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Abstract and disclaimer
This is a simple, almost naif approach to the mathematics of global
illumination in Computer Graphics. The speaker is by no way a leading
expert in this subject.
Classical Computer Graphics lead to two prominent iterative methods for
realistic rendering: Recursive Ray Tracing (where the observer looks at any
point x of the scene and gets its diffusive and glossy contributions to
illumination, but then his visual ray bounces according to the law of
reflection generating a reflected ray, whose hit point y yields an additional
purely specular contribution to the illumination of the originating point x ,
and we trace the rays bounce after bounce, adding up their contributions
recursively), and Radiosity (a finite element method for global light
interchange). RRT ⇒ approximate glossy and diffuse illumination with the
addition of enhanced precise highlights. Rad ⇒ fine light gradation for
purely diffusive environments without highlights or directional effects.
Modern Computer Graphics rediscovers these two methods in one unified
photorealistic approach, Global Illumination, based on recursive
high-dimensional integral equations solved by tracing rays with suitably
chosen probability distribution and computing the integrals with stochastic
sampling.
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Flux and radiance
We have a scene, made up of surfaces (usually polygons), with one or
more light sources.

Definition

Flux: radiant power, energy / time

Radiosity: exitant flux / area

Radiance: flux / (solid angle × projected area)

Notation

L(x → ~θ) radiance emitted at point x in direction ~θ

L(x ← ~θ) radiance arriving at point x from direction ~θ

L(x → y) radiance emitted at point x and arriving at point y

Le(x → ~θ) radiance created at point x and emitted in direction ~θ

Invariance: if there are no participating media, then conservation of
energy yields L(x → y ) = L(y ← x).
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BRDF
Each surface is assigned appropriate material parameters (typically, the
BRDF: bidirectional reflectance distribution function).

Definition

BRDF fr (x , ~ψ ↔ ~θ) = % of radiance arriving at x from direction ~ψ that
exits in direction ~θ

Example

Diffuse reflector: Lambert model, fr (x , ~ψ ↔ ~θ) = ρd/π ≡ kd ,
isotropic in the exit angle

Ideal specular reflector: incident angle ~ψ ⇒ fr (x , ~ψ ↔ ·) = ksδ~R ,

where ~R = 2〈~n, ~ψ〉~n − ~ψ is the reflected direction (~n is the normal
versor of the surface at x)

Approximate specular reflector: Phong model,

fr (x , ~ψ ↔ ~θ) = ks
〈~R, ~θ〉Phong exponent

〈~n, ~ψ〉
+ kd

Massimo Picardello (Mathematics Department, University of Roma “Tor Vergata”)Mathematics for Global Illumination
Moscow State University, September 2012

/ 96



The rendering equation: hemispherical formulation

Example (continued)

Refractive surface: Snell law

Physically based models: Fresnel equations for amount of reflection
and refraction at a smooth surface for the two components of
polarized light, and Cook–Torrance microfacets probability distribution
to physically approximate any surface with locally smooth surfaces

The rendering equation (hemispherical formulation)

L(x → ~θ) = Le(x → ~θ) +

∫

Ωx

fr (x , ~ψ ↔ ~θ)L(x ← ~ψ) 〈~n, ~ψ〉 d ~ψ

where Ωx is the front hemisphere at x (we assume that x lies in a
non-transparent surface with tangent plane).
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The rendering equation: area formulation

Notation

A: the union of all the surfaces in the scene

r(x , ~ψ): the point of the scene facing x in direction ~ψ

V (x , y): visibility factor, 1 if x and y are directly visible (that is
y = r(x , ~ψ)), 0 otherwise

G (x , y): geometric factor,

G (x , y) =
〈~nx , ~ψ〉〈~ny ,−~ψ〉
π dist(x , y)2

where y = r(x , ~ψ)

The rendering equation (area formulation)

L(x → ~θ) = Le(x → ~θ)+

∫

A

fr (x , ~ψ ↔ ~θ)L(y ← −~ψ)V (x , y)G (x , y) dσ(y)

where dσ is the surface measure.
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Recursive Ray Tracing
So we must solve a recursive integral equation. We could try to compute
each integral numerically by sufficiently fine sampling of the hemisphere
(or the scene area) for each integral: that is, by shooting an
equidistributed mesh of rays. Needless to say, this is interminably slow.

Recursive Ray Tracing: approximate each integral
∫

A

fr(x , ~ψ ↔ ~θ) L(y ← −~ψ)V (x , y )G (x , y ) dσ(y )

with the value of the integrand in the direction ~ψ of the light (or of
the lights), plus the contribution of just a single a ray shot in the

specular direction obtained by reflecting ~θ at x . This gives the
illumination given by the BRDF plus the highlights.

Instead, we shall generate samples with appropriate probability distribution
p in the domain of integration of the integral I =

∫

f (x) dx .
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Numerical integration with random sampling

Lemma (Monte Carlo estimator)

With N samples xi :

estimator:

〈I 〉 = 1

N

N
∑

i=1

f (xi )

p(xi)

variance

σ2 =
1

N

∫
(

f (x)

p(x)
− I

)2

p(x) dx

Remark

In dimension 1, Monte Carlo integration does not offer great advantages
over deterministic integration (quadrature formulas): variance =
1/
√
N ↔ N samples ↔ quadrature error ≈ ‖f ′‖∞/N. But to achieve the

same accuracy in dimension d > 1, the quadrature formulas need a mesh
of Nd points, whereas the Monte Carlo method still needs N samples. The
rendering integrals are in dim 2 (actually, in dim 4 for radiosity).
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Reduction of variance

Warning

Variance means noise in the rendered image!

Methods of reduction of variance:

Importance sampling: variational methods and the Lagrange
multipliers yield the following:

Proposition (Distribution with minimal variance)

The variance is zero if p is proportional to f :

p(x) =
f (x)

∫

f (t) dt

Of course one does not know
∫

f (t) dt: this is what we want to
estimate. But if one has an idea of how f looks like, this proposition
tells us which type of probability distributions are more suitable.
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Stratified sampling: subdivide the domain of integration into m
disjoint subdomain (strata), and perform Monte Carlo integration
separately in each stratum Dj with nj samples.

Proposition

If all strata have equal size then the variance is smallest if nj ≡ 1 (one
sample per stratum)

How to perform stratified sampling in dimension 2 without using N2

samples? N-rook algorithm: the strata are the cells of a
2-dimensional grid, choose only one sample in each row and column
(just N samples!). Also possible for d -dimensional grids with d > 2.

Several other variance reduction schemes: combining importance and
stratified sampling and quasi Monte Carlo, combining several
estimators and applying multiple importance, control variates. More
difficult... our rendering integrand has many factors: often one
chooses a probability distribution proportional to the most relevant
factor.
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Stochastic path tracing

Figure : First step of path tracing

Rendering equation:

L(x → ~θ) = Le(x → ~θ) +

∫

Ωx

fr (x , ~ψ ↔ ~θ)L(x ← ~ψ) 〈~n, ~ψ〉 d ~ψ

Call the integral Lr (x → ~θ) (r stands for reflected).
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Estimator of the integral:

〈Lr (x → ~θ)〉 = 1

N

N
∑

i=1

fr (x , ~ψi ↔ ~θ)L(x ← ~ψi ) 〈~n, ~ψi 〉
p(~ψi)

But L(x ← ~ψi ) = L(r(x , ~ψi )→ ~ψi ). So we must trace the ray from x in
direction ~ψi to find y = r(x , ~ψi ) and calculate the same integral at y , and
so on recursively: we trace a tree of rays. But how do we stop the

recursion?

Trivial way: stop after a prescribed number of steps, even adaptively
based on predetermined bounds on the residual radiance (everything
decreases as kns , exponentially in the BDRF maximum reflectance).
But deterministic stopping of a stochastic estimator introduces bias:
inaccurate rendering.

Stochastic stopping time: Russian Roulette.

