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Outlines of the talk

Brief description of the Mean Field Games model system.
Coupling viscous Hamilton-Jacobi & Fokker-Planck.

“Long time behavior” of Mean Field Games: natural questions and
setting. The ergodic problem and expected behavior.

Main results obtained:

(i) long time average convergence: a matter of energy estimates

(ii) exponential rate of convergence

(joint works with P. Cardaliaguet, J-M. Lasry, P-L. Lions)

Links with optimal control problems in the long horizon: a general
turnpike behavior.

(joint work E. Zuazua)
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On the Mean Field Games theory

The Mean Field Games model was introduced by J.-M. Lasry and P.-L.
Lions [CRAS ’06, Cours Collège de France since 2006] and independently
by M. Huang-P. Caines-R. Malhamé.

Main goal: describe games with large numbers (a continuum) of agents
whose strategies depend on the distribution of the agents.

Typical features of the model:

- players act according to the same principles (they are indistinguishable
and have the same optimization criteria).

- players have individually a minor (infinitesimal) influence, but their
strategy takes into account the mass of co-players.

Roughly: players are particles but have strategies

Goal: introduce a macroscopic description through a mean field approach
as the number of players N →∞.
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The simplest form of the continuum limit is a coupled system of PDEs{
(1) −ut −∆u + H(x ,Du) = F (x ,m) in (0,T )× Ω

(2) mt −∆m − div(mHp(x ,Du)) = 0 in (0,T )× Ω ,

(1) is the Bellman equation for the agents’ value function u.

(2) is the Kolmogorov-Fokker-Planck equation for the state of the
agents. m(t) is the probability density of the state of players at
time t.

Roughly, each agent (infinitesimal) controls the dynamics

dXt = αt dt +
√

2 dBt

where Bt is a d-dimensional Brownian motion, in order to minimize,
among controls αt , some cost

J(α) := E

[∫ T

0

[L(Xs , αs) + F (Xs ,m(s,Xs)) ds + uT (XT )

]

where L is the Legendre transform of H and uT a final pay-off.
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If u solves the Bellman equation it gives the best value:

• infα J(α) =
∫
u(x , 0)dm0(x),

where m0 is the probability distribution of X0.

• the optimal control is given by the feedback law:

α∗t = −Hp(Xt ,Du(t,Xt)) , Hp := ∂H(x,p)
∂p .

In turn, if
dXt = α(Xt)dt +

√
2dBt

the probability measure m(t) (distribution law of Xt) satisfies

mt −∆m + div (αm) = 0

Hence, the evolution of the state of the agents is governed by their
optimal decisions α∗t , and m satisfies

mt −∆m − div (mHp(x ,Du)) = 0
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This is the Mean Field Games system (with horizon T ):{
(1) −ut −∆u + H(x ,Du) = F (x ,m) in (0,T )× Ω

(2) mt −∆m − div(mHp(x ,Du)) = 0 in (0,T )× Ω ,

usually complemented with initial-terminal conditions:

-m(0) = m0 (initial distribution of the agents)

-u(T ) = uT (final pay-off)

+ boundary conditions (here for simplicity assume periodic b.c.)

Main novelties are:

the backward-forward structure.

the interaction in the strategy process: the coupling F (x ,m)
Two coupling regimes are usually considered:

(i) Nonlocal coupling with smoothing effect (ex. convolution):
F : RN × P1 → R is smoothing on the space of probability
measures. Ex: F (x ,m) = Φ(x , k ?m)

(ii) Local coupling: F = F (x ,m(t, x)).
(regularity of sol.’s is a big issue)
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Long time behavior

Pb: What is the behavior of the MFG system when the horizon T →∞?
−uTt −∆uT + H(x ,DuT ) = F (x ,mT ) , in (0,T )

mT
t −∆mT − div (mT Hp(x ,DuT )) = 0 , in (0,T )

mT (x , 0) = m0(x) , uT (x ,T ) = uT .

To fix the ideas, we work in the periodic setting.

To simplify the presentation, I will consider a reference case:
H(x ,Du) = 1

2 |Du|
2, initial data m0, uT smooth, m0 > 0.

Long time behavior is a very natural question in the viewpoint of SDE.
In the long horizon, agents are expected to behave in a way to minimize
the average (ergodic) cost, regardless of the initial distribution.
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Recall the case of a single equation (with no coupling):
(see e.g. [Bensoussan-Frehse], [Namah-Roquejoffre], [Barles-Souganidis]){

−uTt −∆uT + 1
2 |Du

T |2 = F (x) in (0,T )

uT (x ,T ) = G (x)

(i) uT (x,0)
T converges uniformly to a constant λ̄ ∈ R, which is the ergodic

(minimal) cost

λ̄ = inf
α

lim
T→∞

1

T
E

{∫ T

0

1

2
|α(Xs)|2 + F (Xs)]ds

}

(ii) uT (x , 0)− λ̄T → ū, periodic solution of the ”ergodic problem”

λ̄−∆ū +
1

2
|Dū|2 = F (x) .

