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Preface

Harmonic analysis is the study of objects (functions, measures, etc.),
defined on topological groups. The group structure enters into the study
by allowing the consideration of the translates of the object under study,
that is, by placing the object in a translation-invariant space. The study
consists of two steps. First: finding the "elementary components" of
the object, that is, objects of the same or similar class, which exhibit
the simplest behavior under translation and which "belong" to the ob-
ject under study (harmonic or spectral analysis); and second: finding
a way in which the object can be construed as a combination of its
elementary components (harmonic or spectral synthesis).

The vagueness of this description is due not only to the limitation
of the author but also to the vastness of its scope. In trying to make it
clearer, one can proceed in various ways'; we have chosen here to sac-
rifice generality for the sake of concreteness. We start with the circle
group T and deal with classical Fourier series in the first five chap-
ters, turning then to the real line in Chapter VI and coming to locally
compact abelian groups, only for a brief sketch, in Chapter VII. The
philosophy behind the choice of this approach is that it makes it easier
for students to grasp the main ideas and gives them a large class of con-
crete examples which are essential for the proper understanding of the
theory in the general context of topological groups. The presentation of
Fourier series and integrals differs from that in [1], [7], [8], and [28] in
being, I believe, more explicitly aimed at the general (locally compact
abelian) case.

The last chapter is an introduction to the theory of commutative
Banach algebras. It is biased, studying Banach algebras mainly as a
tool in harmonic analysis.

This book is an expanded version of a set of lecture notes written

THence the indefinite article in the title of the book.
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v AN INTRODUCTION TO HARMONIC ANALYSIS

for a course which T taught at Stanford University during the spring
and summer quarters of 1965. The course was intended for graduate
students who had already had two quarters of the basic "real-variable"
course. The book is on the same level: the reader is assumed to be fa-
miliar with the basic notions and facts of Lebesgue integration, the most
elementary facts concerning Borel measures, some basic facts about
holomorphic functions of one complex variable, and some elements of
functional analysis, namely: the notions of a Banach space, continuous
linear functionals, and the three key theorems—"the closed graph", the
Hahn-Banach, and the "uniform boundedhess" theorems. All the pre-
requisites can be found in [23] and (except, for the complex variable)
in [22]. Assuming these prerequisites, the book, or most of it, can be
covered in a one-year course. A slower moving course or one shorter
than a year may exclude some of the starred sections (or subsections).
Aiming for a one-year course forced the omission not only of the more
general setup (non-abelian groups are not even mentioned), but also of
many concrete topics such as Fourier analysis on R, n > [, and finer
problems of harmonic analysis in T or R (some of which can be found
in [13]). Also, some important material was cut into exercises, and we
urge the reader to do as many of them as he can.

The bibliography consists mainly of books, and it is through the bib-
liographies included in these books that the reader is to become famil-
iar with the many research papers written on harmonic analysis. Only
some, more recent, papers are included in our bibliography. In general
we credit authors only seldom—most often for identification purposes.
With the growing mobility of mathematicians, and the happy amount
of oral communication, many results develop within the mathematical
folklore and when they find their way into print it is not always easy
to determine who deserves the credit. When I was writing Chapter 111
of this book, I was very pleased to produce the simple elegant proof of
Theorem 1.6 there. I could swear I did it myself until I remembered
two days later that six months earlier, "over a cup of coffee," Lennart
Carleson indicated to me this same proof.

The book is divided into chapters, sections, and subsections. The
chapter numbers are denoted by roman numerals and the sections and
subsections, as well as the exercises, by arabic numerals. In cross ref-
erences within the same chapter, the chapter number is omitted; thus
Theorem 11I.1.6, which is the theorem in subsection 6 of Section 1
of Chapter Ill, is referred to as Theorem 1.6 within Chapter IlI, and
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Theorem T11.1.6 elsewhere. The exercises are gathered at the end of the
sections, and exercise V.1.1 is the first exercise at the end of Section 1,
Chapter V. Again, the chapter number is omitted when an exercise is
referred to within the same chapter. The ends of proofs are marked by
a triangle ().

The book was written while I was visiting the University of Paris
and Stanford University and it owes its existence to the moral and tech-
nical help 1 was so generously given in both places. During the writing
I have benefitted from the advice and criticism of many friends; 1 would
like to thank them all here. Particular thanks are due to L. Carleson, K.
DeLeeuw, J.-P. Kahane, O.C. McGehee, and W. Rudin. I would also
like to thank the publisher for the friendly cooperation in the production
of this book.

YITZHAK KATZNELSON
Jerusalem
April 1968

The 2002 edition

The second edition was essentially identical with the first, except for
the correction of a few misprints. The current edition has some more
misprints and “miswritings” corrected, and some material added: an
additional section in the first chapter, a few exercises, and an additional
appendix. The added material does not reflect the progress in the field
in the past thirty or forty years. Almost all of it could, and should have
been included in the first edition of the book.

Stanford
March 2002
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Chapter 1

Fourier Series on T

We denote by R the additive group of real numbers and by Z the
subgroup consisting of the integers. The group T is defined as the quo-
tient R/27x7Z where, as indicated by the notation, 27Z is the group of
the integral multiples of 27. There is an obvious identification between
functions on T and 27-periodic functions on R, which allows an im-
plicit introduction of notions such as continuity, differentiability, etc.
for functions on T. The Lebesgue measure on T, also, can be defined
by means of the preceding identification: a function f is integrable on
T if the corresponding 27-periodic function, which we denote again by
/, is integrable on [0, 27) and we set

[ sa= [ 7 fa)de,

In other words, we consider the interval [0, 27) as a model for T and the
Lebesgue measure dt on T is the restriction of the Lebesgue measure of
R to [0,27). The total mass of dt on T is equal to 27 and many of our
formulas would be simpler if we normalized dt to have total mass 1,
that is, if we replace it by dz /2. Taking intervals on R as "models" for
T is very convenient, however, and we choose to put dt = dzx in order to
avoid confusion. We "pay" by having to write the factor 1/27 in front
of every integral.

An all-important property of dt on T is its translation invariance,
that is, for all t, € T and f defined on T,

/ f(t —to)dt = / f(t)dtt

TThroughout this chapter, integrals with unspecified limits of integration are taken
over T.
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1 FOURIER COEFFICIENTS

1.1  We denote by L*(T) the space of all (equivalence’ classes of)
complex-valued, Lebesgue integrable functions on T. For f ¢ L(T)
we put

1
Il = 5= [1rte)ae

It is well known that L!(T), with the norm so defined, is a Banach
space.

DEFINITION: A trigonometric polynomial on T is an expression of the
form

N
(1.1) P Y ane’™.
n=—N

The numbers n appearing in (1.1) are called the frequencies of P; the
largest integer n such that |a,| + |a_,| # 0 is called the degree of P.
The values assumed by the index n are integers so that each of the
summands in (1.1) is a function on T. Since (1.1) is a finite sum, it
represents a function, which we denote again by P, defined for each
teT by

N .
(1.2) Pt)= Y ane™.

n=—N

Let P be defined by (1.2). Knowing the function P we can compute
the coefficients a,, by the formula

(1.3) ap, = Zi /P(t)e_i"tdt

m

which follows immediately from the fact that for integers j,

L fong= {1 ifi=0

27 | 0 ifj#0.
Thus we see that the function P determines the expression (1.1)
and there seems to be no point in keeping the distinction between the

expression (1.1) and the function P; we shall consider trigonometric
polynomials as both formal expressions and functions.

Tf ~ gif f(t) = g(t) almost everywhere
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1.2 DEFINITION: A4 trigonometric series on T is an expression of
the form

(1.4) S~ i a,e™.

Again, n assumes integral values; however, the number of terms in (1.4)
may be infinite and there is no assumption whatsoever about the size
of the coefficients or about convergence. The conjugate! of the series
(1.4) is, by definition, the series

oo

S~ Y —isgn(n)ane™.

where sgn (n) = 0 if n = 0 and sgn (n) = n/|n| otherwise.
1.3 Let f € LYT). Motivated by (1.3) we define the nth Fourier
coefficient of f by
(1.5) Foy =1 / F(t)emintdt,
21

DEFINITION: The Fourier series S|f] of a function f € L'(T) is the
trigonometric series

Sl ~ > f(n)e™.

The series conjugate to S[f] will be denoted by S [f] and referred to
as the conjugate Fourier series of f. We shall say that a trigonometric
series is a Fourier series if it is the Fourier series of some f € L!(T).

1.4 We turn to some elementary properties of Fourier coefficients.
Theorem. Let f g € L'(T), then
(@ (f +9)(n) = f(n) + g(n).

(b) For any complex number o

(@f)(n) = af(n).

(c) If f is the complex conjugate’ of f then f(n) = f(—n).

¥See Chapter I1I for motivation of the terminology.
$Defined by: f(t) = f(t)) forall t € T.
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(d) Denote [.(t) = f(t — 1), 7T, then
fr(n) = fmye=nm.

@ [f(m)] < 5 [17®dt = |If]|ns

The proofs of (a) through (e) follow immediately from (1.5) and the
details are left to the reader.

1.5 Corollary. Assume f; € L'(T), j =0,1,...,and | f;— follz» — 0.
Then f(n) — fo(n) uniformly.

1.6 Theorem. Let f € L'(T), assume f(0) = 0, and define

o = [ 1o

Then F is continuous, 2w-periodic, and

(1.6) P(n) = %f(n), n 0.

