ergodic constant of
stochastic control problems

—Au=XMu in Q v=zjnu ~Av+|Vv[2=-)\1 inQ
u=20 on 02 v — +00 on 02

So-called stochastic control interpretation of the first eigenvalue
[C.J. Holland "77]

(see also Donsker-Varadhan, J.M.Lasry-P.L.Lions '89, W.H.
Fleming-McEneaney '95, W. H. Fleming-S.J. Sheu '97, ....)
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The heart of our approach is the following

Theorem (P-V)

Let S ¢ SN=1 be a smooth bounded open subdomain. Then for
any 8 > 0 there exists a unique \g > 0 such that the problem

~8gv — (p~ PR + B(p — DIVVP = -
(o) = +o0 aso — 0S

admits a solution v € C?(S).
Furthermore, v is unique up to an additive constant.

This result has an intrinsic independent interest:

e Our proof applies replacing SN~ with a general
N — 1-dimensional Riemannian manifold (M, g).

e This result extends [J.M.Lasry-P.L.Lions '89] (where p = 2 and
S C RM). It seems new when p # 2 even in the euclidean case.
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The proof of this Theorem stands on the following steps:

@ As is typical for ergodic-type problems, we start from solutions
of

1+|V e |2

eve —Dgve — (p— 2)7D2VEV"E'V"E +B(p—1)|Vv|> =0
ve(o) — 400 as 0 — 0S

and then we let ¢ — 0.

What happens in such models is that
- V- has a complete blow-up as ¢ — 0
On the other hand,

-£ v remains bounded (locally)

-|Vv.| remains locally bounded due to the barrier effect of the
absorption term.
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Therefore we have
(i) llevello < C

(i) eVv. — 0 locally uniformly, hence, up to subsequences,
€ V. converges to a constant Ag
If we fix og € S, then, locally uniformly,
Ve(+) — ve(op) converges to a function v

and v solves

D2vVv - Vv

+B(p— 1)V =0

with the boundary behaviour v — 400 on 39S
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Key point: Compactness relies on interior gradient estimates:

For every compact subset S’ CC S, we have

K
oo (G’ S oo
IV velloe(sry < dist(S’, S)

To get the gradient bound, we use the (intrinsic) Weitzenbock
formula

1
EAg |Vv[]2 = ||D?v|? + V(Agv) - Vv + Riccg(Vv, Vv)

and the classical Bernstein's method . Since
102V > hslAgvP?

v|vv|?

2
Dgv = (p—2)BIYYLTY 1 3(p —1) Vv

we find an equation satisfied by |Vv|> where we apply max.
principle.
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@ Uniqueness of (Ag, v)

[Rmk: Uniqueness of (Ag, v) implies that the convergence
holds for the whole sequence v]

- The uniqueness of A\g is a consequence of the strong
maximum principle.

D2yVv - Vv

Rmk: A(V) L= —Agv—(p—Z)W

is nondegenerate

A(Vl) — A(Vz) + 5 vaﬂz — ]szlz] = —()\k — )\%)

)\}; #* )\% = v; — v» = const.
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-Uniqueness of v can be proved with a typical argument for “large
solutions " [Bandle, Marcus, Véron|

Detailed estimates on the boundary behaviour of v, Vv allow to
compare v; with (14 ¢)ws

= uniqueness (up to an additive constant) of the boundary
blow-up solution v.

NB: the operator is quasilinear. To handle the e-perturbation we
need precise gradient estimates: ﬁ <|Vv(o)| < m

(o

(here we use C1“ estimates up to the boundary for p-Laplace
type equations)
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Back to Tolksdorf's result. Recall that

1 _
v=—"lhw <+ w=ePV

p
We proved that, for any given [ > 0, there exists a unique Ag > 0:
—div ((ﬂ2w2 + \Vw|2)PT_2 ) BAs(Bw? + |Vw| )72
w=0 ondS

So we rephrase Tolksdorf's problem as:

u(x) = rPw(o) is p-harmonic in the cone

ifand only if \g =p(p—1)+p—N

A. Porretta p-harmonic functions in the cone



Theorem (P-V)

There exists a unique 3 > 0 such that

As=Bp-1)+p—N (3)

As a consequence, for any subdomain S there exists a unique
Bs > 0 and a unique (up to dilation) positive w € C*(S) N C?(S):
u(x) = r=Pw(o) is p-harmonic in the cone Cs.