• If DuT → Dū, then mT converges to the unique invariant measure m̄
associated to the process

dXt = −Dū(Xt)dt +
√

2dBt
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What happens for Mean Field Games ?

Good news: if the coupling F (x , ·) is monotone, then the ergodic
problem is well posed ([Lasry-Lions ’07]).

There exists a unique couple (ū, m̄) and a unique constant λ̄ which solveλ̄−∆ū + 1
2 |Dū|2 = F (x , m̄) ,

∫
Ω
ū = 0

−∆m̄ − div (m̄Dū) = 0 ,
∫

Ω
m̄ = 1

Moreover, ū, m̄ are smooth, m̄ > 0

Expected long time behavior: uT/T → λ̄ and mT → m̄.

However:

- one can not use the arguments of the single equation: there are no
standard/simple comparison arguments, gradient estimates, etc...

- forward-backward conditions: there is not just an evolution forward in
time! Some boundary layer could appear at t = 0 or t = T .

→ stability will appear in a large transient time [δT , (1− δ)T ]
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The kind of results which we prove [Cardaliaguet-Lasry-Lions-P.] :

(ergodic behavior) uT (x,0)
T → λ̄

(DuT ,mT ) is close in average to (Dū, m̄):

1

T

∫ T

0

∫
Ω

|Du − Dū|2 + (F (x ,m)− F (x , m̄))(m − m̄) dx → 0

Eventually, under some stronger assumption we also get:

(DuT ,mT ) are exponentially close to (Dū, m̄) in the transient time:

‖DuT (t)−Dū‖+‖mT (t)−m̄‖ ≤ C
(
e−κ(T−t) + e−κt

)
∀t ∈ (a,T−a) ,

where a,C may depend on initial-terminal conditions.

The norms of the above convergences may vary according to
local/nonlocal coupling.

Rmk: This is a turnpike result, in the terminology of math. economics,
since the work of Nobel Price P. Samuelson in 1949:
an efficient expanding economy should for most of the time be nearly an
equilibrium path
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Convergence in average

Main ingredient: energy equality [Lasry-Lions] → uniqueness, stability
of the system when F (x , ·) monotone.

Any couple of solutions (u1,m1) and (u2,m2) satisfy

− d

dt

∫
Ω

(u1 − u2)(m1 −m2)dx =∫
Ω

(m1 + m2)

2
|Du1 − Du2|2 + (F (x ,m1)− F (x ,m2))(m1 −m2) dx

Apply the energy equality to (u,m) and (ū, m̄) between 0 and T :∫ T

0

∫
Ω

(m + m̄)

2
|Du − Dū|2 + (F (x ,m)− F (x , m̄))(m − m̄) dx

= −
[∫

Ω

(u − ū)(m − m̄)dx

]T
0

?
≤ C

Bounds at t = 0 and t = T ⇒ convergence in average.

Main point: obtain an estimate ‖DuT (0)‖ independent of T
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Typically, uT (0) ∼ C T . However, if we set 〈u〉 :=
∫
u dx , we have∫

Ω

uT (0)(m0− m̄)dx =

∫
Ω

(uT (0)−〈uT (0)〉)(m0− m̄)dx ≤ c‖DuT (0)‖L2

⇒ it is enough to bound ‖DuT (0)‖ independently of T .

We get estimates differently according to local or nonlocal coupling.

(i) Smoothing coupling F (x ,m): we use a (uniform in time)
semiconcavity estimate ⇒ Lipschitz bound for uT .

(ii) Local coupling F (x ,m): we use the property that the system has an
Hamiltonian structure ⇒ there exists an invariant (constant in time)

E(u,m) =

∫
Ω

[
1

2
m|Du|2 + Du · Dm −F(x ,m)]dx

Thanks to this fact, we obtain a bound on ‖DuT (0)‖L2 .
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Exponential rate of stability

The exponential rate of convergence may come from two possible
ingredients:

• stronger coercivity of the coupling F (x , ·)
• stability of the linearized pb. (if sol.’s are smooth !)

1. Local coupling F (x ,m).

We strengthen the monotonicity condition

(F (x ,m1)− F (x ,m2))(m1 −m2) ≥ γ(m1 −m2)2 (1)

Theorem

Under assumption (1), there is some κ > 0 (independent of T) such that
(we denote ũ = u − 〈u〉)

‖ũ(t)− ū‖L1 + ‖m(t)− m̄‖L1 ≤ C
(
e−κ(T−t) + e−κt

)
∀t ∈ (1,T − 1) ,
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2. Nonlocal smoothing coupling.
We strengthen the regularizing property of the coupling term

‖F (x ,m1)− F (x ,m2)‖C1+α ≤ C̄‖m1 −m2‖H−1 ∀m1,m2 (2)

for some α > 0.