Massimo Picardello (Mathematics Department, University of Roma “Tor Vergata”)Mathematics for Global Illumination
Moscow State University, September 2012

/ 96



Estimator of the integral:

〈Lr (x → ~θ)〉 = 1

N

N
∑

i=1

fr (x , ~ψi ↔ ~θ)L(x ← ~ψi ) 〈~n, ~ψi 〉
p(~ψi)

But L(x ← ~ψi ) = L(r(x , ~ψi )→ ~ψi ). So we must trace the ray from x in
direction ~ψi to find y = r(x , ~ψi ) and calculate the same integral at y , and
so on recursively: we trace a tree of rays. But how do we stop the

recursion?

Trivial way: stop after a prescribed number of steps, even adaptively
based on predetermined bounds on the residual radiance (everything
decreases as kns , exponentially in the BDRF maximum reflectance).
But deterministic stopping of a stochastic estimator introduces bias:
inaccurate rendering.

Stochastic stopping time: Russian Roulette.

Massimo Picardello (Mathematics Department, University of Roma “Tor Vergata”)Mathematics for Global Illumination
Moscow State University, September 2012

/ 96



Russian Roulette
We want to estimate an integral: for simplicity, take I =

∫ 1
0 f (x) dx . The

Monte Carlo method selects random points xi ∈ [0, 1] and computes a
weighted average of the values f (xi ). Instead, compress the domain by a
factor P < 1 and dilate the values of f by 1/P : we have

I = IRR :=

∫ P

0

1

P
f
( x

P

)

dx

Figure : Russian Roulette estimator
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Hence, by sampling IRR with the uniform probability distribution in [0, 1]:

Corollary

The expectation of the estimator

〈IRR〉 =
{

1
P
f
(

x
P

)

if 0 6 x 6 P

0 otherwise

is 〈IRR〉 = I .

Remark

With probability P < 1, the sample points generated in the Russian
Roulette are smaller than P: their contributions yield the unbiased
estimate for I . The remaining samples are larger than P and yield 0. We
say that P is the survival probability, and 1− P is the absorption
probability.

If we use Russian Roulette to compute the integral of the rendering
equation, the absorption probability gives a random absorption for the
traced rays, hence a random stopping time.
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Figure : Simple stochastic ray tracing, with stochastic absorption
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Direct and indirect illumination in stochastic path tracing

We have already rewritten the rendering equation for the reflected
radiance as

Lr (x → ~θ) =

∫

Ωx

fr (x , ~ψ ↔ ~θ)L(r(x , ~ψ)→ −~ψ) 〈~n, ~ψ〉 d ~ψ

Let y = r(x , ~ψ) and decompose L(y → −~ψ) as the sum of self-emitted
and reflected radiance, Le(y → −~ψ) + Lr (y → −~ψ). This yields

Lr (x → ~θ) = Ldir(x → ~θ) + Lindir(x → ~θ)

The first term on the right is the direct contribution at x from light
sources (in classical Computer Graphics this is the Lambert and Phong
contribution); the second term is the indirect contribution at x due to
reflections from the rest of the scene (the classical Recursive Ray Tracing
term). We now study the direct illumination term.
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Direct illumination

Notation

The direction versor ~ψ from x to y is denoted by ~xy .

Let NL be the number of light sources in the scene: each corresponds to a
light-emitting surface Ak . Let us rewrite the direct illumination term in
area formulation:

Ldir(x → ~θ) =

NL
∑

k=1

∫

Ak

fr (x , ~xy ↔ ~θ)Le(y → − ~xy)V (x , y)G (x , y) dσ(y)

So we need to generate sample points y on the light sources.
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Shadow rays
The term V (x , y) must be calculated by tracing a ray towards y to check
if x is in shadow: this is why the rays towards the sampling points on the
lights are called a shadow rays. To decrease variance:

increase the total number of shadow rays;
distribute shadow rays per light proportionally to respective powers
(importance sampling);
distribute shadow rays to privilege the areas of most impact (for
instance the closest parts of the lights).

Figure : Sampling with shadow rays
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Figure : Sampling light areas with shadow rays: uniform sampling of one light source,

1, 2, 10, 40 shadow rays per pixel respectively
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Single light source

Assume only one light. With NS shadow rays, the estimator for direct
illumination is

〈Ldir(x → ~θ)〉 = 1

NS

NL
∑

k=1

fr (x , ~xyi ↔ ~θ)Le(yi → ~yix)V (x , yi )G (x , yi )

p(yi)

How to choose p to reduce variance? We see that there are various factors
at the numerator, and we should choose p to cancel one of them
(importance sampling) One factor is the visibility factor; another is the
radiance-emission term: for isotropic (=diffuse) lights this is constant, and
so it does not introduce variance. Then there are the occlusion and
geometric factors. In the hemispherical formulation, some of these are
replaced by another factor: the cosine term.
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Variance reduction for direct illumination

Typical choices for p:

uniformly distributed sampling over the light source: for the x in
penumbra, not all shadow rays yield a contribution > 0, so there the
variance (=noise) increases; for the x in full light, the variance comes
from the dist(x , y)2 at the denominator of the geometric factor
G (x , y), particularly when the lights are widespread and some parts of
are much closer to x than others;

uniform sampling of solid angle subtended by the light source: by
returning to the hemispheric formulation, we can choose p
proportional to the cosine term. This would be better for sources
that, seen from x , are foreshortened and cover a small solid angle.
However, it is not simple to uniformly sample a general solid angle.

if light source are not isotropic: it would be useful to sample
proportionally to their emission distribution, but very difficult because
we must restrict to directions towards x .
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Multiple lights
Two strategies:

treat each light source separately (as if there was only one light);

consider their union as a unique light source.

In the second case, two steps: in the first step we choose the light to be
sampled by means of a discrete probability distribution; in the second step,
we sample the selected light source area with the methods seen before, by
using a conditional probability distribution function.
Two overall strategies:

uniform source selection + uniform sampling of light source area;

power-proportional source selection + uniform sampling of light
source area.

Clearly, the second strategy is more efficient (importance sampling). But,
two problems:

for points x that do not see the brightest lights, a lot of variance
because most shadow rays give no contribution, and slower
convergence because all the rendering comes from the dim lights that
are scarcely sampled;
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to generate a shadow ray, three random numbers: two for the choice
of the point y on the light source, and one to select which source;
adding random choices makes stratified sampling more difficult.

Figure : Sampling two light areas with shadow rays
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Indirect illumination

This is the term where we have recurrence:

Lr (x → ~θ) =

∫

Ωx

fr (x , ~ψ ↔ ~θ)Lr (r(x , ~ψ)→ −~ψ) 〈~n, ~ψ〉 d ~ψ

Estimator with N samples:

〈Lr (x → ~θ)〉 = 1

N

N
∑

i=1

fr (x , ~ψi ↔ ~θ)Lr (r(x , ~ψi )→ −~ψi ) 〈~n, ~ψi 〉
p(~ψi)

In addition, there is a self-emitted term. We trace paths (and for each hit
a shadow ray towards the light sources, to obtain a sample value of the
integrand) until absorption. At each hit on a light source, the self-emitted
light contribution is accumulated. So at each bounce this recursive
integral stores the effect of indirectly visible light sources.
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Figure : Sampling indirect illumination: bouncing paths are black, shadow rays white
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Strategies for variance reduction

For Russian roulette: survival probabilities proportional to the reflectance
of the point where reflection occurs (or the angular average of the BRDF).
For the integrand: choose the probability distribution p proportional to
one of the following:

the cosine term;

the BRDF: for instance, if the BRDF comes from the
Lambert+Phong model, we randomly generate three events according
to which we choose p proportional to the diffuse or glossy term of the
BRDF, or else absorption;

the incident radiance field Lr : but this is unknown, we can only make
an adaptive choice at each hitting point by approximation based on
prediction from the previous steps of the recurrence process.

better: the product of all three... but... sampling according to a
function of more variables is very time consuming and yields variance.
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Light tracing

The light tracing method traces rays not from the camera but from the
light source (or sources if there are more than one - a discrete probability
distribution, that may be weighted with importance, selects from which
light area we start the tracing for each bouncing process). Instead of
shadow rays now we trace observer rays, or camera rays to check if the
bounce point is visible through each pixel.
Since there are few lights but many pixels, this method is less efficient.
However, it is important in two-pass algorithms that combine path tracing
and light tracing and interpolate and add the light contribution (after
storing the partial result in an appropriately efficient data storage at the
end of the first pass and retrieving quickly the data after the second pass).
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The need for the light tracing pass is due to the fact that it lets light rays
naturally accumulate and become sampled at high density in the areas of
the scene where the light is concentrated by the optics (glass spheres,
lenses, the effect of waves on the shading at the bottom of a shallow sea
or pool). These areas, called caustics, have extremely high contrast and
require high density sampling, that would not be possible with path tracing
from the camera unless the sample count per pixel is chosen to be
prohibitively high.

