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Outlines of the talk

It is well known that the heat equation:

ut −∆u = 0 in RN

satisfies the following global regularizing effect

‖Du(t)‖∞ ≤ C
‖u0‖∞√

t
∀t > 0 .

Besides the regularization property, the global form of the estimate is
important.
Ex: an immediate consequence is the Liouville theorem:

u bounded harmonic un RN ⇒ u is constant
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In this talk we discuss:

Extension of this estimate to variable coefficients, and to fully
nonlinear parabolic equations.

Coefficients are (at least) continuous and possibly unbounded,
including models with dissipative drift like Ornstein-Uhlenbeck.

NB: In these models, coefficients beyond the linear growth may yield
Lipschitz solutions, because of the drift-diffusion compensation.

The methods of proof: we compare the probabilistic approach by
coupling method with the viscosity doubling variables method (I.
Ishii and P.L. Lions).

This estimate is embedded into a larger family of global oscillation
estimates: global Hölder estimates, data with bounded oscillation

Applications: Bellman-Isaacs equations, existence results, Liouville
theorems ....
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Linear case

In the linear setting (semigroup community) there is a huge literature
concerning gradient or Lipschitz estimates with variable coefficients.
Typically, the results cover:

• bounded and uniformly continuous coefficients
([Stewart ’74], via analytic semigroups)

• unbounded coefficients but regular
([Elworthy-X.M. Li ’94], [Cerrai ’96], [Lunardi ’98], [Bertoldi-Fornaro ’04],

[Kunze-Lorenzi-Lunardi ’10],...)

Possible approaches (beyond comparison principles) are:

-classical Bernstein method (but requires regularity..)

-probabilistic methods. Here the solution u of{
∂tu = tr

(
q(x)D2u

)
+ b(x)Du

u(0, ·) = u0,

is the martingale solution: u(t, x) = Ex(u0(Xt)) where Xt solves

dXt = b(Xt)dt +
√

2q(Xt)dBt , X0 = x .
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With a probabilistic approach, [Priola-F.Y. Wang ’06] prove the following:

assume that ∃ λ > 0 such that

q(x) ≥ λI

and

‖σ(x)− σ(y)‖2 + (b(x)− b(y)) · (x − y) ≤ ω(|x − y |) if |x − y | ≤ 1

where σ(x) =
√
q(x)− λI , and∫ 1

0

ω(s)

s
ds <∞

If the process Xt is nonexplosive, then

‖Du(t)‖∞ ≤ C
‖u0‖∞√
t ∧ 1

∀t > 0 .

This result is obtained using the so-called coupling method:
[Lindvall-Rogers ’86], [Chen-Li ’89], [Cranston ’91,’92],...
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The coupling method: a rough description

From the stochastic diffusion

dxt = b(xt)dt +
√

2q(xt)dBt

one is given two processes xt and yt starting from x and y , and denotes
Px , Py the associated probability measures on ΩN := C ([0,∞);RN).

A coupling of Px , Py is a probability on Ω2N with marginals Px and Py .

For any coupling Px,y , we have that

u(t, x)− u(t, y) = Ex [u0(xt)]− Ey [u0(yt)] = Ex,y [u0(xt)− u0(yt)]

where Ex,y denotes the expectation with respect to Px,y .

If the coupling satisfies (Px,y -a.s.):

xt = yt for all t ≥ Tc := inf{t ≥ 0 : xt = yt}

then one estimate

u(t, x)− u(t, y) = Ex,y [u0(xt)− u0(yt)] ≤ 2‖u0‖∞Px,y (t < Tc)

Then, the Lipschitz estimate is reduced to estimate the hitting time of
the diagonal (best over all couplings !)
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Rmk: this corresponds to an estimate of a Wassernstein distance between
the transition probabilities p(t, x , ·) and p(t, y , ·) in RN .

