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A huge literature has concerned the study of boundary blow-up solutions
(also called large-solutions) of elliptic equations like

—Au+g(u)=1f(x) inQ,

u(x) > +o0 as d(x)—0 [d(x) := dist (x,0Q)]
since the works of J. Keller, R. Osserman, who proved that a solution
exists if and only if

+o0

ds < 00, G(s)—/osg(t)dt

1
V G(s)
Keller-Osserman condition
Fundamental problems: existence, asymptotic behavior and uniqueness
[Impossible here to recall all contributors, let us mention Loewner,

Nirenberg, Bandle, Marcus, Véron, Lazer, McKenna, Lair, Wood, G.
Diaz, Letelier, J. Lépez-Gémez, Cirstea, Radulescu, Zhang,...]
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New interest was raised recently on qualitative properties of solutions:
multiplicity, symmetry, blow-up profile, second order terms, curvature
effects

[Del Pino-Letelier, Aftalion-Reichel, Aftalion-Del Pino-Letelier, Du-Guo,
Du-Guo-Zhou, ...]

Goal of this talk: show that gradient estimates lead to such qualitative
results. Two examples will be discussed

» Radial symmetry in a ball for semilinear equations (extension of
the Gidas-Ni-Nirenberg result). Joint work with L. Véron

» Boundary blow-up solutions related to stochastic control
problems (viscous Hamilton-Jacobi equations).
Joint work with T. Leonori (PHD at Roma Tor Vergata)
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Radial symmetry: Gidas-Ni-Nirenberg for large solutions

Recall the celebrated Gidas-Ni-Nirenberg result:

Let g be a locally Lipschitz function. Then any u € C?(Q2) which is a
positive solution of

—Au+g(u)=0 inBg(0),
u=0 on 0Bg(0),
is radially symmetric and decreasing.

Remark: Of course the same holds if ujsqo = m is constant and u < m
inside Q.

A natural question is: if g also satisfies the Keller-Osserman condition at
infinity, does a similar result holds for boundary blow-up solutions?

(Answer is not trivial: to what extent u = +o0 is constant
tangentially?...)
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Recall the key points in the GNN approach (as well as in many later
symmetry results)

e Hopf boundary lemma

e moving plane method: compare u with its reflection

gnnteps-converted-to.pdf

Comparing u with its reflection is not easy when solutions blow-up at the

boundary:
e how the difference u — uy behaves near the corner points ?

e how can we replace the information of Hopf lemma 7
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With L. Véron, we adopt the following strategy:

(i) we prove that the Gidas-Ni-Nirenberg argument works for boundary
blow-up solutions provided one knows that the normal gradient is

dominant:
lim g—l'j = 00
|[x|—R

%:o(%) as x| = R,

(1)

where g—l’j is the normal derivative and % is any tangential derivative of w.

In some sense we use (1) as a version of Hopf lemma for boundary
blow-up solutions

(i) we turn our attention to conditions under which (1) can be proved to
hold true.

A. Porretta Gradient estimates for blow-up solutions



Theorem (Porretta—Véron, J. Functional Anal. '06)

Let g be a locally Lipschitz continuous function. Assume that

(i) Exists a > 0 such that g is positive and convex on [a, o)
(ii) g satisfies the Keller-Osserman condition at infinity.
Then any u € C?(RQ) solution of

{ —Au+g(u)=0 inBgr(0),

lim u(x) =400
[x|—R

is radially symmetric and increasing.

Rmk: The result allows to characterize all solutions in several situations
where uniqueness fails:

Ex: Changing sign g, like g(u) = u(u — a)(u — 1) [Aftalion-Reichel,
Aftalion-Del Pino-Letelier '03]; g(u) = u? [Pohozaev '61]
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Some comments:

» Partial results were previously proved by McKenna-Reichel-Walter
[Nolin. Anal. '97] by using second order expansion of solutions.
However, that approach requires stronger assumptions on g: indeed,

proving second order expansion for u = proving first order for Vu

» We use the assumption that g(s) is “convex at infinity" in order to
prove the estimates for derivatives. i.e. % =o0 (9”)

This assumption is satisfied by any “reasonable” example of function
enjoying the Keller-Osserman condition

(recall that K-O condition = superlinearity at infinity).