Figure : Sampling light tracing: the light rays are drawn in white, the camera rays in

red
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Radiosity

Here is the classical finite element method for light transport, revised in
terms of the rendering equation. The scene is subdivided into N patches
Si of area Ai . We now suppose that the scene is purely diffusive, so there
is no directional distribution of reflected light. We may as well integrate
over exit angles in the rendering equation for radiance: note that the
incoming radiance still depends on the incoming angle, but the outgoing
radiance now becomes a function L only of the point x , without angles,
since diffuse materials emit isotropically (Lambert model). This way we
obtain the following 2-dimensional integral for the outgoing radiance L(x)
and 4-dimensional for the average radiosity bi of Si :

L(x) = Le(x) +

∫

Ωx

fr (x)L(x ← ~ψ) 〈~nx , ~ψ〉 d ~ψ

bi =
1

Ai

∫

Si

∫

Ωx

L(x) 〈~nx , ~θ〉 d~θ dσ(x) (1)
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Radiosity from the rendering equation
Since for the facing point y = r(x , −~ψ) one has
L(x ← ~ψ) = L(y → −~ψ) = L(y), the area formulation of the rendering
equation yields

L(x) = Le(x) + fr (x)

∫

S

L(y)K (x , y) dσ(y) (2)

where K (x , y) = G (x , y)V (x , y). It is trivial to check that the integral of
the cosine of the latitude over an hemisphere is π. So
b(x) =

∫

Ωx
L(x) 〈~nx , ~θ〉 d~θ = πL(x) and by (1)

bi =
1

Ai

∫

Si

L(x)

∫

Ωx

〈~nx , ~θ〉 d~θ dσ(x) =
1

Ai

∫

Si

b(x) dσ(x)

Part of the radiosity is self-emitted and part reflected. If the patches are
small enough that we can approximate b(x) = bi and fr (x) = ρi with
constants on each patch, this and (2) yield

bi = b
(e)
i + ρi

N
∑

j=1

Fijbj
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where Fij =
1
Ai

∫

Si

∫

Sj
K (x , y) dσ(y) dσ(x) is the form factor. Note that

the integral is 4-dimensional, and that the linear system has the recursive
form of type ~b = ~e + A~b, where A = I− {ρiFij}.
Observe that the kernel K is invariant by swapping Si and Sj : so, because
of the division by the area, we have the reciprocity relation

Ai Fij = Aj Fji . (3)
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The radiosity linear system

Now let Mij = δij − ρiFij . Then the vector of radiosities of the patches is
the solution of the following radiosity linear system:

M~b = ~e

or, in recursive form,
~b = ~e + A~b .
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The classical Radiosity method

split the scene into patches

to each path assign constant reflectivity ρi

compute the form factors from their 4-dimensional integrals and store
them as necessary

solve the radiosity linear system numerically via iterative methods like
Jacobi, Gauss–Seidel or Southwell

visualize the results (normally this is done by transferring radiosities
of patches to luminosities of vertices, and then computing the shading
per pixel by bilinear interpolation of the luminosities of the projected
vertices)

The method converges because the radiosity matrix M is strictly
diagonally dominant. But the computation of the form factors makes it
very costly time-wise, and their storage very costly in terms of memory.
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Geometric meaning of the form factors

The form factor from patch i (Si) to patch j (Sj) is expressed by
Fij =

1
Ai

∫

Si

∫

Sj
K (x , y) dσ(y) dσ(x). For any point x ∈ Si let us consider

the inner integral,
∫

Sj
K (x , y) dσ(y), where K (x , y) = V (x , y)G (x , y), the

product of the visibility factor V and the geometric factor

G (x , y) =
〈~nx , ~ψ〉〈~ny ,−~ψ〉
π dist(x , y)2

.

This geometric factor measures the projected area of Sj onto the unit
frontal hemisphere centered at x , weighted with the cosine of the incident
direction. So, since the integral of the cosine over the hemisphere cancels
out the π at the denominator, the integral of GV over y ∈ Sj measures
the solid angle of Sj when seen from point x . Thus, the form factor is the
average solid angle covered by Sj when seen from points in Si .

Massimo Picardello (Mathematics Department, University of Roma “Tor Vergata”)Mathematics for Global Illumination
Moscow State University, September 2012

/ 96



Computing form factors: local lines

Two methods to compute form factors.
Local lines: for Monte Carlo computation of the integral of the form
factor,

select equidistributed random points xi ∈ Si , that is with probability
distribution pxi = 1/Ai

select random directions ~θ ∈ Ωxi with conditional probability given by

the cosine, p~θ|xi =
1
π
〈~θ, ~nxi 〉

form the joint probability p(x , ~θ) = pxip~θ|xi

let χj(xi , ~θ) := 1 if the ray from xi ∈ Si with direction ~θ hits Sj , and
χj = 0 otherwise

Then

Proposition (sampling the set of form factors from Si)

The expectation of χj w.r. to the joint probability pxip~θ|xi is exactly Fij .
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More precisely:

Proposition (form factors by local line sampling)

The Monte Carlo estimator with ni samples

〈Fij〉 =
1

ni

ni
∑

k=1

χj

(

y
(i)
k

)

p
(

y
(i)
k

)

is unbiased and has expectation E (〈Fij〉) = Fij . Its variance is
σ2 = 1

nj
Fij(1− Fij) .

Remark

The probability that a particle shoot from Si with distribution probability p
hits Sj is the form factor Fij .
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Computing form factors: global lines
Encompass all the scene in a large sphere and draw N lines with both ends
equidistributed on this sphere. Integral geometry shows that

Proposition (form factors by global line sampling)

these lines hit each patch in an equidistributed way (note: any two
consecutive intersections of a ray with the patches yields two local
lines, one starting at each of the two intersections and ending at the
other, in opposite orientations)

if AT is the total area of the scene and Ni is the number of hits on
patch Si , then Ni ≈ NAi/AT

if Nij is the number of lines with consecutive intersections in Si and
Sj , then Nij/Ni ≈ Fij

Form factors need no longer to be computed: we only need to know
that they are expectations of hits of rays shot with a given probability,
then we sample with respect to that probability to cancel the form
factors out of Monte Carlo estimators!
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Stochastic Relaxation methods for the radiosity linear

system: Jacobi iteration

The radiosity linear system is expressed in recursive form as ~b = ~e + A~b:
for simplicity, let us write ~b = ~e + A~b.

Jacobi iterations:
~b(k+1) = ~e + A~b(k)

If A is a contraction (that is, it decreases distance between pairs of
points), the iterative method obviously converges to one and the same
limit vector (the equilibrium radiosity distribution) whichever starting
vector ~b(k) is chosen. So, the convergence condition is spectral radius
ρA < 1 (Theorem: this is automatically satisfied since the radiosity matrix
is strongly diagonally dominant).
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Three iteration schemes:

(i) Gathering: A natural interpretation of the equations: at each
iteration, each patch in turn gathers radiance from all others:

b
(k+1)
i = ei + ρi

∑

j Fijb
(k)
j , where b

(k)
j represents the radiance

collected by the patch i from the emission of the patch j .

(ii) Shooting: Transform the linear sytem of radiance into the dual
system of energy (by multiplication by the patch areas): because of

the reciprocity relation (3) this yields p
(k+1)
i = ǫi + ρi

∑

j Fjip
(k)
j ,

where p
(k)
j represents the power shot into the scene by the patch i

from the emission of the patch j .