If µ, ν are prob. measures in RN , one set

dW (µ, ν) = inf
Q∈π(µ,ν)

∫∫
χ(z ,w)dQ(z ,w) , χ(z ,w) =

{
1 if z 6= w

0 if z = w ,

where π(µ, ν) is the set of all couplings of µ, ν on R2N . Then

u(t, x)−u(t, y) = Ex,y (u0(xt)− u0(yt)) ≤ 2‖u0‖∞dW (p(t, x , ·), p(t, y , ·)) .

Typically, the constructed coupling is itself associated to a diffusion on
the product space:

∂t − tr
(
q(x)D2

x + q(y)D2
y + 2c(x , y)D2

xy

)
− b(x)Dx − b(y)Dy = 0

In order to get the Lipschitz estimate the degrees of freedom are the
coupling diffusions c(x , y).
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Doubling variables

Since many years, there exists a perfect analytic translation: which is,
mostly, maximum principle..

the “Theorem of sums”for viscosity solutions (see [Crandall-Ishii-Lions])
implies the following: if u, v are sub/super viscosity sol. of

∂tu = tr
(
q(x)D2u

)
+ b(x)Du in RN

then z(x , y) = u(x)− v(y) is a viscosity subsolution of

∂tz = Ac(z) in R2N

Ac = tr
(
q(x)D2

x + q(y)D2
y + 2c(x , y)D2

xy

)
− b(x)Dx − b(y)Dy

for every choice of the coupling diffusions c(x , y) (with Ac elliptic)

Roughly speaking, we have

u(t, x)− u(t, y) ≤ inf
Ac

{ψ(t, x , y), : ∂tψ −Ac(ψ) ≥ 0 }.

The problem is reduced to the best choice of the coupling matrix c(x , y)
and supersolution ψ.
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Typically, one chooses a desired

ψ(x , y) = K f (|x − y |)

with f increasing and concave (ex: |x − y |α, α ≤ 1). Then, (here b = 0)

Ac(ψ) = f ′(|x−y |)
|x−y | {tr(A(x , y))− A(x , y)p̂ · p̂}+ f ′′(|x − y |)A(x , y)p̂ · p̂

where

A(x , y) = q(x) + q(y)− 2c(x , y) , p̂ =
x − y

|x − y |
.

Since f ′(r)
r is singular near r = 0, and tr(A)− Ap̂ · p̂ must be positive,

one needs to choose c(x , y) so that tr(A) be compensated by Ap̂ · p̂.

Ex: in the Laplace case, the best choice is the “coupling by reflection”:

c(x , y) = I − 2
x − y

|x − y |
⊗ x − y

|x − y |

This corresponds exactly to a crucial estimate in [Ishii-Lions ’90].
NB: a good choice is also c(x , y) = I − t x−y

|x−y | ⊗
x−y
|x−y | for any t ∈ [0, 2];

t = 1 is the coupling by projection.
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In [Priola-P.]:

• we give purely analytic proofs of the results obtained in the linear case
with the coupling method

• we extend the previous results to a nonlinear setting

ut = F (t, x ,Du,D2u) in (0,T )× RN

• we distinguish a two steps procedure:

- a general global estimate in terms of the oscillation of u (only depends
on short term interaction: conditions when |x − y | is small)

- an estimate on the oscillation of u (under an additional condition on
the long term interaction: some condition when |x − y | is large)
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Our main structure condition is (simplified form for the model example):

Hypothesis (F) There exists λ > 0:

F (t, x , µ(x − y),X )− F (t, y , µ(x − y),Y )

≥ −λtr (X − Y )− µ ω(|x − y |)− [....]︸︷︷︸
l.o.t+r .h.s.

for every µ > 0, X ,Y ∈ SN :(
X 0
0 −Y

)
≤ µ

(
I −I
−I I

)
The assumptions on the x-dependence is in the function ω(|x − y |):

ω(s)
s ∈ L1(0, 1) ⇒ Lipschitz estimates

ω(s)
s→0→ 0 ⇒ C 0,α– estimates for any α ∈ (0, 1)

lim sup
s→0

ω(s) < 4λ ⇒ C 0,α– estimates for some α ∈ (0, 1)

[Cordes type condition, ex: λI ≤ q(x) ≤ ΛI , with Λ
λ < 1 + 4

N . ]
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In order to take care of infinity, for the estimates to be global, we also
assume the existence of a Lyapunov function:

Hypothesis (L) For any L > 0, ∃ ϕ = ϕL ∈ C 1,2(Q̄T ):ϕ(t, x)→ +∞ as |x | → ∞, uniformly for t ∈ [0,T ].