However, the most general result (assuming only K-O condition) is
open.
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This is a special case of a general problem: in a smooth domain €2, prove
that boundary blow-up solutions of

—Au+ H(u,Vu) =f(x) inQ,

u(x) > +o0 as  d(x)—0
satisfy % =0 (%)
Many situations can be dealt with using asymptotic estimates and
blow-up arguments [Bandle-Essen, Bandle-Marcus, Porretta-Véron]

If one can prove that u(x) ~ 1(d(x)) where v satisfies the associated

ODE
P’ = H(y,v'),
$(0) = 400

then the strategy is:

scaling and blow—up near a point xo € 9Q:  us = ¥(0) u(xo + 6)
elliptic W?P—estimates on us = Cl-compactness
= Vu ~ ¢/ (d(x))Vd(x) = —¢'(d) v

(Related topics: symmetry/uniqueness results in half spaces)



Boundary blow-up in viscous Hamilton-Jacobi equations
We consider now the problem

—Au+u+ |Vul|?=1f(x) in Q,
{ [Vul? = f(x) @)

u(x) > +oo as d(x)—0

» Qis a bounded smooth subset in RV, f is (at least) bounded

» 1<qg<2
(this range is necessary: no such solutions if ¢ > 2 or g < 1)

Motivation & origin of this model is a state constraint problem
for the Brownian motion

J-M Lasry, P.L. Lions, Math. Ann. 283 (1989):

“constraining a Brownian motion in a given domain
by controlling its drift”
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Given a Brownian motion B; and the SDE

d)(i_L = a(Xt)dt + \/idBt,
Xo=x¢€ Q,

find an optimal feedback control a € C(Q2) such that X; does never leave
the domain €2. Admissible controls:

acA={aeC(Q): X, €Q,Vt>0as.}

Rmk: in order to constrain a diffusion one needs vector fields a(x) which
blow-up at 0f2.

Given the cost functional
0 ’
J(x,2) = E/ [F(X) + g la(Xe) |7 } ettt
0

where ¢’ = Ll then the value function

u(x) = inf J(x,a),

acA

is a solution of (2) if 1 < g < 2 (dynamic programming principle).



Theorem (JM. Lasry-PL. Lions)

Let 1 < g < 2. Then the value function u is the unique solution (in
W2P(Q) for every p < o) of

loc

—Au+u+|Vul?=f(x) in Q,
u(x) > +o0 as d(x)—0

and
a(x) = —q|Vu(x)|"2Vu(x)

is the unique optimal control law.

Moreover u satisfies, as d(x) — 0,

u(x) ~ Cud(x)"71  ifl<qg<2,
u(x) ~ —log(d(x)) ifqg=2,

-
. . —1) 9—1
where Cq is a universal constant, (Cq = %)
—q
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After [LL], one knows that the constrained dynamics

dXt = a(Xt)dt + \/idBt,
XO =XE€ Q)

is determined by the unique optimal control

a(Xe) = —q|Vu(X:) [T Vu(X,)
where u is the boundary blow-up solution of the viscous Hamilton-Jacobi
equation

—Au+u+|Vul?=f(x) inQ,
u(x) > +o0 as  d(x)—0

Next goal: study the qualitative behavior (near the boundary)
of Vu to understand the control mechanism
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First order asymptotics of the gradient

As a particular case of results in [Porretta-Véron, Adv. Nonlin. Stud. '06]
we have:

lim_ d(x)T1Vu(x) = & v(x)

where v(x) is the outward unit normal on 9%, and & = (¢-1) 7.
In particular this implies:

I T O
O d(x)at 2 or  \ov)’

As before, this is the scaling of the asymptotics of u: set o =

N

—q
g—1

Cq
if 1<g<2, u~GCd(x)™ = Vu~—Cuad(x)"Vd(x)
it g=2, u~—log(dx)) — Vu~ —ﬁVd(x)

(note that a + 1 = L3, & = Cg 2=¢ and Vd(x) = —v)
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We recover the typical result: the first order behavior of u and Vu is
independent of 2 and is described by the associated ODE

P =T+

Recently, for the equation Au = uP, [Del Pino-Letelier '02],
[Bandle-Marcus '05] showed that the influence of the domain in the
blow-up appears in second order terms (with curvature effects).
Proof is through sub—super solutions which provide a detailed (second
order) expansion of u.

Natural question for our model is: how the feedback control process
depends on the geometry of domain ?

To get an answer:

» Give a precise description of the blow—up of Vu
(role of normal and tangential components, second order terms...)
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Second order terms: curvature effects

Theorem (Leonori—Porretta SIAM J.Math. Anal. '07)

Let Q be a smooth bounded open subset of RV, and let u be the unique
solution of (2).