(iii) Incremental shooting:

△p
(0)
i = ǫi

△p
(k+1)
i = ρi

∑

j

△p
(k)
j Fji

p
(k)
i =

k
∑

m=0

△p
(m)
i
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Here △p
(k+1)
i represents the incremental power collected during iteration

k + 1 from the other patches, and the interpretation is that each patch
collects power at each stage, gathering a potential that will be shot at the
next shooting: this scheme iterates the redistribution among the patches
of their potential energy.
If we would proceed deterministically, now this would suggest to choose an
iteration method like Southwell relaxation, where at each step the

shooting occurs at the patch that has more potential energy △p
(k+1)
i to

release. Instead, we proceed probabilistically.
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Stochastic incremental shooting iteration scheme
Each iteration method has a stochastic counterpart. No more computing
and storing the form factors! The samples automatically yield this required
information on the spot.
For instance: stochastic incremental shooting iteration scheme,

△p
(k+1)
i = ρi

∑

j

△p
(k)
j Fji =

∑

j ,l

△p
(k)
j Fji ρl δli . (4)

Pick pairs of patched (j , l), say, by local line sampling, as follows:
1 select source patch j with probability πj proportional to its unshot

power △p
(k)
j /△p

(k)
Tot , where △p

(k)
Tot :=

∑

j △p
(k)
j

2 select destination patch l with conditional probability πl|j = Fjl , the
solid angle covered by l , but without really computing Fjl : just trace a
local line as sample (and if visibility = 0, discard).

Now the combined probability of picking (j , l) is

πlj = πj πl |j = △p
(k)
j Fjl/△p

(k)
Tot

In the estimator, these probabilities go to the denominator of (4) and

cancel out the terms △p
(k)
j Fji
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So, the estimate for △p
(k+1)
i turns out to be simply

△p
(k)
Tot

∑

j ,l

ρl δli = ρi△p
(k)
TotNi ,

where Ni is the total number of hits on patch i of sampling local lines
(starting at all patches j). Similar procedure with global line.

Incremental versus regular shooting

Unlike the deterministic method, in the stochastic shooting the results of
subsequent iterations are averaged: new iterations do not replace old ones.
So we use more samples: no discarding. But higher order interreflections
become bright slowly because of the averaging (they are not present at the
early iterations). To make up, two steps:

1 First a complete incremental shooting iteration sequence until
convergence: interreflections ok, but noisy;

2 after, using this equilibrium power distribution as if it would define
initial radiance conditions (=lamps), one regular shooting, and
average of the two results. The outcome is equivalent to one iteration
with twice as many samples.
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Gathering

Instead, gathering collects samples shot from each patch. So it is useful to
clean noise on small patches, that have low probability od being hit at
random. So we perform incremental + regular shooting and take the
average of the two as initial radiosity distribution, then we perform one
iteration of gathering and we finally average.
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Discrete random walks
Let pei be the self-emitted power from patch i , and peT =

∑

i pei be the
total self-emitted power. After normalization, the radiosity power system
becomes

pi
peT

=
pei
peT

+
∑

j

pj
peT

Fji ρi . (5)

We may regard the unknowns in this linear system as numbers of visits of
a random walk according to the following model. A particle jumps from an
urn to another. There are n urns. The “transition probability” from urn i
to urn j are pij , but they do not need to add up to 1, they can be smaller,
and αi = 1−∑j pij is the absorption probability at urn j . The starting urn
is i with probability πi (birth probability). There are counters for the
number of visits of the particle at each urn. Suppose that there are N
particles jumping. Since a particle visiting urn i is either born there or it
comes from urn j with probability pji , the expected number of visits at urn
i clearly is

Ci = Nπi +
∑

j

Cjpji .
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Averaging with respect to the samples, i.e. dividing by the number N of
particles, we get the collision densities at the urns:

χi = πi +
∑

j

χjpji .

This is the same as (5) with birth probabilities πi = pi/peT and transition
probabilities pji = Fji ρi .

Massimo Picardello (Mathematics Department, University of Roma “Tor Vergata”)Mathematics for Global Illumination
Moscow State University, September 2012

/ 96



Shooting random walk method: survival estimation

1 A particle is generated at some patch (=urn) i with birth probability
πi .

2 A jump i → j is selected by sampling a local line.

3 An acceptance/rejection test is performed with survival probability ρj .
If the test fails, the particle is absorbed. If the particle is absorbed, it
is discarded, otherwise it increments the counter Ci = CS

i . Particles’
births at the light sources are not counted, because we do not need to
estimate the lamps’ intensity, it is known a priori (source term
estimation suppression).
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Shooting or gathering random walk estimators
The previous random walk estimator is of type shooting survival:
“shooting” because the particles originate at the light sources (the
generators of self-emitted power), and light particles are traced henceforth
as reflected by surfaces; “survival” because they are counted only in case
of survival. The shooting estimators have dual estimators: gathering. In
shooting, each particle produces a contribution where it hits, while in
gathering it produces a contribution where it is shot. Gathering traces
light backward, that is, it does not simulate light propagation: it traces
rays, not light paths. These rays are multiply reflected until they hit the
light sources or are absorbed. Gathering estimators are less efficient, but
may help to clean noise in small patches ⇒ do shooting + gathering, and
average the results with appropriate weights to minimize the total
variance. Here we limit attention to shooting random walks.

Shooting survival estimator of power

pi
peT
≈ CS

i

N
.
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Collision estimation

Ray tracing is time consuming. If a particle is absorbed after hitting a
patch, its contribution is discarded, but we have traced the ray
nevertheless. Better to use another counter: count particles visiting a
patch, whether absorbed or not. Total number of visits at i : counter Ci .
Of course, survival expectation is CS

i ≈ ρi Ci . Therefore:

Collision estimator of power

pi
peT
≈ ρi

Ci

N
.
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Absorption estimation

This counter only counts particles absorbed at a patch: it measures energy
left where the photons are absorbed. It is useful for dark scenes, where
absorption is the most likely event. Total number of visits at i : counter
CA
i . Of course, Ci = CS

i + CA
i , and absorption expectations verify

CA
i ≈ (1− ρi )Ci . But C

S
i ≈ ρi Ci , and so CA

i = (1− ρi ) CS
i

ρi
. Hence:

Absorption estimator of power

pi
peT
≈ ρi

1− ρi
CA
i

N
.

Since not all particles are absorbed, some (the surviving ones) are
discarded by this estimator, and this increases variance. Thus, the collision
estimator is usually more efficient (less variance) than the absorption (and
the survival) estimator. At a very reflective area, the survival estimator has
lower variance (less noise) than the absorption one, and vice-versa at a
dark or black area.
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Continuous random processes: photon density estimation
This is a continuous state space random process, that simulates randomly
the photons’ trajectories. Let us apply it to radiosity, that is, to diffusive
scenes.

Birth probability proportional to self-emitted radiosity: for diffusive
patches, birth density at point x0 is S(x0) = be(x0)/peT .
Initial particle direction ~θ0 with conditional density distribution
proportional to the angular light emission distribution of the light
source at x0 times the cosine of the deviation from the normal
direction ~nx0: for a diffusive light source (isotropic), this transport
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Combining conditional probabilities, we get the transition density
x0 → x1 , that samples particles reflecting at x1 coming from x0 :

T (x1| x0) = ρ(x1)T (~θ0|x0)T (x1| x0, ~θ0)

(this because x1 is in a purely diffusive patch, otherwise we would
replace the reflectance ρ(x1) with the albedo ρ(x1 , −~θ0) that
measures the fraction of the power incoming to x1 from x0 that gets
reflected). Observe that T (~θ0|x0)T (x1| x0, ~θ0) = T (x1| x0)/ρ(x1) is
precisely G (x0, x1)V (x0, x1) = K (x0, x1). That is,

T (x1| x0) = ρ(x1)K (x0, x1) . (6)

Continue this way, each time by sampling reflected particles (if
survival is sampled): the reflected direction is chosen with distribution
given by the BRDF times the outgoing cosine (the BRDF disappears
for purely diffusive patches), and then performing the survival test.
This way we get a transition density function T (x | y) for any pair
(x , y) of points in the scene.
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Obviously, in general the expected density χ(x) of particle hits at x
satisfies the equation

χ(x) = S(x) +

∫

χ(y)T (x | y) dσ(y)

where the integral is taken over the union of all surfaces of the scene.