ε∂tϕ+ F (t, x , p + εDϕ,X + εD2ϕ)− F (t, x , p,X ) ≥ 0

for every |p| ≤ L + ε|Dϕ(t, x)|, X ∈ SN , and for ε small.

Rmk: In case F = tr
(
q(t, x)D2u

)
+ b(t, x)Du we recover [Priola-Wang]:

• (F) is equivalent to

‖σ(x)− σ(y)‖2 + (b(x)− b(y)) · (x − y) ≤ ω(|x − y |)

where σ(x) =
√
q(x)− λI .

Ex: ω → 0 ∼ uniform continuity; ω(s)
s ∈ L1(0, 1) weaker than Dini

condition.

• (L) ensures that the associated stochastic process is non explosive.

A. Porretta Lipschitz estimates, coupling method and doubling variables



Ex: Bellman-Isaacs equations

ut = inf
β∈B

sup
α∈A

{
−tr

(
qα,β(t, x)D2u

)
− bα,β(t, x) · Du − fα,β(t, x)

}
Previous conditions are satisfied if we have, uniformly in α ∈ A, β ∈ B:

(i) qα,β(t, x) = λ I + σα,β(t, x)2, for some λ > 0, where

‖σα,β(x)− σα,β(y)‖2 + (bα,β(x)− bα,β(y)) · (x − y) ≤ ω(|x − y |)

(ii) fα,β have bounded oscillation on Q̄T

(iii) ∃ ϕ ∈ C 1,2(Q̄T ):{
∂tϕ+

{
−tr

(
qα,β(t, x)D2ϕ

)
− bα,β(t, x) · Dϕ

}
≥ 0 ∀α ∈ A, β ∈ B

ϕ(t, x)→ +∞ as |x | → ∞, uniformly in t ∈ [0,T ].

ex: OK if tr (qα,β(t, x)) + bα,β(t, x) · x ≤ C (1 + |x |2) (−→ ϕ ' |x |2).
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Theorem ( [Priola-P.], Lipschitz case)

Assume (L) and (F) with ω(s)
s ∈ L1(0, 1).

(i) Any viscosity solution u with bounded oscillation satisfies

‖Du(t)‖∞ ≤
C√
t ∧ 1

,

where C = C
(
osc( t

2 ,T∧
3
2 t)(u), ω, . . .

)
.

(ii) If ω = O(s2) as s →∞, and if u0 satisfies

|u0(x)− u0(y)| ≤ k0 + kα|x − y |α + k1|x − y |, x , y ∈ RN ,

any u such that u = o(ϕ) in Q̄T has bounded oscillation and

‖Du(t)‖∞ ≤ cT

{
k0√
t ∧ 1

+
kα

(t ∧ 1)
1−α

2

+ k1

}

for some cT (T , λ, g , α).
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Remarks:

(F) does not imply any growth restriction on the coefficients. Ex:

At = A = (1 + |x |4)4u − 4N|x |2x · Du.

Is the assumption ω(s)
s ∈ L1(0, 1) sharp? .... It is certainly optimal

for this technique: we construct a supersol. ψ = f (|x − y |) from the
ODE

4λf ′′ +
ω(r)

r
f ′ = −1 with r ∈ (0, δ)

and ω(s)
s ∈ L1(0, 1) is necessary in order that f be Lipschitz.