Set X the projection of x onto Q2 and by H(X) the mean curvature of
02 computed at X.

Being v and T the normal and tangent vectors, we have, as d(x) — 0,

ou &q (N—1) ,,
— = 1 H 1 <2
o d(x)qll[ + 2 HE) dix) + o(d(x))] , Vi<a<2,
and 5

u oo .

ou .

E:O(Ilogdl) lfq:%,

8u - 1 . 3

87'_O<d3q_21q> If1<q<§
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Corollary (Representation of the optimal control)

Let a(x) = —q|Vu(x)|92Vu(x) be the optimal control for the state
contraint problem.

As d(x) — 0, we have: for any 1 < q < 2

’

a(x) = — { d‘(’x) + ‘”Z‘” H(x)} v(x) + o(1)

where 1) € L*°(Q).
Note in particular:
(i) The control tangentially is zero on 99 if g # 2, bounded if g = 2.

(ii) On the hypersurfaces parallel to 99, the control is maximum where
the domain has a maximal mean curvature
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The “constrained dynamics”

Near the boundary, the dynamics looks like

’

{dxt= {% =D H(x)| Vd(Xe)dt + V2 dB,

)(():XES-Z7

Tomteps-converted-to.pdf

The control (i.e. the drift) has to be "stronger” where the domain is
more curved.
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Method of proof: asymptotic expansion of the gradient

Remarks (with respect to first order asymptotics):

- The second order expansion of the gradient cannot be obtained here
just using sub—super solutions nor “rescaling from the expansion of u”.

(it may happen that u — C; d(x)~ has a non trivial trace on 0%, the
second order behavior of u cannot be determined)

Our approach relies instead on a regularity result, and we obtain the
previous statements by proving a complete asymptotic expansion for Vu
with respect to d(x):

» introduce a formal asymptotic expansion S

» prove directly that u — S is Lipschitz
(without knowing the boundary value of u — S): this is possible
thanks to a priori estimates and approximation with Neumann-type
boundary condition
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It sounds similar to a corrector result:

Let here g < 2: we already know that
u(x) ~ Cgd(x)™“ a=—7"

Then we introduce as a corrector

Zak X)k

and look for a result of the type

u—S s Lipschitz in Q.

Of course one has that o9 = (g is known, and oy, k =1,..., m are
smooth functions to be determined.
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Indeed, we will prove that there exists a unique choice of the functions oy
such that
u—>5S is Lipschitz

where S = d(x)™* Y"1 ok(x)d(x)~.

The coefficients oy can be explicitly computed, hence we deduce all
singular terms of the expansion, since

Vu—-VSel™

In particular, the computation of o, gives

& Ad(x)
T l-a 2

o1(x)
hence the mean curvature in second order terms

(Ad(X)‘ = —(N-1)H(x))

o0
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Key point: Lipschitz estimates on the reduced (“linearized”) equation.

(a) Take S = d(x)~* > 7, ok(x)d(x)* and look at the equation
satisfied by z=u—§

Using the first order behavior [% =10 (%)] and an asymptotic

development near the boundary the equation for z looks like
~Az+z — §HVzVd(x) + O(d*|Vz*) = f(x) + g(x),
g=AS-S5—|VS|?
(b) Using Bernstein's method we get estimates for |Vz|? depending on
the regularity of £ and g. Next two ingredients:

(i) Choose the coefficients ok (x) of S in a way that g is smooth
(this gives a unique choice of the corrector S)

(i) In order to get global Lipschitz estimates in Q, we approximate
u — S with solutions satisfying Neumann boundary conditions.
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Comments, extensions, work in progress

» The result extends to inhomogeneous diffusions

dXt = a(Xt)dt + \/§U(Xt)dBt,
Xo=x€ Q,

with associated HJB equation
—tr (A(x)D?u) + Au + [Vu|? = f(x)

where A(x) = o(x)a T ().
Assuming A(x) elliptic and smooth, one can use the same approach

replacing the distance function d(x) with the solution of the first
order equation

A(x)VpVp=~7|Vpl?  inQ
p>0,
p=0 on 0.
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Things to be done (or in progress)...

» Existence/blow—up of explosive solutions in singular domains
(link with Wiener criteria for the Brownian motion)

» general diffusions, possibly non smooth and/or degenerate. =
approach by viscosity solutions
(cfr. degenerate state constraint problems [Katsoulakis],
[Ishii-Loreti], [Barles-Burdeau, Barles-Rouy, B-R-Souganidis]...)
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