But for a diffuse environment, by (6) this becomes

χ(x) =
be(x)

peT
+

∫

χ(y)K (y , x) ρ(x) dσ(y) ≡ b(x)

peT
:

the density of particle hits is proportional to the radiosity!
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Histogram method for evaluation of radiosity

The hit density is χ(x) = b(x)/peT , and, with an N-particle random
process, for each patch Si ,

∫

Si
χ(x) dσ(x) ≈ Ni/N, where Ni is the

number of hits on Si . Remember that Ai is the area of Si . Then, using
patches as bins for counting, we can estimate the histogram of radiosity,
that is the patch radiosities bi =

1
Ai

∫

Si
b(x) dσ(x), as follows:

bi =
1

Ai

∫

Si

b(x) dσ(x) ≈ peT
Ai

Ni

N
.

This method gives high variance (high level of noise) to small patches,
unless many photons are traced.
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Orthogonal basis expansion for evaluation of radiosity
This is a higher order approximation for patch radiosities: instead than
considering them constant on each patch by taking an average, they are
interpolated as polynomials in the two variables that parameterize the
patch, or maybe by means of an expansion into suitable orthogonal
functions. Every part of the computation remains as it was, but the
integral over the patch is replaced by the set of weighted integrals where
the weights are these polynomials. In this way, we can produce a smoother
transition between adjoining patches: instead, the histogram method gives
a sharp break, that is a jagged look, that usually forces to worsen the
precision by transfering patch radiosities to the vertices of the patches and
then applying bilinear (actually, bicubic) interpolation, a procedure called
Gouraud shading. Gouraud’s shading degrades the image: it can produce
shadow leaks or light leaks, it is inaccurate for instance with sharp shadow
boundaries, it can produce Mach bands.
Orthogonal basis expansion, as well as the next methods, kernel methods
and nearest neighbor methods, attenuate jagging, but do not eliminate it
altogether.
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Kernel methods for evaluation of radiosity

Consider the trivial identity b(z) =
∫

b(x) δ(x − z) dσ(z) and approximate
the delta distribution with an approximation of the identity, that is a
kernel H(x , z) centered at x , non-negative, of integral 1 and small far
from x : normally one chooses a bell shape, narrow and high.
This approximation and subsequent discretization of the integral as a sum
−→ the radiosity function of the patch Si ≈ sum of translates of this
kernel, centered at the N hit points xj .

Estimator of the kernel method

b(z) =
PeT

N

N
∑

j=1

H(xj , z) .

If the kernel function H is a narrow bell, this method is good near the
edges of patches, where the previous methods of histogram or function
expansion of the integrals would yield bleeding of color from adjoining
patches.
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Nearest neighbor estimation of radiosity

Instead than fixing a patch and counting the number N of hits there, one
fixes N neighboring particles hitting a patch and looks for the smallest
area A in the patch that contains the hit points. The ratio N/A is the hit
density.
A great advantage is that this method does not depend on the mesh that
models the scene, it does not even require a mesh. The disadvantage is
that the estimator is more difficult to write, and that we need to store the
hit point coordinates in such a database structure that allows us to recover
quickly which stored points are neighbors, that is, are the closest to any
chosen point, without checking distances serially, that is one by one
consecutively. A structure suitable for this task is a tree of binary
partitions of 3D-space called a kd-tree.
These ideas are central to a more advanced multi-pass method, the photon
mapping, to be outlined later.
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Final gathering
Hybrid methods mix a phase of radiance solution via the rendering
equation with a second phase, for instance with direct ray tracing, or with
selected types of light transport. We start this presentation with final
gathering.
We have already noted that the complete radiosity solutions are jagged:
each patch has sharp boundary edges. This problem is reduced by
orthogonal basis expansion, by kernel methods and by nearest neighbor
methods, but not completely suppressed.
Better refinement: a two-phase method, final gathering. Here we outline it
for radiosity, but it works also with non-diffusive scenes if we use the
appropriate BRDF’s.
First phase: one of the previous methods provides a complete radiosity
solution, but jagged and noisy. Second phase: the previous solution is
regarded as a pre-computed radiance distribution L̃(y) of the scene. If the
scene is purely diffusive, this solution depends only on the point y that
varies on the surfaces of the scene, but not on directions. This
pre-computed distribution is now refined via ray tracing, as follows.
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Remember Figure 1: the first step to draw the image at a given pixel is

Lpixel =

∫

imageplane

L(p → eye) h(p) dp

where h(p) is a filter function for the pixel (maybe its characteristic
function), and L(p → eye) = L(x → ~θ) with x the point of the scene
visible through the center of the pixel and ~θ the direction from x to the
observer.

Figure : First step of path tracing

Then we computed L(x → ~θ) by recurrence via the rendering equation.
Instead, now at the right hand side of the rendering equation we make use
of the pre-computed solution L̃, so no recurrence.
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In area formulation

L(x → ~θ) ≡ L(x) = Le(x) + fr (x)

∫

scene

L̃(y)G (x , y)V (x , y) dσ(y) ,

and in hemispherical formulation

L(x) = Le(x) + fr (x)

∫

Ωx

L̃(r(x , ~ψ) 〈~nx , ~ψ〉 d ~ψ .

No recurrence: simply integrate by the Monte Carlo method.
If we sample ~ψ with uniform (cosine) distribution, or y uniformly over the
scene, then huge variance, because we shall often miss the important light
sources. Importance sampling must be used, privileging the areas or
patches where L̃ is high, or the patches that are closer, or the y ’s where the
geometric factor is big (but using all 3 together yields a multidimensional
pdf and to produce samples with this pdf gives high variance).
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General multi-pass methods

A multi-pass method combines various algorithms to produce the image,
by separating different modes of light transport and applying different
methods to each. It is important not to include the same mode of light
transport in more than one pass, or if we do so then it is necessary to
appropriately weight the contribution from each pass with weights that
add up to 1.
Regular expressions for different light transport modes: The expressions
are made up with letters that denote which parts of the scenes are hit by
the transport:

L one of the light sources

D a diffuse reflection

G a glossy or partially specular reflection

S a perfectly specular reflection

E the observer (camera position, or eye)
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All possible light paths are of type L(D|G |S)∗E , where | means “or” and ∗

means “repeatedly”. Radiosity algorithms cover paths of type LD∗E ;
recursive ray tracing, G (G |S)∗D̃E , where D̃ means either 0 or 1 hit on a
diffusive surface (where the path is stopped and the illumination from each
light source is computed by means of a shadow ray (geometric + visibility
factor)). Caustics are bright spots of light produced by specular reflections
(lenses or concave mirrors). They are generated by photons that undergo
one or more specular (including lenses!) or glossy reflections and then hit
a diffusive surface: L(G |S)∗D. Really, most algorithms are multi-path,

because they require an object pass to compute luminosity of the scene,
followed by a visualization pass to lighten and color the pixels in the image
plane, as the next examples shows.
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Examples

Direct visualization: the light transport radiance solution stored in the
first pass is accessed directly by tracing a ray through the pixel p and
the result is attributed to p. This is the case for radiosity.