PROOF: The continuity (and, in fact, the absolute continuity) of F' is
evident. The periodicity follows from

27 R
F(t+2n)—F(t) = /t f(r)dr =27 f(0) =0,

and (1.6) is obtained through integration by parts:

2

7 1 —int —1 2 / 1 —int 1 -
Fn) = o 0 F(t)e™™dt = o A Flt)—e ™dt=—f. 4

—in mn

1.7 We now define the convolution operation in L*(T). The reader
will notice the use of the group structure of T and of the invariance of
dt in the subsequent proofs.

Theorem. Let f,g € L*(T). For almost all t, the function f(t —1)g(T)
is integrable (as a function of T on T), and, if we write

(1.7 W) = 5 [ 1t gt
then h € L*(T) and

(1.8) IAllze < [ flleallgllor-
Moreover

(1.9) h(n) = f(n)g(n) foralln.
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PROOF: The functions f(t — 7) and g(7), considered as functions of the
two variables (¢, z), are clearly measurable, hence so is

F(t,7) = f(t —7)g(7).

For every T, F(t,7) is just a constant multiple of f,, hence integrable
dt, and

%_ @/F(m)dt) dr = %/Ig(ﬂl-llfllud7= 1 £112+llgl 2+

Hence, by the theorem of Fubini, f(t—7)g(7) is integrable (over (0, 27))
as a function of 7 for almost all ¢, and

1 1 1 1

_ = — — < —

o /\h(t)|dt o /‘ZW/F(t,T)dT‘dt_ — //\F(t,T)\dth
= | fllz (gl

which establishes (1.8). In order to prove (1.9) we write
h(n) L / h(t)ye "™ dt = L/ [t —7)e D g(rye " dt dr
) 27 i 472 i
1/ . 1 : .
=5z [ f0e o [ gtniemir = fnato).
T, T,

As above the change in the order of integration is justified by Fubini’s
theorem. <

1.8 DEFINITION: The comvolution f % g of the (L*(T) functions) f
and g is the function A defined by (1.8). Using the star notation for the
convolution, we can write (1.9):

(1.10) f+g(n) = f(n)g(n).

Theorem. The convolution operation in L*(T) is commutative, asso-
ciative, and distributive (with respect to the addition).

PROOF: The change of variable ¢ =t — 7 gives

% / (- T)g(r)dr = % | / gt — 0)f(9)dv,

that is,
frxg=gxf.
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If f1, f2, f3 € L*(T), then
[(f1 = fo)=fs](t) = ﬁ // fit —u—7)falu) f3(r)dudr =
1
e //fl(t—w)fz(w — 1) fs(T)ydwdr = [f1 * (fo * f3)](2).

Finally, the distributive law

s+ f)=hxfatfixfs

is evident from (1.7). <

1.9 Lemma. Assume f € L'(T) and let p(t) = e for some integer
n. Then

(¢ f)(8) = fln)e™.

PROOF:
L[ a1 [ _
(QD * f)(t) = ﬂ / ez-rL(t—T)f(T)dT — eznt%/ % / f(T)e_”LTdT. <

Corollary. If f € LY(T) and k(t) = .7\ ane™, then

N
(1.11) (k= f)(t) = Zanf(n)ei”t.
-N

EXERCISES FOR SECTION 1

1. Compute the Fourier coefficients of the following functions (defined by
their values on [—7, 7):

V2r |t < i
@ 7t - <3

0 3 < [t] < .

11—t |t <1
b At) =
®) ® {0 1< |t <.
What relation do you see between f and A ?

1 -1<t<0

(© gt)=< -1 0<t<1

0 1<,
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What relation do you see between g and A?
(d) h(t) =t —r<t<m
2. Remembering Euler’s formulas
1 . » 1 . »
cost = 5(6”—!—6 “, sint = E(e”fe ),

or
” o
e’ = cost+isint,

show that the Fourier series of a function f € L*(T) is formally equal to

Y PR— )
- + Z(An cosnt + By, sinnt)

n=1

where A4, = f(n) + f(—n) and B, = i(f(n) — f(—n)). Equivalently:
An = 1 /f(t)cosntdt
K

Bn = l/f(t)sinmtdt.
™

Show also that if f is real valued, then A, and B, are all real; if f is even,
that is, if f(t) = f(—t), then B, = 0 for all n; and if f is odd, that is, if
f(t) = —f(—t), then A, = 0 for all n.

3. Show that if S ~ 3" a; cos jt, then S ~ > a; sin jt.

4. Let f € L*(T) and let P(t) = ZIXN Gpneint . Compute the Fourier coeffi-
cients of the function fP.

5. Let f € L*(T), let m be a positive integer, and write

fomy (8) = f(m).

Show .
— (&) ifm|n
fom(m) = {0 ifmtn

int —int

6. The trigonometric polynomial cosnt = (e + e~"**) is of degree n
and has 2n zeros on T. Show that no trigonometric polynomial of degree n > 0
can have more than 2n zeros on T.

Hint: ldentify " a;e”* on T with 27" Y"" a;z"" on|z| = 1.

7. Denote by C* the multiplicative group of complex numbers different
from zero. Denote by T the subgroup of all z € C* such that |z| = 1. Prove
that if G is a subgroup of C* which is compact (as a set of complex numbers),
then G C T*.

8. Let G be a compact proper subgroup of T. Prove that G is finite and
determine its structure.
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Hint: Show that G is discrete.

9. Let G be an infinite subgroup of T. Prove that G is dense in T.
Hint: The closure of G in T is a compact subgroup.

10. Let @ be an irrational multiple of 27. Prove that {na (mod 27)}nez is
dense in T.

11. Prove that a continuous homomorphism of T into C™ is necessarily
given by an exponential function.
Hint: Use exercise 7 to show that the mapping is into 7*; determine the map-
ping on "small" rational multiples of 27 and use exercise 9.

12If E is asubset of T and 79 € T, we define E+ 7 = {t +70:t € E};
we say that F is invariant under translation by 7 it E = E + 7. Show that,
given a set E, the set of 7 € T such that E is invariant under translation by
7 is a subgroup of T. Hence prove that if £ is a measurable set on T and E
is invariant under translation by infinitely many = € T, then either E or its
complement has measure zero.
Hint: A set E of positive measure has points of density, that is, points 7 such
that (2¢) Y |EN(7—¢,7+¢)| — L as e — 0. (| Eo| denotes the Lebesgue measure
of Eo.)

13. If E and F are subsets of T, we write

E+F={t+7:t€E, T€F}

and call F + F the algebraic sum of E and F. Similarly we define the sum of
any finite number of sets. A set E is called a basis for Tif there exists an integer
N such that E+ E + - - -+ E (N times) is T. Prove that every set E of positive
measure on T is a basis.
Hint: Prove that if E contains an interval it is a basis. Using points of density
prove that if E has positive measure then F + F contains intervals.

14. Show that measurable proper subgroups of T have measure zero.

15. Show that measurable homomorphisms of T into C* map it into 7.

16. Let f be a measurable homomorphism of T into 7. Show that for all
values of n, except possibly one value, f(n) = O.

2 SUMMABILITY IN NORM AND HOMOGENEOUS BANACH
SPACES ON T

2.1 We have defined the Fourier series of a function f € L'(T) as
a certain (formal) trigonometric series. The reader may wonder what
is the point in the introduction of such formal series. After all, there
is no more information in the (formal) expression 3>°°  f(n)e"" than
there is in the simpler one {f(n)}>2___ or the even simpler f with the
understanding that the function f is defined on the integers. As we
shall see, both expressions, S f(n)e™ and f, have their advantages;
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the main advantages of the series notation being that it indicates the
way in which f can be reconstructed from f. Much of this chapter
and all of chapter II will be devoted to clarifying the sense in which
S f(n)e™* represents f. In this section we establish some of the main
facts; we shall see that f determines f uniquely and we show how we
can find f if we know f.

Two very important properties of the Banach space L'(T) are the
following:

H-1" If f € L'(T) and 7 € T, then
fo(t) = f(t—7) € LY(T) and |[f-]lzr = [If]lze

H-2’ The L}(T)-valued function 7 +— £, is continuous on T, that is, for
J e Ll(T) andrgeT

(21) _I_ILH_I}U”fT - f‘l’()”Ll =0.

We shall refer to (H-17) as the translation invariance of L'(T); it is
an immediate consequence of the translation invariance of the measure
dt. In order to establish (H-2") we notice first that (2.1) is clearly valid if
f is a continuous function. Remembering that the continuous functions
are dense in L*(T), we now consider an arbitrary f € L*(T) and £ > 0.
Let g be a continuous function on T such that ||g — f||z: < £/2; thus

Hf'r - fT[) o < HfT - gTHL1 + ”gT - gTu”Ll + ”9‘1'0 - fT[]HLl =
=[I(f = Drller + lgr — gnollr + 109 — Hrollzr <e+lgr — g llzr-

Hence lim||f, — f,||z: < ¢ and, ¢ being an arbitrary positive number,
(H-2’) is established.

2.2 DEFINITION: A summability kernel is a sequence {k,} of con-
tinuous 27-periodic functions satisfying:

(S-1) % / o (1)t = 1

(S-2) % /‘lk,,,(z&)|dt < const

(S-3) Forall0<d <,

27 —4

lim |[kn()|dt =0
n—oo [s
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A positive summability kernel is one such that k,,(t) > 0 for all ¢ and n.
For positive kernels the assumption (S-2) is clearly redundant.

We consider also families %, depending on a continuous parameter
r instead of the discrete n. Thus the Poisson kernel P(r,¢), which we
shall define at the end of this section, is defined for 0 < r < 1 and we
replace in (S-3), as well as in the applications, the limit “lim,,—..” by
“lim,—q”.