In the model case, if u0 ∈ Cb(RN) we get

‖Du(t)‖∞ ≤
C‖u0‖∞√

t ∧ 1
, C . 1+2λ

λ
e

1
4λ

∫ 1
0
ω(s)
s

ds

An estimate global in time can also be obtained (see later...)
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Theorem ( [Priola-P.], Hölder case)

Assume (L)* and (F) with ω(s)
s→0→ 0.

(i) Any viscosity solution u with bounded oscillation satisfies

|u(t, x)− u(t, y)| ≤ C

(t ∧ 1)
α
2
|x − y |α,

where C = C
(
osc( t

2 ,T∧
3
2 t)(u), ω, . . .

)
.

(ii) If ω = O(s2) as s →∞, and if u0 satisfies

|u0(x)− u0(y)| ≤ k0 + kα|x − y |α + k1|x − y |, x , y ∈ RN ,

any u such that u = o(ϕ) in Q̄T has bounded oscillation and

|u(t, x)− u(t, y)| ≤ cT

{
k0

(t ∧ 1)
α
2

+ max(kα, k1)

}
|x − y |α + k1|x − y |

for some cT (T , λ, g , α).

Rmk: (L)* means the Lyapunov condition uniform w.r.t. gradient
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Liouville property

Taking care of the constants cT one can obtain global (in time)
estimates, hence some Liouville-type results when F is independent of
time:

F (x ,Du,D2u) = 0 in RN . (1)

Theorem

Assume Hypothesis (L) and (F), with ω(s)
s ∈ L1(0, 1). Assume in addition

that ∫ +∞

0

e−
1

4λ

∫ r
0
ω(s)
s dsdr = +∞. (2)

Then any bounded viscosity solution of (1) is constant.

(ii) Let α ∈ (0, 1), and assume in addition that

lim sup
s→∞

ω(s) < 4λ(1− α) .

Then, any viscosity solution u such that |u| ≤ k0(1 + |x |α) is constant.

Rmk: if F (x , 0, 0) is not identically zero, then @ solution.
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Remarks, comments, open questions

The method admits a natural extensions to a general weighted case
(λ = λ(t, x)→∞): if

q(t, x)ξ · ξ ≥ λt,x |ξ|2,

with λt,x ≥ λ > 0 and

‖σ(t, x , y)− σ(t, y , x)‖2 + (b(t, x)− b(t, y)) (x − y)

≤ (λt,x ∧ λt,y )ω(|x − y |) if |x − y | ≤ 1

where σ(t, x , y) =
√
q(t, x)− (λt,x ∧ λt,y )I

Extension to quasilinear operators is also natural; although the
assumption concerning the Lyapunov function may become involved
in this case
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These are regularity results. But they can be used as a priori
estimates in order to provide the existence of globally Lipschitz (or
Hölder) solutions.

Note: Perron’s method can not be applied, we are beyond the
assumptions under which comparison principle is known.

Advertising: what about uniqueness ?

-Uniqueness for Lipschitz solutions is known if ω(s) = O(s
1
2 ) as

s → 0 [Trudinger, Ishii-Lions]

But solutions are Lipschitz up to ω(s)
s ∈ L1(0, 1)...

- Uniqueness can be proved for more general ω if solutions are
known to be C 1,γ (see e.g. [Crandall-Ishii-Lions]).

But counterexamples exist to C 1,γ regularity for any γ < 1 if the
operator is not concave [Nadirashvili].
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Coupling method Vs Doubling variables.

Technically, our estimates are nothing but a global version of the
method developed by I. Ishii and P.L. Lions (see also [Barles ’91,’92]).

On the other hand, establishing a bridge with the coupling method
used in the probabilistic approach we hope to provide a deeper
insight into those questions. Some hints:

- the Liouville property is known to be roughly equivalent to the
existence of a successful coupling. Assumptions on the long range
interaction seem more natural from this viewpoint.

- the coupling method is currently used to get estimates for Levy
processes too, or more general processes with jumps. It seems
interesting to have a similar comparison with recent estimates for
nonlocal operators (see e.g. [Barles-Chasseigne-Imbert])
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