Final gathering: for each x visible through p, the incoming radiance
over Ωx is not reconstructed recursively, but read from the solution
stored at the first pass. In the case of a radiosity stored solution, its
transport modes are LD∗. But the hemisphere reading at the second
pass takes into account the BRDF at point x , that may not be
diffusive. So, overall, the transport modes are LD∗(D|G |S)E . If a
light source is directly visible through p (i.e., x ∈ a lamp) then we
should add LE .
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Examples, continued

Recursive stochastic ray tracing: the read-out pass consists of
recursively tracing specular or partially specular reflections:
transport modes (G |S)∗E . In classic recursive ray tracing, the first
pass just stores shadow ray contribution, that is, direct
illumination.
To improve this, the first pass might store a radiosity solution,
that is type LD∗ (similar to assume that the shadow rays stored
before were only diffusive (Lambert model) and not semi-glossy
(Phong)). This yields precisely the final gathering method. Then
the global modes for transports covered by this recursive ray
tracing are LD∗(G |S)∗E . Here it is crucial that the same modes
are not used in both passes. This is why we assumed that the first
pass was a purely diffusive solution, that is radiosity. If we want to
include semi-glossy reflections into the stored solution, the first
pass becomes L(D|G )∗, but then the second pass must use only
purely specular reflections, S∗E .
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Sharing the same transport modes over multiple passes

Nevertheless, sometimes the same light transports are used in more than
one pass. If so, different types of transports that appear in more than one
pass should be weighted so that their overall contribution has total weight
100%, otherwise the estimator is biased. The choice of weight for a
transport mode should optimize those passes that are best suited to that
transport mode: this optimizes variance. For instance, caustics are better
rendered in a bidirectional tracing pass (see later). Warning: this may be
difficult if the two passes use different number of samples for the shared
transport mode.
This allows to save time and reduce variance, and it is sometimes done
automatically (and inaccurately) in most commercial renderers.
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Bidirectional path tracing
Bidirectional path tracing makes use of the GRDF (Global Reflection
Distribution Function) Gr (x → ~θ, y ← ~ψ), that measure the contribution,
to the flux S ≡ Sp through the points visible through a pixel, of an
elementary self-emitted light quantum (an element of a light source)
Le(x → ~θ) at x in direction ~θ and of a self-emitted importance quantum
We(y ← ~ψ) at y in direction ~ψ (that measures the importance of (y , ~ψ) to
the observer):

Φ(S) =

∫

scene

dx

∫

Ωx

d~θ

∫

scene

dy

∫

Ωy

d ~ψ

Le(x → ~θ)Gr (x → ~θ, y ← ~ψ)We(y ← ~ψ) 〈~nx , ~θ〉 〈~ny , ~ψ〉 .
Two different path generators are needed:

1 an eye-path y0, y1, . . . , yk starting at y0 visible through the pixel, with
conditional probabilities for each next point proportional to the
BRDF, and termination by Russian roulette absorption;

2 a light path x0, x1, . . . , xl starting at x0 belonging to some lamp and
generated analogously.
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The two path endpoints xl and yk are then joined by a straight segment,
thereby giving rise to a unique path of length k + l + 1. An estimator for
the flux using this single path is obtained by dividing by its probability
density function:

Φ(S) =
numerator

pdf(x0, . . . , xl , yk , . . . , y0)
,

where the numerator is

Le(x0 → ~x0x1)G (x0, x1)V (x0, x1) fr (x1, ~x1x0)↔ ~x0x2 . . .

G (xl , yk)V (xl , yk) fr (yk , ~ykxl)↔ ~ykyk−1 . . .

fr (y1, ~y1y0)↔ ~y1y2)G (y1, y0)V (y1, y0)We(y0 ← ~y0y1) .

Stochastic ray tracing is the particular case of this if we generate rays with
l = 0 (thereby tracing rays only); light tracing is the particular case for
k = 0 (light rays only). For instance, in stochastic ray tracing we generate
aan eye path until absorption, and then compute its contribution by
tracing a shadow ray towards the light sources. This shadow ray is actually
a light ray of length l = 0.
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The two path endpoints xl and yk are then joined by a straight segment,
thereby giving rise to a unique path of length k + l + 1. An estimator for
the flux using this single path is obtained by dividing by its probability
density function:

Φ(S) =
numerator

pdf(x0, . . . , xl , yk , . . . , y0)
,

where the numerator is

Le(x0 → ~x0x1)G (x0, x1)V (x0, x1) fr (x1, ~x1x0)↔ ~x0x2 . . .

G (xl , yk)V (xl , yk) fr (yk , ~ykxl)↔ ~ykyk−1 . . .

fr (y1, ~y1y0)↔ ~y1y2)G (y1, y0)V (y1, y0)We(y0 ← ~y0y1) .
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Here we connected the endpoints of an eye path and a light path, but
instead we could connect any vertex of the first to any vertex of the
second. This allows us to sample new paths by reusing their subpaths: so
we save time because we do not have to recompute their pdf (that
includes tracing shadow rays, an expensive task!). The specular reflections
in caustics are better dealt with by including them in the light path
portion, because in the light paths the mirrors and lenses naturally focus
the photons onto the caustics. Instead, if the same mirror is visible in the
image, it is better to deal with the mirrored images by eye rays: indeed,
these images are obtained by photons that have hit a diffusive part of the
scene and bounce to the mirror, and so are naturally focused there via eye
paths (ray tracing).
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Metropolis light transport: generalities

Here paths are sampled on the basis of the contribution they make to the
final image. To each path we apply random mutations that give rise to a
sequence of new paths. Each mutation is accepted or rejected according to
how large is this contribution: so the method focuses onto important
paths. For instance, if the scene models a room lightened by a small
window only, or the interior of a pinhole camera, the important paths are
hard to find, because they must pass through the window or the pinhole:
but when the Metropolis algorithm finds one, then it generates small
mutations around it and so has a good chance to generate many more of
them. Moreover, the mutations reuse subpaths of the mutating path, and
so, just as for bidirectional path tracing, we save time in computing the
contributions of the mutated paths.
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Metropolis sampling: outline

The Metropolis algorithm works this way: given a state space Ω and a
non-negative function p of integral 1 on Ω, the Metropolis algorithm
generates a random walk {xn} such that the probability distribution of xn
is eventually p, independently on x0. This is done by accepting or rejecting
mutations while generating the xn’s according to the following detailed
balance. The probability that the mutation from x to y is accepted is
α(x → y) (to be determined). The probability of the mutation from x to
y is known by the mutation technique adopted: call it T (x → y). To
mantain equilibrium in the probability distribution of x or y , we must have

p(x)T (x → y)α(x → y) = p(y)T (y → x)α(y → x) .

Hence the best choice is

α(x → y) = min

{

1,
p(y)T (y → x)

p(x)T (x → y)

}

.
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To apply this to rendering, we start with a finite number of paths
generated by bidirectional path tracing and mutate, discarding paths with
low contributions. Mutations are performed by deleting some subpath (this
gives rise to two new internal ends), then continuing both these ends by
attaching some new vertices and finally joining the new endpoints. We
also perform perturbations, by moving one or more vertices of the paths.
Small perturbation are useful, for instance, to slightly mutate light paths
that reach caustics, so the mutated paths pass through a neighborhood of
the caustic and explore its bright and dark areas.
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Photon mapping

Photon mapping is a two pass algorithm that - like bidirectional ray tracing
- traces both eye rays and light rays, but it stores as much as possible the
illumination results of the first pass to reuse them. The first pass consists
in tracing photons from light sources into the scene, with multiple bounces.
The flux carried by these photons is stored in a data structure that allows
to easily recover the n nearest hits at any point in the scene (a kd-tree).
Through this data structure, based on space partitions and not on
parametrization of the scene surface, the data storage is decoupled from
surface parametrization, and so the method applies also to
non-parameterizable, non-smooth scenes, as fractals for instance, and is
impervious to meshing artifacts.
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Photon mapping can be easily restricted to specific transport modes, as for
instance the caustic transport mode, where it is particularly efficient (also
because caustics are best dealt with light rays). Caustics are extremely
slow to render and noisy through ray tracing, because of the enormous
resolution needed to handle their extremely high variations of light
intensity within tiny distances: the first pass of photon mapping could be
limited to the caustic map, that is to transport modes of type LS∗D,
where the method is perfectly suited (it was created for them).
However, certain transport modes, in particular the caustics mode, need to
be covered more than once (once together with all other modes at low
sampling rate, and the other time by itself alone at high sampling rate),
and so the photon mapping algorithm is biased. Therefore photon
mapping is usually applied as a refinement method in addition to
stochastic ray tracing (or other unbiased methods) to improve the
rendering of indirect illumination.
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Photon mapping, pass 1: tracing photons from light

sources
In rendering, flux is usually computed as an integral, but in photon
mapping it is computed as transported by a set of pointwise “photons”,
that are traced starting from light sources into the scene exactly as in
stochastic ray (or light) tracing. Each hit on a non-specular point of the
scene (not only at absorption) is recorded and stored (mapped) in the
kd-tree, and contributes to the flux through that point. This lighting
model can be interpreted as storing in non-specular surfaces the energy
dropped by photons at each hit. Note that the photon map stores photons
that travel via transport modes L(S |G |D)∗(G |D), ending at a
non-specular point. A particular case is caustics, which are dealt also with
a separate map with many photons, the caustic map, that covers only the
caustic transport mode LS∗D. This mode was already covered in the
global photon map, but with a lower number of photons. Because light
tracing pushes photons into caustics, the caustic map has low variance
even if the number of its photons, although high, is much lower than what
stochastic ray tracing would need for a similar accuracy.
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Reflected radiance and photon density