The following lemma is stated in terms of vector-valued integrals.
We refer to Appendix A for the definition and relevant properties.

Lemma. Let B be a Banach space, ¢ a continuous B-valued function
on'T, and {k,} a summability kernel. Then:

lim L/ kn(T)o(T)dT = (0).

7%%&72ﬂ

PROOF: By (S-1) we have, for 0 < § < 7,

% / kn(T)p(T)dT — (0) = % / ke (7) (0(1) — @(0))dr

-1 (/ i+/§ ) () (0(7) — (0

(2.2)

Now

)
@3) |5 [ kalr)e(r) = pl0))ar]|, < maxlotr) ~ Ol kol
and

2.4) H% ,/jﬁ_é Ea(7)(p(7) = 0(0))dr|| <

< max

2r—4§
)= O)lags [ Iutrler

By (S-2) and the continuity of ¢(7) at 7 = 0, given £ > 0 we can find
d > 0 so that (2.3) is bounded by &, and keeping this ¢, it results from
(S-3) that (2.4) tends to zero as n — oo so that (2.2) is bounded by 2=.

<

2.3 For f € LY(T) we put (1) = f-(t) = f(t — 7). By (H-1") and
(H-2"), ¢ is a continuous L!(T)-valued function on T and ¢(0) = f.
Applying lemma 2.2 we obtain
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Theorem. Let f € L'(T) and {k,} be a summability kernel; then

1
@5) f= Jim oo [k fdr

in the L*(T) norm.

2.4 The integrals in (2.5) have the formal appearance of a convolu-
tion although the operation involved, that is, vector integration, is dif-
ferent from the convolution as defined in section 1.7. The ambiguity,
however, is harmless.

Lemma. Let k be a continuous function on'T and f € L*(T). Then

(2.6) % /k(T)deT =kxf.

PROOF: Assume first that f is continuous on T. We have, Appendix A,
1 [ 1 ..
o K(r)frdr = o hmZ(TjH = T)k(7j) =y,
J

the limit being taken in the L'(T) norm as the subdivision {7;} of [0, 27)
becomes finer and finer. On the other hand,

1

5 Hm ) _(Tja1 = 7)k(7)) f(t —73) = (k * £)(®)

uniformly and the lemma is proved for continuous f. For arbitrary
f € L}(T), let £ > 0 be arbitrary and let g be a continuous function on
T such that || f — g| /.1 < . Then, since (2.6) is valid for g,

3 [ K= f = oo [ KD = e+ ke (g 1)

and consequently
k= /k('r)f dr—keg] | <2fklpe
27 i L=
Using lemma 2.4 we can rewrite (2.5):

(2.5%) f= lim k,«*f in the L*(T) norm.

n—00
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2.5 One of the most useful summability kernels, and probably the
best known, is Fejér’s kernel (which we denote by {K,,}) defined by

n

2.7) Ki(t)= > (1 - %)em'

j=—n

The fact that K,, satisfies (S-1) is obvious from (2.7); that K.,(¢) > 0
and that (S-3) is satisfied is clear from

Cn 2
K, (t) = 1 (sm%l)'

n+1 sin%t

Lemma.

PROOF: Recall that

(2.8) sin® — = 5(1 —cost) = *16_“ t5- ie”.

A direct computation of the coefficients in the product shows that

I 4, 1 15 < ( 1] ijt
RSN 1y
( 1© T271° _Zn n+1/°

==
_ 1 (lei(n+1)t+ 1 lei(nﬂ)t) ‘
<

n+1 4 2 4

We adhere to the generally used notation and write o,,(f) = K, * f
and o, (f,t) = (K, = f)(t). It follows from corollary 1.9 that

n

MY
2.9) ou(£.0) =Y (1- 1) fge.

2.6 The fact that 0,,(f) — f in the L' (T) norm for every f € L'(T),
which is a special case of (2.5”), and the fact that o, (f) is a trigono-
metric polynomial imply that trigonometric polynomials are dense in
LY(T). Other immediate consequences are the following two important
theorems.

2.7 Theorem (The Uniqueness Theorem). Let f € LY(T) and
assume that f(n) =0 for all n. Then f = 0.

PROOF: By (2.9) 0,.,(f) = 0 for all n. Since o,(f) — f, it follows that
f=o. “



1. FOURIER SERIES ON T 13

An equivalent form of the uniqueness theorem is: Let f,¢g € L*(T) and
assume f(n) = g(n) for all n, then f = g.

2.8 Theorem (The Riemann-Lebesgue Lemma). Let f ¢ L*(T),
then

| llim f(n)=o.
PROOF: Let e > 0 and let P be a trigonometric polynomial on T such
that ||f — P||z: < &. If |n| > degree of P, then

F) =1 =P)m| <IIf — Pl <= <

Remark: If K is a compact set in L!(T) and ¢ > 0, there exist a finite
number of trigonometric polynomials P, ..., Py such that for every f €
K there existsa j, 1 < j < N, such that || f — P;||;1 < . If |n| is greater
than max, < ;< y(degree of P;) then |f(n)| < e for all f € K. Thus,
the Riemann-Lebesgue lemma holds uniformly on compact subsets of
L(T).

2.9 For € L(T) we denote by S,,(f) the nth partial sum of S[f], that
is,

(2.10) (Sl D) = SulF.1) = 3 FG)e

If we compare (2.9) and (2.10) we see that

CID ol = (Sol)+ S =+ Sul))

in other words, the o,,(f) are the arithmetic means’ of S,,(f). It follows
that if S,,(f) converge in L*(T) as n — oo, then the limit is necessarily
f.

From corollary 1.9 it follows that S,,(f) = D,, * f where D, is the
Dirichlet kernel defined by

n

(2.12) D)= et =

—-N

sin(n + 1)t
sin %t ’

TOften referred to as the Cesaro means or, especially in Fourier Analysis, as the Fejér
means.
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It is important to notice that {D,,} is not a summability kernel in our
sense. It does satisfy condition (S-1); however, it does not satisfy ei-
ther (S-2) or (S-3). This explains why the problem of convergence for
Fourier series is so much harder than the problem of summability. We
shall discuss convergence in chapter II.

2.10 DEFINITION: A homogeneous Banach space on T is a linear
subspace B of L}(T) having a norm || ||g > || ||.: under which it is a
Banach space, and having the following properties:

(H-1) If f ¢ Band 7 € T, then f, € B and ||f. || = ||f||lz (where
fr(t) = f(t - 7—))

(H-Z) For all f € B) T, To € T; limT—>T()||fT - f‘f'[) H =0.

Remarks: Condition (H-1) is referred to as translation invariance and
(H-2) as continuity of the translation. We could simplify (H-2) some-
what by requiring continuity at one specific 7y € T, say 79 = 0 rather
than at every 7 € T, since by (H-1)

| fr = Frollp =l fr-r, = fllB

Also, the method of the proof of (H-2) (see 2.1) shows that if we have
a space B satisfying (H-1) and we want to show that it satisfies (H-2) as
well, it is sufficient to check the continuity of the translation on a dense
subset of B. An almost equivalent statement is

Lemma. Let B C L*(T) be a Banach space satisfying (H-1). Denote
by B, the set of all f € B such that T — f. is a continuous B-valued
Sfunction. Then B, is a closed subspace of B.

Examples of homogeneous Banach spaces on T .
(a) C(T)—the space of all continuous 2x-periodic functions with the
norm

(2.13) [/l = max|£(1)]

(b) C™(T)—the subspace of C(T) of all n-times continuously differ-
entiable functions (n being a rational integer) with the norm

n

(2.13) I£len = 3 < maxl£9)

5=0 "
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(c) LP(T), 1 < p < oo—the subspace of L(T) consisting of all the
functions f for which [|f(t)|Pdt < co with the norm

1/p
(2.14) 11 = (55 [1r007)

The validity of (H-1) for all three examples is obvious. The validity
of (H-2) for (a) and (b) is equivalent to the statement that continuous
functions on T are uniformly continuous. The proof of (H-2) for (c) is
identical to that of (H-2") (see 2.1).

We now extend Theorem 2.3 to homogeneous Banach spaces on T.

2.11 Theorem. Let B be a homogeneous Banach space on T, let
f € B and let {k,} be a summability kernel. Then

ks f—f]| =0 as n — 0.

PROOF: Since || ||z > || |71, the B-valued integral 5= [k, (7)f-d7 is

the same as the L!(T)-valued integral which, by Lemma 2.4, is equal to
k. x f. The theorem now follows from Lemma 2.2. <

2.12 Theorem. Let B be a homogeneous Banach space onT. Then
the trigonometric polynomials in B are everywhere dense.

PROOF: Forevery. f € B, o,(f)— f. <

Corollary (Weierstrass Approximation Theorem). Every contin-
uous 2w-periodic function can be approximated uniformly by trigono-
metric polynomials.

2.13  We finish this section by mentioning two important summabil-
ity kernels.
a. The de la Vallée Poussin kernel:

(2.15) V(1) = 2Kapn 1 (1) — Kp(t)

(S-1), (S-2) and (S-3) are obvious from (2.15). V,, is a polynomial of
degree 2n + 1 having the property that V,,(j) = 1 if |j| < n + 1; it
is therefore very useful when we want to approximate a function f by
polynomials having the same Fourier coefficients as f over prescribed
intervals (namely V,, * f).
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b. The Poisson kernel: for 0 < r < 1 put

. e . 1— ,,,2
2.1 ) — lilgidt — 1 1 9 rlecosjt= ———— |
(2.16) P(r,¢) Zr e + ;r cos jt T
It follows from Corollary 1.9 and from the fact that the series in (2.16)
converges uniformly, that

(2.17) p(,,.’ t) * f —_ Z f(n)Tlnlei'”t.