Remarks:

e As in the case p = 2: w is an eigenfunction, 3 is not exactly an
eigenvalue but a solution of an equation F(3, A\g) = 0 where A\g is
an eigenvalue.

e When p =2 we have \g = % and (3) is the algebraic equation
B(B+2—N)=As.
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Proof of Theorem 3 is simple using the ergodic problem

D2vVv - Vv

+B8(p = 1)V = —As
to study the mapping 8 — Ag.

Indeed, it is (intuitively, and rigorously !!) true that
e [ A is decreasing (since A\g = lim e v;)
' e—0
e [ Agis continuous (stability of the ergodic constant
constant is consequence of its uniqueness)

e we have \g — 400 when 3 — 0.
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Therefore, the mapping

e(B) :=xg—B(p—1)

is continuous, decreasing and such that p(0) = +o0,
p(+00) = —o0.

By continuity, the equation
As=Blp—1)=Y

has a unique sol. for every Y.

When Y = p — N we get the unique 5 > 0 which makes v = rPw
p-harmonic in the cone.
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Remarks:

@ In the same way one can prove that 3! 3 < 0 such that
u(x) = r-Bw(o) is p-harmonic in the cone (regular case, i.e.
Tolksdorf's result)

Changing (8 into —f is equivalent to change Y = p — N into
Y*=N-p

@ The monotonicity of the map 3 +— A gives a typical
monotonicity property of eigenvalues (also found in
Tolksdorf's paper):

if S, 8’ c SN-1, Sc S = Bs>Bs
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Comments and work in progress

@ Our proof of Tolksdorf's result is not easier

@ However we provide an intrinsic interpretation of the unique
couple (8s,ws) such that

u(r,o) = r_ﬁw(a)

is p-harmonic in the cone Cs, and a new construction of
(8,w) (valid in general manifolds).

@ Our approach suggests that in some cases it can be useful to
embed eigenvalue problems into the family of ergodic
problems

@ Our construction can be useful to understand the role of Ss in
the Lane-Emden-Fowler problem
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Back to the source problem in the cone Cs:
—Apu=u?, inthe cone Cs, with g > p —1.
A positive solution u = r—7 w(o) exists if and only if (5,w) satisfy
—divg (8% + [Vw2)P/21Vw) =
= B(B(p—1) + p— N)(B2w? + [Vw2)P2w + wi

Recall the necessary conditions [Bidaut Véron-Jazar-Véron|:

B p
5_q—(p—1)

The construction of S5 now implies:
B<Bs <= (Blp=1)+p-—N)<rs

where \g is the unique “eigenvalue”:

and (< fs

—divg ((ﬁ2w2 + |Vw|2)p/2*1Vw) = BAs(B%? + |Vw|?)P2 1y

A. Porretta p-harmonic functions in the cone



Now it is clear the analogy with the euclidean case:
Jpos. sol. of —Apu=AP T +ul = A< \(-4,0)

This suggests how to go further [P-V, work in progress|:
°-f(= #ﬂ < fIs (we are below the "eigenvalue” Ag)
N(p—1)+1
< prlfp

(Sobolev critical exponent in dim. N —1,if p< N —1)
then 3 a sol. of
—divg ((52(,02 + |VW’2)p/2*1Vw) _
= B(B(p— 1) + p — N)(BPw? + |Vw|?)P/2 1y + w9

(hence 3 a separable sol. of —Apu = u9).

e If S is “star shaped with respect to the North pole”, then
there is no solution when g = N,(Vp_*ill_)zl
[Pohozaev type identity on the sphere]

(using ideas similar to [Bidaut Véron-Ponce-Véron])
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Thanks for the attention !
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