The photon map at a point x represents incoming flux, so the photon
density (flux divided by area) is the irradiance at x : to compute the
reflected radiance we multiply this by the BRDF at x . For this we need to
compute the smallest disc (or projected sphere) the contains the n closest
photon hits. Once the radius ρ of this disc is recovered from the kd-tree,
dividing by the area we obtain:

Reflected radiance through photon map

L(x → ~θ) =

n
∑

i=1

fr (x , ~θ ↔ ~θi)
△Φi(x ← ~θi)

πρ2

where △Φi is the contribution to the flux provided by the i -th photon.
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Photon mapping, pass 2: querying for the image

Direct visualization, considered in Example (1), could be used as pass 2,
but of course it would produce some blurring (because we would average
radiance over each pixel). Instead, once a ray is traced through each pixel
to the first hit point x , similarly to final gathering, we now compute direct
illumination at x as usual, by a ray tracer, and then we query the
previously stored photon map for indirect illumination at x : this means
that indirect illumination is probed by eye-paths that have undergone one
diffuse or glossy reflection (however, with possibly multiple bounces, not
only one as in final gathering). Note that these paths, considered in
reverse, are terminal segments of the light paths of the global photon map
in the first pass: this is another reason for bias.
But the actual algorithm for pass 1 is slightly more articulated: it factors
through different types of hit points after the first glossy or diffuse bounce
at point x . Here are the details:

Massimo Picardello (Mathematics Department, University of Roma “Tor Vergata”)Mathematics for Global Illumination
Moscow State University, September 2012

/ 96



Photon mapping, pass 2: querying for the image

Direct visualization, considered in Example (1), could be used as pass 2,
but of course it would produce some blurring (because we would average
radiance over each pixel). Instead, once a ray is traced through each pixel
to the first hit point x , similarly to final gathering, we now compute direct
illumination at x as usual, by a ray tracer, and then we query the
previously stored photon map for indirect illumination at x : this means
that indirect illumination is probed by eye-paths that have undergone one
diffuse or glossy reflection (however, with possibly multiple bounces, not
only one as in final gathering). Note that these paths, considered in
reverse, are terminal segments of the light paths of the global photon map
in the first pass: this is another reason for bias.
But the actual algorithm for pass 1 is slightly more articulated: it factors
through different types of hit points after the first glossy or diffuse bounce
at point x . Here are the details:

Massimo Picardello (Mathematics Department, University of Roma “Tor Vergata”)Mathematics for Global Illumination
Moscow State University, September 2012

/ 96



one part of the contribution is direct illumination, dealt with by
Monte Carlo sampling of the rendering integral limited to sampling
those rays that are bouncing towards light sources, as seen before;

if x produces a specular reflection or refraction, the bouncing ray is
ray traced, as in the basic, non-recursive ray tracing;

in the frontal hemisphere at x we know from pass 1 the directions of
caustics: they are now queried from the caustic photon map using
many samples to ensure high resolution;

the remaining indirect illumination is obtain by sampling the frontal
hemisphere to query the global photon map, hence the global
rendering solution stored in pass 1: note that this query involves a
complete solution, the global map, that already incorporates multiple
bouncing of light, and therefore enhances the level of accuracy of the
rendering of indirect illumination.
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A physical model for participating media: volume

emittance

Radiance is preserved along paths only in a vacuum: if there are
atmospheric or other participating media, radiance can be diffused or
emitted, absorbed, in-scattered or out-scattered, and in general is not
preserved form beginning to end of the propagation.

Volume radiance:

Lv (x , ~θ) := L(x , ~θ)σt(x)

where L is surface radiance and σt(x) the probability that a photon hits
the medium within unit distance of its travel starting at x (extinction
coefficient).
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Volume emission

The volume emittance function e(z) is a function of the three space
variables that measures the number of photons emitted at point z per unit
time. Typical instance: flames.
Let zs = x + s ~θ be the straight segment from x to, say, y (here
~θ = y − x). Then the increment of the radiance due to volume emission in
this segment is

Le(y)− Le(x) =

∫ 1

0

e(zs)

4π
ds

(4π at the denominator is the solid angle of the whole sphere, needed to
transform the number e(z) of emitted photons into an angular density). In
other words,

∂Le

∂~θ
(z) =

e(z)

4π
.
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Absorption
Photons might be absorbed (that is, die) during their straight travel
because of collisions with the participating medium.
Absorption coefficient σa(x):= probability that a photon is absorbed per
unit distance traveled starting at x .
It depends on the medium’s density, and so it is not constant. Consider
again photons traveling from x to y and, as in the previous page, denote
this segment by zs = x + s ~θ (0 6 s 6 1). Then the rate of decay of the
photons by absorption is proportional to the number of photons traveling
(i.e., to L(x → ~θ) ), and the constant of proportionality is −σa :

∂L(x → ~θ)

∂~θ
(z) = −σa(x)L(x → ~θ) ,

or equivalently,

dL(zs → ~θ)

ds
= −σa(zs)L(zs → ~θ) .

Thus, if σa is constant from x to y ,

L(zs → ~θ) = L(x → ~θ) e−σas ,
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Out-scattering

Instead of being absorbed and dying, photons might be deflected away
from their path during collisions with the media.
Mathematical description: same as absorption, but σa(z) −→ σs(z):
probability of scattering per unit distance.
Then, collect together absorption and out-scattering:

extinction coefficient σt = σa + σs : probability of collision per unit
distance;

decay coefficient at z = zs :

τ(x , z) = exp
(

−
∫ dist(x ,z)
0 σt(x + t~θ) dt

)

;

reduced radiance Lr (z → ~θ) = τ(x , z)L(x → ~θ).

Albedo

α(z) = σs(z)/σt(z) : probability that collision with media at z gives rise
to scattering instead of absorption (the volume analogue of reflectance)
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In-scattering

Conversely, photon scattered al z from other direction may continue in
direction ~θ: volume density of in-scattering Lvi(z → ~θ).

In-scattering radiance Lvi(z → ~θ): properties

it occurs if scattering occurs at z : σs(z) 6= 0 ;

it is proportional to the volume irradiance Lv (z ← ~ψ) (reduced
photon density incoming at z from directions ~ψ multiplied with
collision probability σs(z)):

Lv (z ← ~ψ) := σt(z)L(z ← ~ψ) ;

it is proportional to scattering probability p(z , ~ψ ↔ ~θ) from direction
~ψ to direction ~θ (generally symmetric);

it is proportional to the albedo α(z).
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The expression for in-scattering radiance Lvi(z → ~θ)

Summarizing:

Lvi(z → ~θ) =

∫

α(z) p(z , ~ψ ↔ ~θ)Lv (z ← ~ψ) d ~ψ

=

∫

σs(z) p(z , ~ψ ↔ ~θ)L(z ← ~ψ) d ~ψ .
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Typical phase functions p(z , ~ψ ↔ ~θ)

Purely diffuse ⇒ p(z) = 1/4π .

Henyey–Greenstein:

p(z , ~ψ ↔ ~θ) =
1

4π

1− g2

1 + g2 − 2g
3
2

√

〈~ψ, ~θ〉
.