Thus P = f is the Abel mean of S[f] and Theorem 2.11 (with Poisson’s
kernel) states that for f € B, S[f] is Abel summable to f in the B norm.
Compared to the Fejér kernel, the Poisson kernel has the disadvantage
of not being a polynomial; however, being essentially the real part of
the Cauchy kernel—precisely: P(r,t) = %(}f;‘e: ), the Poisson kernel
links the theory of trigonometric series with the theory of analytic func-
tions. We shall make much use of that in chapter III. Another important

property of P(r,¢) is that it is a decreasing function of ¢ for 0 < ¢ < 7.

EXERCISES FOR SECTION 2

1. Show that every measurable homomorphism of T into 7" has the form
t — e'™ where n is a rational integer.
Hint: Use Exercise 1.16.

2. Show that in the following examples (H-1) is satisfied but (H-2) is not
satisfied:
(a) L>°(T)—the space of essentially bounded functions in L*(T) with the norm

[ flloe = ess sup e[ f(1)]

(b) Lip (T), 0 < o < 1-the subspace of C(T) consisting of the functions f

for which 1+ h) — 0]
+h)—
SUP¢er, nto T <o
with the norm
‘(t+ h) — f(¢
| flltip,, = sup,|f(£)] + sup;ey, h#£0 I |h)|a f0) :

3. Show that for B = L*°(T), B. (see Lemma 2.10) is C(T).
4. Assume 0 < o < 1; show that for B = Lip_ (T)

GRS G

B. =lip(T) = {f : 111111}) sup, TG



1. FOURIER SERIES ON T 17

5. Show that for B = Lip,(T), B. = C*(T).

6. Let B be a Banach space on T, satisfying (H-1). Prove that B. is the
closure of the set of trigonometric polynomials in B.

7. Use exercise 1.1 and the fact that step functions are dense in L'(T) to
prove the Riemann-Lebesgue lemma.

8. (Fejér’s lemma). If f € L'(T) and g € L°°(T), then

dm [ fratunyie = F0300)

Hint: Approximate f in the L'(T) norm by polynomials.

9. Show that for f € L'(T) the norm of the operator f : g — f % g on L'(T)
is || fllzs-

Hint: [Kallps =1, [[Kn 5 fllpn — /15

10. Defining the support of a function f € L'(T) as the smallest closed set
S such that f(¢) = 0 almost everywhere in the complement of .S, show that the
support of f x g for f,g € L*(T) is included in the algebraic sum support(f) +
support(g).

11. Forn = 1,2,... let ky, be a nonnegative, infinitely differentiable func-
tion on T having the properties (i) [ kn(t)dt = 1, (ii) kn(t) = 0 if |t] > 1/n.
Show that {k,} is a summability kernel and deduce that if B is a homogeneous
Banach space on T and f € B, then f can be approximated in the B norm by
infinitely differentiable functions with supports arbitrarily close to the support
of f.

12. (Bernstein)! Let P be a trigonometric polynomial of degree n. Show
that sup, | ' (t)| < 2nsup,|P(t)].

Hint: P’ = —P x 2nK, _1(t) sinnt. Also [|2nK,_1sinnt||p1¢py < 2n.

13. Let B be a homogeneous Banach space on T. Show that if g € L'(T)

and f € Bthengx* f € B, and

lg = fllz < llgllzallfllz -

14. Let B be a homogeneous Banach space on T'. Let H C B be a closed,
translation-invariant subspace. Show that H is spanned by the exponentials it
contains and deduce that a function f € B is in H if, and only if, for every
n € Z such that f(n) # 0, there exists g € H such that §(n) # 0.

3 POINTWISE CONVERGENCE OF o,(f).

We saw in section 2 that if f € L'(T), then o, (f) converges to f
in the topology of any homogeneous Banach space that contains f. In
particular, if f € C(T) then o,,(f) converges to f uniformly. However,

¥Bernstein’s inequality is: sup|P’| < n sup|P|, and can be proved similarly, see exer-
cise 14 on page 48.
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if f is not continuous, we cannot usually deduce pointwise convergence
of o,(f) from its convergence in norm, nor can we relate the limit of
on(f,to), In case it exists, to f(ty), We therefore have to reexamine the
integrals defining o,,(f) for pointwise convergence.

3.1 Theorem (Fejér). Let f € L'(T).

(a) Assume that limy_o(f(to + h) + f(to — h)) exists (we allow the
values —oc and +o00); then

1
(3.1) ou(fito) — 5 Hm(f(to + h) + f(to — h))
In particular, if ty is a point of continuity of f, then o,,(f,to) — f(to)-

(b) If every point of a closed interval I is a point of continuity for f,
on(f,t) converges to f(t) uniformly on I.

(c) Ifforae t, m < f(t), then m < o,(f,t), if for ae. t, f(t) < M,
then o, (f,t) < M.

Remark: The proof will be based on the fact that {K,,(¢)} is a positive
summability kernel which has the following properties:

(32) For0<w¥<m, lim (sup,‘szﬁ_ﬁ K”(t)) =0,

(33) Kn(t) = Kn<7t)

The statement of the theorem remains valid if we replace o,,(f) by
kn * f, where {k, } is a positive summability kernel satisfying (3.2) and
(3.3). For example: the Poisson kernel satisfies all the these require-
ments and the statement of the theorem remains valid if we replace
on(f) by the Abel means of the Fourier series of f.

PROOF OF FEJER’S THEOREM: We assume for simplicity that
f(to) =lm L (f(to + h) + f(to — h)) is finite; the modifications needed
for the cases f(ty) = +oo or f(ty) = —oo being obvious. Now

on(f,to) — f(to) = ! /EKn(T)(ﬂto —7) — f(to))dr =

&) 27—
G4 =3 (/_ +f ) Kn(7)(F(to — 1) — f(t0))dr =
1 fllo+71)+ flto—7) &
ﬂ(/ /) e ()
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(Notice that the last equality in (3.4) depends on (3.3).)
Given £ > 0, we choose ¢ > 0 so small that

flto+7)+ flto —7)

(3.5) 7| <9 = 5 — flto)| <e,
and then ng so large that n > ng implies

(3.6) SUPy s oy Kn(T) <.

From (3.4), (3.5), and (3.6) we obtain

(3.7 |on(frt0) = F(E+0)| <=+l f = F(to)] s

which proves part (a).
Part (b) follows from the uniform continuity of f on I; we can pick
¥ so that (3.5) is valid for all ¢y € I, and ny depends only on ¥ (and ¢).
Part (c) depends only on the fact that K,,(t) > 0 and - K, (t)dt = 1;
if m < f then

on(fit) —m = % / Ko () (f(t —=7) —=m)dr >0

the integrand being nonnegative. If f < M then

M —o,(f,t)= %/KTL(T)(A{ — ft—=7))dr >0

for the same reason. <

Corollary. If'ty is a point of continuity of f and if the Fourier series
of f converges at ty then its sum is f(ty) (cf- 2.9).

3.2 Fejér’s condition

fto) = lim flto +h) = F(to— h)

implies that

h
(3.8) lim /
¢}

flto+7)+ flto — 1)
2

— f(to) dr = 0.

h—0 h

Requiring the existence of a number f(t) such that (3.8) is valid is far
less restrictive than Fejér’s condition and more natural for summable
functions. It does not change if we modify f on a set of measure zero
and, although for some function f Fejér’s condition may hold for no
value tg, (3.8) holds with f(ty) = f(to) for almost all #y (cf. [28], Vol.
1, p. 65).
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Theorem (Lebesgue). If (3.8) holds, then o, (f,t0) — [f(to). In par-
ticular o,(f,t) — f(t) almost everywhere.

PROOF: As in the proof of Fejér’s theorem,

on(f, to) f(to) =
(3.9) to + + ;
([ [ [t D ) ar

As K, (1) = n+1(%) andsin § > T for 0 < 7 < 7, we obtain
2
™

. , < mi L5 |-
(3.10) k() < min(n+ 1 )

In particular we see that the second integral in (3.9) tends to zero pro-
vided (n + 1)9? tends to co. We pick ¥ = n~1/* and turn to evaluate the
first integral.

Denote
oy = [ [1OEEIO=D gy ar
then
[ oz <

The term “* & (1) tends to zero by (3.8). Integration by parts gives

T (to +7) + f(to . dr
n+1 2 f<t0)‘ 2
(3.11) B 9
T [<I>('r)]'9 2m / O(7)
= - -+ 7 d’T .
n+1l 72 Jym n4+1fy, 7
For ¢ > 0 and n > n(e) we have by (3.8)
—1/4

P(ry<er in 0<7T<d¥=mn
hence (3.11) is bounded by

TEN 2me /"? dr
1

—_—t — — < 3me.
n+1l n+1/y, T
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Corollary. [If the Fourier series of f € L'(T) converges on a set E of
positive measure, its sum coincides with f almost everywhere on E. In
particulay, if a Fourier series converges to zero almost everywhere, all
its coefficients must vanish.

Remark: This last result is not true for all trigonometric series. There
are examples of trigonometric series converging to zero almost every-
where! without being identically zero.