Theorem

Under assumption (2), there exists κ > 0 (independent of T) such that

‖ũ(t)− ū‖C 3,α ≤ C
(
e−κ(T−t) + e−κt

)
∀t ∈ (a,T − a) ,

‖m(t)− m̄‖C 2,α ≤ C
(
e−κ(T−t) + e−κt

)
∀t ∈ (a,T − a)

(C , a depend on initial-terminal conditions).
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Look at the linearized system around (m̄, ū):
−vt

Av︷ ︸︸ ︷
−∆v + DūDv = F ′(m̄)µ

µt −∆µ− div (µDū)︸ ︷︷ ︸
A∗µ

= div (m̄ Dv)︸ ︷︷ ︸
−Kv

We show that w := K−
1
2µ satisfies

d2

dt2
‖w(t)‖2

2 ≥ ω2
0 ‖w(t)‖2

2

for some ω0 > 0.

‖w(t)‖2
2 ≤ max{‖w(0)‖2

2, ‖w(T )‖2
2}
(
e−ω0t + e−ω0(T−t)

)
.

⇒ ‖µ(t)‖2
H−1 . ‖w(t)‖2

2 ≤ max{‖m0‖2
2 , ‖m(T )‖2

2}
(
e−ω0t + e−ω0(T−t)

)
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Through a fixed point argument, we can preserve such property for
the nonlinear problem:

‖m(t)− m̄‖2
H−1 . C

(
e−ω0t + e−ω0(T−t)

)
Using

‖F (x ,m(t))− F (x , m̄)‖C1+α ≤ C̄‖m(t)− m̄‖H−1

we bootstrap the estimates between the two equations, using the
exponential decay of the operators.
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Links with optimal control problems

MFG as optimality system (for a bilinear control problem).

Ex: Optimize in terms of the field α

infα
∫ T

0
[
∫

Ω
1
2 m |α|

2 + F(m(s))]ds

state eq. mt −∆m − div (αm) = 0 , m(0) = m0

Optimality gives:

αopt = Du(t, x)

−ut −∆u + 1
2αopt · Du = F (m)

⇔ −ut −∆u +
1

2
|Du|2 = F (m)

We proved: Controls [DuT ] and trajectories [mT ] which are optimal in
[0,T ] are close to the corresponding steady-state ones.

The convergence holds in average and exponentially in the transient time.

Is this a general issue of optimality systems?
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It turns out that similar exponential estimates hold for a wide class of
optimal control problems in the long horizon
(joint work with E. Zuazua).

Ex: linear case ⇐⇒ minimize a quadratic cost

J(u) =
1

2

∫ T

0

[
‖Cx − z‖2 + ‖u‖2

]
dt

over the dynamics {
xt + Ax = Bu

x(0) = x0.

where A,B,C ∈MN , z ∈ RN is some target observation.

The optimality system reads as{
xt + Ax = −BB∗p
−pt − A∗p = C∗Cx − C∗z
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Theorem

If (A,B) is controllable and (A,C ) is observable, then there exist κ > 0
and K:

|uT (t)− ū|+ |xT (t)− x̄ | ≤ K (e−κt + e−κ(T−t)) ∀t ∈ [0,T ] ,

where (uT , xT ) and (ū, x̄) are the evolution and the stationary optimal
control and state.

Actually, κ is characterized as the exponential rate of the dynamics
stabilized through the solution of algebraic Riccati equation.

We extend the same approach to infinite dimensional setting (at
least for a large class of examples, ex. heat and wave equations).
Stabilization and observability estimates play a crucial role.

The linearized MFG system (around the ergodic solution) is an
example of this kind.

Properties of the linearized systems + fixed point arguments are a
possible approach for nonlinear systems, as in MFG.
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Conclusions

Under mild monotonicity conditions, we have shown, as T →∞

(i) the convergence of u(t)
T to λ̄(T − t)

(ii) the convergence of u(t)−
∫

Ω
u(t, y)dy to ū

(iii) the convergence of m(t) to m̄

expressed in different norms or scales.

Under either stronger monotonicity in the local case or stronger
continuity in the nonlocal case we have shown that the convergence
has exponential rate in the transient time.

The results obtained are consistent with a general behavior of
optimality systems in the long horizon. The structure of the
linearized system explains the exponential stability and suggests
more general viewpoints
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Thanks for the attention !
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