The parameter g is the average scattering cosine 〈~ψ, ~θ〉, and measure
scattering anisotropy: g > 0⇒ mainly forwards, g < 0⇒ mainly
backwards.

Raleygh: diffusion of light in the sky.
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Augmentation and reduction of radiance along straight

paths

Suppose x →
~θ

y : then how much of the radiance L(x → ~θ) reaches y?

Part of the radiance is reduced by absorption or out-scattering:
Lr (y ← −~θ) = L(x → ~θ) τ(x , y).

New radiance is created during travel by emission or in-scattering:
L+(z → ~θ) = e(z)

4π + Lvi (z → ~θ).

Also the radiance entering the path at zt = x + t ~θ by in-scattering is
subject to reduction: so,

L(y ← −~θ) = L(x → ~θ) τ(x , y) +

∫ dist(x ,y)

0
L+(zt → ~θ) τ(zt , y) dt .
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Rendering equation for participating media

Now the recursive rendering equation becomes:

Rendering equation, hemisphere formulation

With y~ψ = point of scene facing x in direction ~ψ,

L(x → ~θ) = Le(x → ~θ)

+

∫

Ωx

L(y~ψ → −~ψ) τ(x , y) fr (x , ~θ ↔ ~ψ) 〈~ψ,~nx〉 d ~ψ

+

∫

Ωx

(

∫ dist(x ,y)

0
L+(zt → ~θ) τ(zt , y) dt

)

fr (x , ~θ ↔ ~ψ) 〈~ψ,~nx〉 d ~ψ .
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Rendering equation, area & volume formulation

With ~ψy = ~xy direction from x to y ,

L(x → ~θ) = Le(x → ~θ)

+

∫

surfaces

fr (x , ~θ ↔

vecxy)L(y → ~yx) τ(x , y)V (x , y)
〈 ~xy ,~nx〉 〈 ~yx ,~ny 〉
π dist2(x , y)

σ(y)

+

∫

volume

fr (x , ~θ ↔ ~xy) L+(z → ~yx) τ(z , y)V (x , z)
〈 ~xy ,~nx 〉

π dist2(x , y)
d vol(z) ,

where the integrals are over all the surfaces of the scene and all the
volume of the scene, respectively, and dist2(x , z) ds d ~ψ = G (x , z) d vol(z).
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Overview of numerical algorithms for participating media

Bidirectional path tracing: accurate but too costly in optically thick
media (many collisions).

Volume photon density estimation: excellent for volume caustics,
accurate, but again too costly in optically thick media.

Diffusion processes: suitable for optically thick media.

Here are the details:
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Bidirectional path tracing for participating media

For light ray, we sample starting point by either surface or volume
emission, importance sampling based on relative amount of
self-emitted power.

In case of volume emission, we sample starting point by importance
sampling based on e(z): bright volumes are preferred as sources.

Direction: isotropic distribution (usually so with flames).

Sample location of next collision: either collision with medium or with
next surface. Sample the distance along path: draw an
equidistributed random number η ∈ [0, 1), find by Monte Carlo
integration (or analytically) r such that

τ(x , zr ) = exp

(

−
∫ r

0
σt(x + t~θ) dt

)

= 1− η

(that is, τ(x , z) is the pdf for sampling r). Then, if r < first hit point
⇒ collision with media at distance r , else surface hit.
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Bidirectional path tracing, continued

In case of collision, sample scattering or absorption proportionally to
the albedo α(z).

In case of scattering, sample outgoing direction based on phase
function p(z , ~θ ↔ ~ψ)

In case of surface hit, sample outgoing direction based as usual, based
on fr (z , ~θ ↔ ~ψ) 〈~nx , ~ψ〉/ρ(z)
Connect the terminal vertices of the eye path and light path by a
connecting line. The contribution of this line, with no medium, used
to be V (x , y) 〈~nx , ~θ〉 〈~ny ,−~θ〉: with a medium, each inner product is
replaced by 1 in case the corresponding endpoint is a volume collision
instead of a surface hit.
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Volume photon density estimation

Here the only variation from before is the need to compute volume density
of photons colliding with medium. All methods work: hystogram, for
instance, uses volume bins instead of surface bins. A new photon map, the
volume map, is generated for this, and uses its kd-tree (being based on
space partitions, a kd-tree is perfect for volumes). For the volume map,
photon density is recovered by finding the smallest sphere, not disc, that
contains the n closest records. The second pass of the photon mapping
algorithm requires querying pre-computed and stored radiance. Without a
medium, radiance is preserved along rays while reading; now we need to
integrate along path (small adaptive steps) summing up all volume
contributions and decay before the next surface hit.
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Volume light diffusion

In highly scattering media, with a high collision density and long
trajectories (for instance, clouds), the previous methods are too costly.
Here it is better to statistically handle the many discrete collisions as a
continuous diffusion, almost isotropic due to the averaging produced by
multiple scattering.
Define direct radiance Lr as the radiance that reaches point x directly from
a light source or the boundary of the scene, and diffuse radiance Ld as the
radiance that bounced at least once. With many collisions, the latter is
almost isotropic. Just keep a small first order directional term: model it as

Ld (x → ~θ) = Ud (x) +
3

4π
〈~F d (x), ~θ〉 ,

with Ud the angular average

Ud (x) =
1

4π

∫

Ω
Ld (x → ~θ) d~θ
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and ~F d is the average projected radiance

〈~F d (x), ~θ〉 =
∫

Ω
L(x → ~ψ) 〈~ψ, ~θ〉 d ~ψ .

Then Ud satisfies a diffusion equation:

△Ud(x)− 3σa (σa + σs(1− g)) Ud(x) = −Q(x)

where Q(x) is a suitable driving term that can be computed explicitly from
Lr , and g is the average scattering cosine of the phase function. The
consant after the minus sign is denoted σ2tr.
In simple cases there is an analytic solution, otherwise we proceed by
numerical PDE.
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Sub-surface scattering

Translucent materials: photons hit their surface at x , penetrate inside,
undergo multiple scattering and exit at y (or are absorbed). Some
materials are optically thick and therefore only diffusion methods are
viable. Here the rendering equation becomes

L(y → ~θ) =

∫

material surface

∫

Ω+
x

L(x ← ~ψ)S(x , ~ψ ↔ y , ~ψ) d ~ψ dσ(x)

and it needs the Bidirectional Scattering-Surface Reflection Distribution
Function BSSRDF S(x , ~ψ ↔ y , ~ψ): light entering at x may exit at y 6= x .

Hanrahan: analytic solution in a planar slab of homogeneous material,
allowing only one scattering.

Jensen: approximate solution of diffusion equation with unlimited
bounces, for a homogeneous material that fills a half-space
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Jensen’s approximate sub-surface scattering solution
The approximate BSSRDF is

S(x , ~ψ ↔ y , ~ψ) =
1

π
Ft(η, ~θ)Rd (x , y)Ft(η, ~ψ) ,

where Ft ’s are the Fresnel transmission terms incoming at x (direction ~θ)
and outgoing at y (direction ~ψ), η is the refraction index, and

Rd (x , y) =
α′

4π

[

zr (1 + σtrdr )
e−σtrdr

d3
r

+ zv(1 + σtrdv )
e−σtrdv

d3
v

]

with σ′s = σs(1− g), σ′t = σ′s + σa, α
′ = σ′s/σ

′
t , zr and zv are two

imaginary sources of light placed on the normal line of the entrance point
x , respectively inside and outside the material, and dr and dv are their
respective distance from the exit point y .

Notation

If dist(x , y) = r we write Rd(x , y) ≡ Rd (r).
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All these constants, including the position of the two imaginary sources,
can be calculated from the physical properties of the material. A distance
r is obtained by sampling with pdf Rd (r) (that is, by normalizing Rd and
sampling r to compute the expected value

∫

r Rd(r) dr): then y is chosen
on the surface at distance r from x . Because of the refraction index, the
diffuse reflectance for sub-surface scattering varies with depth at a
different rate for different light wavelengths (i.e., colors).
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