3.3 The need to impose in Theorem 3.2 the strict condition (3.8)
rather than the weaker condition

(3.8") T(h) = /Ob(f(t””)”(t“*ﬂ —f(to))drzo(h)

2

comes from the fact that in order to carry the integration by parts we

2
kiy

have to replace K,,(¢) by the monotonic majorant min(n + 1, W)

If we want to prove the analogous result for P(r,¢) rather that K,,(¢),
the condition (3.8”) is sufficient. Thus we obtain:

Theorem (Fatou). If (3.8) holds, then
: £ Nldl Jtdto _ F
lim ;ﬂj)v e’ = f(to).

The condition (3.8°) with f(ty) = f(to) is satisfied at every point tg
where f is the derivative of its integral (hence almost everywhere).

EXERCISES FOR SECTION 3

1. Let 0 < a < 1 and let f € L'(T). Assume that at the point to € T, f
satisfies a Lipschitz condition of order «, that is, |f(to + 7) — f(to)| < K|7|®
for |7| < = Prove that for o < 1

0w (f,t0) — F(to)| < %Kn_”‘

while fora =1

on(J,t0) = ()| < 2nKE

Hint: Use (3.10) and (3.4) with 9 =

n

THowever, a trigonometric series converging to zero everywhere is identically zero
(see [13], Chapter 5).



22 AN INTRODUCTION TO HARMONIC ANALYSIS

If f € Lip(T), 0 < a < 1, then

const || fllp,n~™ " when0 < a <1,

const || fllrip, 2% fora = 1.

lon(f) = flles < {

3. Let f € L™(T) and assume | f(n)| < K|n|~'. Prove that for all n and ¢,
Sn(F; 01 < [ flleo +2K.
Hint:

Sn(f.0) = on(fi0+ ) %f'(j)e”f .

4. Show that forall nand t, |7 j 'sinjt| < ir+1.
Hint: Consider f(t) =t/21in [0.27).
5. Jackson’s kernel is J,.(t) = [|Kn || K3, (¢). Verify

{J.} is a positive summability kernel.

b. For —m <t <, Jn(t) < 27*n 3t 7%,

c. If f € Lip,(T), then |[Jn * f — flloc < const ||f|lLip,n . Compare this to
the corresponding estimate for [|K,, * f — f||o in exercise 2 above.

4 THE ORDER OF MAGNITUDE OF
FOURIER COEFFICIENTS

The only things we know so far about the size of Fourier coefficients
{f(n)} of a function f € L(T) is that they are bounded by | f| .1,
(1.4(e)) and that lim, f(n) = 0 (the Riemann-Lebesgue lemma).
In this section we discuss the following three questions:

(a) Can the Riemann-Lebesgue lemma be improved to provide a
certain rate of vanishing of f(n) as |n| — c0?

We show that the answer to (a) is negative; f(n) can go to zero
arbitrarily slowly (see 4.1).

(b) In view of the negative answer to (a), is it true that any sequence
{a,} which tends to zero as |n| — oo is the sequence of Fourier coeffi-
cients of some f ¢ L'(T)?

The answer to (b) is again negative (see 4.2).

(c) How are properties like boundedhess, continuity, smoothness,
etc. of a function f reflected by {f(n)}?

Question (¢), in one form or another, is a recurrent topic in har-
monic analysis. In the second half of this section we show how var-
ious smoothness conditions affect the size of the Fourier coefficients.
“Order of magnitude” conditions on the Fourier coefficients are sel-
dom necessary and sufficient for the function to belong to a given
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function space. For example, a necessary condition for f € C(T) is
S| f(n)]? < oo, a sufficient condition is 33| f(n)| < co; in both cases the
exponents are best possible.

The only spaces, defined by conditions of size or smoothness of
the functions, for which we obtain (in the following section) complete
characterization, that is, a necessary and sufficient condition expressed
in terms of order of magnitude, for a sequence {a,,} to be the Fourier
coefficients of a function in the space, are L?(T) and its “derivatives™!.

4.1 Theorem. Lef {a,}> be an even sequence of nonnegative

n=—oc

numbers tending to zero at infinity. Assume that for n > 0
(41) Up—1+ Upt1 — Zan > 0.
Then there exists a nonnegative function f € L'(T) such that f(n) = a,.

PROOF: We remark first that > (a,, — a,+1) = ap and that the convexity
condition (4.1) implies that (a,, — a,+1) is monotonically decreasing
with n, hence

lim n(a, — ans1) =0,

n—oo
and consequently
N
Z n{Gn_1+ tnt1 —2an) =ap — an — N(an — an+1)

n=1

converges to agp as N — oc. Put
(4.2) F#) =) n(an-1 + ang1 — 20,)Kna(8),
n=1

where K,, denotes, as usual, the Fejér kernel. Since ||K,|z: = 1, the
series (4.2) converges in L'(T) and, all its terms being nonnegative, its
limit f is nonnegative. Now

f(j) = Z n(an—l + Gny1 — 2an)kn—1<j) =
n=1
_ 5 _ By _
= Z (A1 + Ant1 — 2an){ 1 )= ajj,
n=lj|+1
and the proof is complete. <

TSuch as the space of absolutely continuous functions with derivatives in L2(T).
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4.2 Comparing theorem 4.1 to our next theorem shows the basic dif-
ference between sine-series (a_,, = —a,,) and cosine-series (a_,, = a,).

Theorem. Let f € LY(T) and assume that f(|n|) = —f(—|n|) > 0.
Then 1
Z —f(n) < cc.
n
n>0

PROOF: Without loss of generality we may assume that f(0) = 0. Write
F(t)= j(: f(r)dr; then F € C(T) and, by theorem 1.6,

F(n) = %f(n), n#0.

Since F is continuous, we can apply Fejér’s theorem for ¢y, = 0 and
obtain

. al _n M_, oz .z
(4.3) ﬂnm22(1 N+1) = = i(F(0) = F(0)) = =i (0),

and since @ > 0, the theorem follows. <

Corollary. Ifa, >0, > a,/n = oo, then Y a,sinnt is not a Fourier
series. Hence there exist trigonometric series with coefficients tending
to zero which are not Fourier series.

By Theorem 4.1, the series

is a Fourier series while, by theorem 4.2, its conjugate series

~sinnt sgn (n) gint

logn 2log|n|

n=2 [n|>2
is not.

4.3 We turn now to some simple results about the order of magni-
tude of Fourier coefficients of functions satisfying various smoothness
conditions.

Theorem. If f € L'(T) is absolutely continuous, then f(n) = o(1/n).
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PROOF: By theorem 1.6 we have f(n) = (1/in) f'(n) and (the Riemann-
Lebesgue lemma) f/(n) — 0. <

Remark: By repeated application of Theorem 1.6 (i.e., by repeated
integration by parts) we see that if f is k-times differentiable and f(*—1)
is absolutely continuous then

4.4 f(n) = o(n™F) as |n| — oc.

4.4 We can obtain a somewhat more precise estimate than the asymp-
totic (4.4). All that we have to do is notice that if 0 < j < k, then

f(n) = (in)~7 fG)(n) and hence

(4.5) @) <l 71 1

We thus obtain

Theorem. If f is k-times differentiable, and f*=Y) is absolutely con-

tinuous, then

; 9
< .
|f(n)] < o8,

If f'is infinitely differentiable, then
17

f(n)] < mi :
/()] < min i

4.5 Theorem. [f [ is of bounded variation on T, then
var(f)

2m|n| -

[f(n)] <

PROOF: We integrate by parts using Stieltjes integrals

1
2min

[emao| s =D

27|n|

£ _ 1 —int _
fl =157 [ e s = |
4.6 For f € C(T) we denote by w(f, h) the modulus of continuity of

, that 1s, .
! W(.h) = supy <11+ 9) — FDlle.
For f € L'(T) we denote by Q(f, h) the integral modulus of continuity
of f, that is,

(4.6) QUf,h) = If(E+h) — F@) I
We clearly have Q(f, h) < w(f,h).

tSo that f(*) € LI(T) and f*—1 is its primitive,
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Theorem. Forn #0, |f(n)| < (S, ﬁ)

PROOF: f(n) =& [ f(t)e~tdt = 3~ [ f(t)e=(+7/M)dt; by a change
of variable,

. 1 .
fo = o= [ (#6+ D) - s0) e,
hence
A 1 T
Fol < 39205, ) )

Corollary. If f ¢ Lip (T), then f(n) = O (n™%).

4.7 Theorem. Let1 < p < 2 and let q be the conjugate exponent, i.e.,
q= 5. If f € LP(T) then 37| f(n)|? < oo.

The case p = 2 will be proved in the following section. The case
1 < p < 2 will be proved in chapter I'V.

Remark: Theorem 4.7 cannot be extended to p > 2. Thus, if f € LP(T)
with p > 2, then f € L*(T) and consequently 3|f(n)|*> < co. This
is all that we can assert even for continuous functions. There exist
continuous functions f such that 37| f(n)[>~¢ = oo for all ¢ > 0, see
IV.2. In fact, given any {c,} € ¢2, there exists a continuous function f
such that | f(n)| > |c,|, see Appendix B.2.1.

EXERCISES FOR SECTION 4

L. Given a sequence {wy, } of positive numbers such that w, — 0 as |n| — oo,
show that there exists a sequence {a,} satisfying the conditions of theorem 4.1
and

an > Wy for all n.

2. Show that if Zlf(n)llnll < 00, then f is I-times continuously differen-
tiable. Hence, if f(n) = O (|n| ) where k > 2, and if

- {k—? k integer

[k] =1 otherwise

then f is [-times continuously differentiable.
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Remarks: Properly speaking the elements of L*(T) are equivalence classes of
functions any two of which differ only on a set of measure zero. Saying that
a function f € L'(T) is continuous or differentiable etc. is a convenient and
innocuous abuse of language with obvious meaning.

Exercise 2 is all that we can state as a converse to theorem 4.4 if we look
for continuous derivatives. It can be improved if we allow square summable
derivatives (see exercise 5.5).

3. A function f is analytic on T if in a neighborhood of every to € T, f(t)
can be represented by a power series (of the form ZZC:O an(t —t9)™ ). Show
that f is analytic if, and only if, f is infinitely differentiable on T and there
exists a number R such that

sup, | (1) <n!'R*, n>0.

4. Show that f is analytic on T if, and only if, there exist constants K > 0
and a > 0 such that |f(j)| < Ke~*Y!. Hence show that f is analytic on T if,
and only if, 3 f(j)e'* converges for [3(z)| < a for some a > 0.

5. Let f be analytic on T and let g(e™) = f(¢). What is the relation between
the Laurent expansion of g about 0 (which converges in an annulus containing
the circle |z| = 1) and the Fourier series of f?

6. Let f be infinitely differentiable on T and assume that for some o > 0,
and all n > 0, sup,|f(™ ()] < Kn®". Show that

()] < Kexp(=S1i°).

7. Assume |£(j)| < K exp(—|j|'/*) . Show that f is infinitely differentiable
and
7)) < Kien®"

for some constants ¢ and K.
Hint: | f™(t)] < 2K 3_|j|™ exp(—[j|*/*). Compare this last sum to the integral
1/ _ L1/
fo x" exp(—z'/*)da and change the variable ofmtegra:ltlon putting y = /<.
8. Prove that if 0 < o < 1, then f(t) = > % <22 belongs to Lip, (T);
hence corollary 4.6 cannot be improved.

9. Show that the series )~ , “l:::jf converges for all ¢t € T.

5 FOURIER SERIES OF SQUARE SUMMABLE FUNCTIONS

In some respects the greatest success in representing functions by
means of their Fourier series happens for square summable functions.
The reason is that L2(T) is a Hilbert space, its inner product being de-
fined by

5.) () = 57 [ F030)a,
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and in this Hilbert space the exponentials form a complete orthogonal
system. We start this section with a brief review of the basic prop-
erties of orthonormal and complete systems in abstract Hilbert space
and conclude with the corresponding statements about Fourier series in
L(T).

5.1 Let H be a complex Hilbert space. Let f,g € H. We say that f
is orthogonal to g if (f, g) = 0. This relation is clearly symmetric. If F
is a subset of H we say that f € H is orthogonal to E if f is orthogonal
to every element of E. A set E C 'H is orthogonal if any two vectors in
E are orthogonal to each other. A set £ C H is an orthonormal system

if it is orthogonal and the norm of each vector in E is one, that is, if,
whenever f,g € E, (f,g) =0if f # g and (f, f) = 1.

Lemma. Lef {p,})_, be a finite orthonormal system. Let ay, ..., ax

be complex numbers. Then

N N ‘
HZ an(tonH - zlanlz-
1 1

PROOF:

N N N N N
||Z Uy Pn || = <Z AnPrs Z a«n@n,) = Z an(@‘n,: Z am‘Pm>
1 1 1 1 1
= Z(Ln(_}'n = Z|an‘2 |

Corollary. Let {©,}7° be an orthonormal system in 'H and let {a,}7°
be a sequence of complex numbers such that Y |a,|> < oo. Then
S antpy converges in 'H.

PROOF: Since H is complete, all that we have to show is that the partial
sums Sy = Ziv anpn form a Cauchy sequence in H. Now, for N > M,

N N
HSN - SJ\IH2 = “ Z Gf’n(PnHZ = Z |a'n|2 —0 as M — oo.
M+1 M+1 <

5.2 Lemma. Let H be a Hilbert space. Let {¢,,} be a finite orthonor-
mal system in H. For [ € H write a,, = {f,¢n). Then

N N
(5.2) 0<[If =X anenl” = 1712 =Y lanf*.
1 1
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PROOF:

N ) N N
||f - Z (Ln,/\Dn H = <f - Z an(lo'nn f - Z Oln,(pn> =
1 1 1

) N N N N
= ”sz - Zan<fa Pn) — Z‘Z?L((me) + Zl“n|2 = HfHZ - ZMH‘Z :
1 1 1 1

<

Corollary (Bessel’s inequality). Let H be a Hilbert space and {p.,}
an orthonormal system in H. For f € H write a, = (f, po) Then

(5.3) > lal < |IFI.

The family {¢, } in the statement of Bessel’s inequality need not be
finite nor even countable. The inequality (5.3) is equivalent to saying
that for every finite subset of {,,} we have (5.2). In particular a, = 0
except for countably many values of « and the series > _|a,|? converges.

If H = L*(T) all orthonormal systems in H are finite or countable
(cf. exercise 2 at the end of this section) and we write them as sequences

{99n}~

5.3 DEFINITION: A complete orthonormal system in H is an or-
thonormal system having the additional property that the only vector in
‘H orthogonal to it is the zero vector.

Lemma. Let {©,} be an orthonormal system in H. Then the following
statements are equivalent:

(a) {¢n} is complete.
(b) For every f € H we have

(5.4 IFIP =D I m) -
(C) f= E<f~ ¢n>§0n~

PROOF: The equivalence of (b) and (c) follows immediately from (5.2).
If f is orthogonal to {,} and if (5.4) is valid, then ||f||> = 0, hence
f = 0. Thus (b) = (a). We complete the proof by showing (a) = (c).
From Bessel’s inequality and corollary 5.1 it follows that > (f, ©,.)¢n
converges in H. If we denote g = > (f, ¢n)n we have (g, ) = (f, ¢n)
or, equivalently, g — f is orthogonal to {¢,}. Thus if {¢,} is complete

=g <
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5.4 Lemma (Parseval). Let {p,} be a complete orthonormal system
inH. Let f,g € H. Then

(5.5) (f,9) =D (s pu)(on ) -

PROOF: If f is a finite linear combination of {¢, }, (5.5) is obvious. In
the general case

N

N
(f,9)= lim (3 (f,pden,g) = Jim D (f on)(pn,9)-
n=1

n=1 R |

5.5 For H = L?*(T) the exponentials {e*}°>2 __ form a complete
orthonormal system. The orthonormality is evident:

(emt3 eimt) _ 2L /ei(nfm)tdt = 0p.m -
= ;

The completeness is somewhat less evident; it follows from Theorem
2.7 since

ey = oo [ e = fw.

The general results about complete orthonormal systems in Hilbert space
now yield

Theorem. Let f ¢ L*(T). Then

@ I = 5 [lroPa
N

(b) = Jim Z f(n)e™t in the L*(T) norm.
-N

(c) For any square summable sequence {a,, } nez of complex numbers,
that is such that ) |an|* < oo, there exists a unique f € L*(T) such that
an = f(n).

(d) Let f,g c L*(T). Then

o [ fO5d = > FwF.

n=-—0oc
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We denote by ¢? the space of all square summable sequences {a,, }>,_,
(that is, such that >’|a,|?> < oo). With pointwise addition and scalar

multiplication, and with the norm (Z|a,n|2)% and the inner product
({an}, {b2}) = 3 anb,, £ is a Hilbert space. Theorem 5.5 amounts

to the statement that the correspondence f — {f(n)} is an isometry
between L(T) and #2.

EXERCISES FOR SECTION 5

1. Let {¢n}2_; be an orthogonal system in a Hilbert space H. Let f € H.

Show that
N
‘f - Z ajp;
1

is attained at the point a; = (f, ¢;), 7 =1,..., N, and only there.

2. A Hilbert space H is separable if it contains a dense countable subset.
Show that an orthonormal system in a separable Hilbert space is either finite or
countable.

Hint: The distance between two orthogonal vectors of norm 1 is v/2.

3. Prove that an orthonormal system {, } in H is complete if, and only if,
the set of finite linear combinations of {(,, } is dense in H.

4. Let f be absolutely continuous on T and assume f’ € L?(T); prove that

S < lIfllr +

2> 02 || fll
1

Hint: |f(0)] < ||fllz1, and S|nf(n)|*> = [|f']|22; apply the Cauchy-Schwarz
inequality to the last identity,

5. Assume f € L*(T) and f(n) = O(|n|~*). Show that f is m-times
differentiable with (™ € L*(T) provided k —m > 1.

6 ABSOLUTELY CONVERGENT FOURIER SERIES

We shall study absolutely convergent Fourier series in some detail
later on: here we mention only some elementary facts.

6.1 We denote by A(T) the space of (continuous) functions on T hav-
ing an absolutely convergent Fourier series, that is, the functions f for
which S>%_|f(n)| < co. The mapping f — {f(n)}nez of A(T) into ¢!
(the Banach space of absolutely convergent sequences) is clearly lin-

oo

ear and one-to-one. If > |a,| < oo the series > a,c™ converges
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uniformly on T and, denoting its sum by g, we have a,, = g(n). It fol-
lows that the mapping above is an isomorphism of A(T) onto ¢1. We
introduce a norm to A(T) by

(6.1) I £lla =D _If(n)].

With this norm A(T) is a Banach space isometric to £!; we now claim
it is an algebra.

Lemma. Assume that f,g € A(T). Then fg € A(T) and

lfgllacry < 1fllaemllgll acr) -

PROOF: We have f(t) = 3. f(n)e™, g¢(t) = 3 g(n)e™ and since
both series converge absolutely:

FO9) =33 f(k)g(m)e ot

Collecting the terms for which k + m = n we obtain

F0g(t) = 323 F(k)gtn — ke
n k

so that ;‘?}(n) =", f(k)g(n — k); hence

YoIFgml < DD atn = k) = DRI lam)].

6.2 Not every continuous function on T has an absolutely convergent
Fourier series, and those that have cannot' be characterized by smooth-
ness conditions (see exercise 5 of this section). Some smoothness con-
ditions are sufficient, however, to imply the absolute convergence of
the Fourier series.

Theorem. Let f be absolutely continuous on T and f' € L*(T). Then
/€ A(T) and

(62) [ Fllacey < Wl + (230 n72) e
1

PROOF: This is exercise 4 of the previous section and the hint given
there is essentially the whole proof. <

TSee, however, exercise 7.8.
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*x6.3  We refer to exercise 2.2 for the definitions of Lip_(T) and of its
norm.

Theorem (Bernstein). If f € Lip, (T) for some o > %, then f € A(T)
and

(6.3) [fllaey < callfllzip,

where the constant c,, depends only on «.

PROOF:

fE=h) = f(t) ~ Z(C_inh — 1) f(n)e™.

if take h = 27/(3-2™) and 2™ < n < 2! we have [e7"™" — 1| > /3
and consequently
S F@P <> e ™ =PI )P = I — fl7: <

(64) 2m p<2mtl
27
3.2m

20 .
<Nfn= I < (50m) IF1Rpa-

Noticing that the sum on the left of (6.4) consists of at most 2 %! terms,
we obtain by the Cauchy-Schwarz inequality

A o 2T \©
(m+1)/2 .
(6-5) >o 1fm) <202 (=) flipa
2m <p2m+l
Since o > %, we can sum the inequalities (6.5) for m = 0,1,..., and
remembering that | f(0)| < | fllLip, we obtain (6.3). <

Bernstein’s theorem is sharp; there exist functions in Lip, (T) whose
Fourier series does not converge absolutely. A classical example is the

ein logn

Hardy-Littlewood series > >, | “——e™" (see [28], Vol. 1, p. 197).

n

Another example is given in exercise 6.6.

*6.4  The Lipschitz condition in Theorem 6.3 can be relaxed if f is of
bounded variation.

Theorem (Zygmund). Let f be of bounded variation on T and as-
sume [ € Lip (T) for some o > 0. Then f € A(T).

We refer to [28], Vol. 1, p. 241, for the proof.
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*6.5  Remark: There is a change of scene in this section compared
with the rest of the chapter. We no longer talk about functions summable
on T and their Fourier series—we discuss functions summable on Z (i.e.,
absolutely convergent sequences) and their "Fourier transforms" which
happen to be continuous functions on T. Lemma 6.1, for instance, is
completely analogous to theorem 1.7 with the roles of T and Z reversed.

EXERCISES FOR SECTION 6

1. Forn = 1,2,... let f» € A(T) and || fallaqry < 1. Assume that f,
converge to f uniformly on T. Show that f € A(T) and || f|]| < 1.

2. Show that the conditions in exercise 1 do not imply lim|| f — fu || a¢ry = O;
however, if we add the assumption that || f[| a¢ry = limn—co| fr|| a(r) then we do
have ||f — fullagy — 0.

3. For 0 < a < = define

Au(t) — 1—a |t forlt|<a
o 0 fora<|t|<m

Show that A, € A(T) and [|Aq|lacry = 1.
Hint: g (n) > 0 for all n.

4. Let f € C(T) be even on (—, 7), decreasing on [0, 7] and convex there
(i.e., f(t+2h)+ f(t) > 2f(t+ h) for 0 < ¢ < t+2h < 7). Show that f € A(T)
and, if f >0, [[flac) = f(0).

Hint: f can be approximated uniformly by positive combinations of A,. Com-
pare with theorem 4.1.

5. Let ¢ be a "modulus of continuity,” that is, an increasing concave func-
tion on [0, 1] with ©(0) = 0. Show that if the sequence of integers {\,} in-
creases fast enough and if f(t) = > n~?e’*"?, then w(f,h) # O (p(h)) as
h — 0. w(f, h) is the modulus of continuity of f (defined in 4.6).

6. (Rudin, Shapiro.) We define the trigonometric polynomials P,, and Q..
inductively as follows: Py = Qo = 1 and

Prs1(t) = Pu(t) + € '1Qum (1)
Qm1(t) = Pr(t) — € 1Qum (1),
(a) Show that
| P10 + Qa1 (D = 2(|Pn(D) +1Qm (1))
hence P () + 1Qm()? = 27

and 1 Pllcen < o(m+1)/2
(b) For |n| < 2™, Pyi1(n) = Pn(n), hence there exists a sequence {e, }5° g
such that &, is either 1 or -1 and such that P, (t) = Y0 ' enei™.

n
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(©) Write fo = Pp — Pt — €27 *Qu_1 and f = 3.°27™ f,,. Show
that f € Lip%(T) and f ¢ A(T).
Hint: For2 % < hb < 2% write, -

Ja+m) = 1@ = (3 +30)2 Unlt+ 1) = fu(®).
1 k+1
By part (a) the sum ), | is bounded by 237 | 2-m2m/2 < 5h% . Using part
(a), exercise 2.12, and the fact that f,, is a trigonometric polyomial of degree
m . - . k

2™ — 1, one obtains a similar estimate for Zl .

7. Let f, g € L*(T). Show that f + g € A(T).

7 FOURIER COEFFICIENTS OF LINEAR FUNCTIONALS

We consider a homogeneous Banach space B on T and assume, for
simplicity, that ¢ € B for all n. As usual, we denote by B* the dual
space of B.

7.1 The Fourier coefficients of a functional » € B* are, by definition:

(7.1) fln) = (e, ), €L

and we call the trigonometric series
Sl ~ Y iment

the Fourier series’ of . Clearly
()] < llpllz-lle™ s -

The notation (7.1) is consistent with our definition of Fourier coeffi-
cients in case that y is identified naturally with a summable function.
For instance, if B = L”(T), 1 < p < oo, B* is canonically identified
with L9(T) where ¢ = p/(p — 1). To the function g € L(T) corresponds
the linear functional

frothe) =y [roga  ferrm

and <7th >_ 1 / im‘,mdt_ 1 / —int (f)d?‘
et g) =5 [ ey _277'9' g(t)dt

thus g(n) defined in (7.1) for the functional g coincides with the nth
Fourier coefficient of the function g.

TWe keep, however, the convention of 1.3 that a Fourier series, without complements,
is a Fourier series of a summable function.
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Theorem (Parseval’s formula). Let f € B, i € B*; then

n|

N
(7.2) (Fo = Jlim (1= P ).
-N

PROOF: (a) For polynomials P(t) = ZJ,VN P(n)e™ we clearly have
(Pu) = SNy Pn)iln).

(b) Since, by theorem 2.11, f = limy_o on(f) in the B norm, it
follows from (a) and the continuity of u that

N

(fom) = lim(on () p) = lim >~ (1=

n|
N+1

) f)an).

Remark: The fact that the limit in (7.2) exists is an implicit part of
the theorem. Tt is equivalent to the C-1 summability* of the series
> f(n)iu(n). If this last series converges then clearly

(7.3) (fom) =" f(n)i(n)

We shall sometimes refer to (7.3) as Parseval’s formula, keeping in
mind that if the series on the right does not converge then (7.3) is simply
an abbreviation for (7.2).

Corollary (Uniqueness theorem). If i(n) = 0 for all n, then u = 0.

7.2 We shall write u ~ Y fi(n)e'™, and may write p = ) fi(n)e™
if the series converges in some sense (which should be clear from the
context). This is an abuse of language which, if used with caution,
presents no risk of misunderstanding and obviates tedious repetitions.

In accordance with our abuse of language we define, for € B*, the
elements S, (u) and o, (u) of B* by

Sn(p) = Z ﬂ(j)eijt

(7.4)

n

on(1t) :;(1 - %)[A(j)eijt

fCesaro of order 1
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We shall also write

Sn(/L, t) = Z ,Et(j)eijt
(7.5) - |
o) =301~ LY

n—+1

The correspondence between the functionals (7.4) and the functions
(7.5) is clearly

(FSul) = 5 [ FO5 Tt = 3 FORG)

for all f € B; similarly for o, ().

The mapping S,, : f — S,(f) on B is clearly a bounded linear
operator, and so is S,, : u — S,(¢) on B*. It follows from Parseval’s
formula that S,, on B* is the adjoint of S,, on B and consequently has
the same norm. Similarly, o, : u — o,(x) on B* is the adjoint of
o, : f— o,(f) on B and consequently? ||o,||?" = 1.

We remark that by Parseval’s formula, for every p € B*, o,(u)
converges weak-star to .

7.3 Parseval’s formula enables us to characterize sequences of Fourier
coefficients of linear functionals.

Theorem. Let B be a homogeneous Banach space on T. Assume that
e™ € B for all n. Let {a,}°% __ be a sequence of complex numbers.
Then the following two conditions are equivalent:

(a) There exists u € B*, ||u|| < C, such that ji(n) = a,, for all n.

(b) For all trigonometric polynomials P
> Pnyaz| < C|IP| 5.

PROOF: The implication (a) = (b) follows immediately from Parse-
val’s formula. If we assume (b) then

(7.6) P Z P(n)a,

is a linear functional on the space of all trigonometric polynomials,
bounded in the B norm, and therefore (theorem 2.12) admits a unique
extension g of norm < C' to B. Since p extends (7.6) we have

n) = &, 1) = an. <

.
§)lon||B” denotes the norm of o, as operator on B*.
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Corollary. A4 trigonometric series S ~ > ane™ is the Fourier series
of some p € B*, ||u|| < C, if, and only if, |lon(S)|| < C for all N.
Here on(S) denotes the element in B* the Fourier series of which is
SN L1/ + D)ages.

PROOF: The necessity follows from 7.2; the sufficiency from the cur-
rent theorem and the observation that for trigonometric polynomials P

> Pnya; = lim (Pon(S)).

<

7.4 In the case B = C(T) the dual space B* is identified with the
space M(T) of all (Borel) measures on T (we set (f,u) = [ fdu) We
shall refer to Fourier coefficients of measures as Fourier-Stieltjes co-
efficients and to Fourier series of measures as Fourier-Stieltjes series.
The mapping f +— (1/27)f(t)dt is an isometric embedding of L!(T)
in M(T). The Fourier coefficients of (1/2x)f(t)dt are precisely f(n),
hence a Fourier series is a Fourier-Stieltjes series.

An example of a measure that is not obtained as (1/27) f(¢)dt is the
so-called Dirac measure; it is the measure § of mass one concentrated
att = 0. J can also be defined by (f,0) = f(0) for all f € C(T). We
denote by ¢, 7 € T, the unit mass concentrated at 7. Thus § = §; and
(f,0,) = f(r) for all 7 € T. From (7.1) it follows that ¢, (n) = ¢~"7
and in particular d(n) = 1. This shows that Fourier-Stieltjes coefficients
need not tend to zero at infinity (however, by 7.1, |i(n)| < ||p]|pr¢r))-

7.5 We recall that a measure y is positive if u(E) > 0 for every mea-
surable set E, or equivalently, if [ fdu > 0 whenever f € C(T) is non-
negative. If ;1 is absolutely continuous, that is, if ;1 = (1/27)g(t)dt with
g € LY(T), then p is positive if and only if g(¢) > 0 almost everywhere.

Lemma. 4 series S ~ Y. a,e™ is the Fourier-Stieltjes series of a
positive measure if, and only if, for all n andt € T,

n

on(S,t) =Y (1 =1j]/(n+1))aje" > 0.
—n
PROOF: If S = S(u) for a positive u € M(T) and if f € C(T) is non-
negative, we have

k3

= / FOaaS =3 (1= H) FG)AG) = ou(f)dn = 0

n—+1
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since ¢ > 0 and, by 3.1, o,(f,t) > 0. Since this is true for arbitrary
nonnegative f, ¢,,(S,t) > 0 on T. Assuming ¢,,(S,t) > 0 we obtain

1
lon (S arery = o /an(.S’, tydt = ag

and, by Corollary 7.3, § = S(u) for some pp € M(T). For arbitrary
nonnegative f € C(T), [ fdp = lim,—.o(l/27 [ f(t)0,(S,t)dt > 0 and
it follows that y is a positive measure. <

Remark: The condition “o,,(S,t) > 0 for all n” can clearly be replaced

3,92

by “0,(S,t) > 0 for infinitely many n’s”.
7.6  We are now able to characterize Fourier-Stieltjes coefficients of
positive measures as positive definite sequences.

DEFINITION: A numerical sequence {a,, },ez is positive definite if for
any sequence {z, } having only a finite number of terms different from
zero we have

(7.7) > tnminZm > 0.

n,m

Theorem (Herglotz). A numerical sequence {ay }nez is positive def-
inite if, and only if, there exists a positive measure . € M(T) such that
ap, = fi(n) for all n.

PROOF: Assume a,, = i(n) with positive . Then

= _ —int _imi = _ —int
(7.8) § On—m%nZm = § / e e 2t 2y, = / ’E Zne
“ * n

n,m n.m

2
dp > 0.

If, on the other hand, we assume that {a,, } is positive definite, we write
S ~ > anc™ and, for arbitrary N and ¢ € T we choose

et |n|< N
Zn =
0 [n| > N

We have 3, . @n—m2nZm = > ; Cj najet where C; n is the number
of ways to write j in the form n — m where |n| < N and |m| < N, that
is, C; v = max(0,2N + 1 — |j]). It follows that
1 -
O'QN(S., t) = m ZCj‘j\lejemt Z 0
J

and the theorem follows from 7.5. <
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7.7 1f{a,} is positive definite, then
(79) |an| S ap,

and the sequence {(a,, — a"*lzﬂ)} is positive definite. This can be
seen directly by checking condition (7.7), or deduced from Herglotz’
theorem and the observations that if 4 is the positive measure such that
an = fi{n), then ay = 4(0) = ||ul|, v = (1 — cost)u is nonnegative, and
v(n) =a, — %
Also, since a,, = a_,,, we have ag — Ra; = ag — “’lzﬁ = (0).
Combining all this, we obtain

Lemma. [f{a,} is positive definite, then

(7.10) [(an — 2270 < g — R,

Positive definite functions can be defined over any abelian group by
the same inequality (7.7). In Chapter VI we shall see that the preceding
lemma implies in particular that positive definite functions on R that
are continuous at 0 are in fact uniformly continuous.

7.8 The Spectral Theorem. Positive definite sequences arise nat-
urally in the context of unitary operators on a Hilbert space. Let H
be a Hilbert space, U a unitary operator on H, and f € H; write
a, = (U™™f, /). The sequence {a,} is positive definite since for any
finite sequence {z,} we have

Z Qp—mZn’m = Z(ZnU_”f? ZmU_mf>

n,m n.m

Z ZnU—nf

The positive measure = uy € M(T) for which ji(n) = a,, is called the
spectral measure of f. Comparing (7.8) and (7.11), one realizes that
the correspondence

(7.11)

2
‘ > 0.
H

(712) H > U'nf - eiué c Lg(lbf)

extends to an isometry of the closed span H; of {U"f} in H onto
L2(js), which conjugates U to the operator of multiplication by e on
L*(jus). This is in essence’ the spectral theorem for unitary operators
on a Hilbert space.

TWhat we omit here is the analysis of the multiplicity of U on M.
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Corollary (The Ergodic Theorem). Let H be a Hilbert space and
U a unitary operator on H. Denote by Hin,, the subspace of U-invariant
vectors in H, and by Py, the orthogonal projection of H on H;y,.,. Then

N-1

.1 ;
th ; U’ :Enva

the limit in the strong operator topology.

PROOF: The claim is that for every f € H, lim & (])V*l Ulf = P, fin
norm. By the spectral theorem, we may assume that U is multiplication

by €' on L*(uy), and so + Zé\’_l U7 is just multiplication by

1 N-1 ciNtfl
DR [
onlt) = - T NE 1)

The elements of L?(y ;) which are invariant under multiplication by
e’ are just the multiples of 1 (the indicator function of {0}), and
P;,,, in this context is multiplication by Tpy. As [[¢n| = 1 and @y
converge pointwise to 1oy, we have lim ¢yt = 9(0)1 (¢} in norm for
any v € L?(uy), and in particular for the constant 1, the image of f
under the “spectral” isometry. <

7.9 An important property of Fourier-Stieltjes coeffcients is that of
being "universal multipliers." More precisely:

Theorem. Let B be a homogeneous Banach space on'T and u € M(T).
There exists a unique linear operator p on B having the following prop-
erties:

(Q) HE\H < ||l sy

(i) pf(n) = i(n)f(n) forall f € B.

PROOF: If an operator p satisfies (ii), then for f = Y27 . f(n)e™ we
have puf = Z]_VN a(n) f(n)e™, that is, p is completely determined on
the polynomials in B. If p is bounded it is completely determined. In
order to show the existence of p it is suffcient to show that if we define

(7.13) pf = i(n)f(m)e™

for all polynomials f then

(7.14) e f I < Ml nremy 1 1]
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since p would then have a unique extension of norm < ||| 5;(m to all
of B. If u = (1/27)g(t)dt with g € C(T), it is clear that puf, as defined
in (7.13), is simply g x f which we can write as a B-valued integral (see
2.4)

. . 1 .
(7.15) uf=gef=5 [ontdr
T
and deduce the estimate

1
lpefllz < ”f”B‘E/Lg(T)ldT: el aeemy 111 -

For arbitrary p € M(T), o,(u) has the form (1/27)g,(t)dt, where
gn(t) = ", (1= |jl/(n+1))7)e"" and

1
3 [19n(0ldt = o) ey < Nilaee

By our previous remark ||g, * f|| g < ||1l| pr¢m || f]| 5. Since f is a trigono-
metric polynomial, we clearly have puf = lim,, ., g, * f and (7.14)
follows. <

Corollary. Let f € Bandp € M(T). Then {ji(n)f(n)} is the sequence
of Fourier coefficients of some function in B.

In view of (7.15) we shall write i x f instead of u f, and refer to it as
the convolution of i and f. With this notation, our earlier condition (ii)
becomes a (formal) extension of (1.10).

7.10  For yu € M(T) we define u# € M(T) by
(7.16) p*(E) = u(~E)

for every Borel set E (recall that —F = {t: — t € E}), or equivalently,
by

(7.17) / F(yd# = / J(-)n

for all f € C(T). It follows from (7.17) that

(7.18) p#(n) = in) .
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7.11 By Parseval’s formula, the adjoint of p is the operator which
assigns to every v € B* the element of B* whose Fourier series is given
by 3 (n)i(n)e = 3 ﬁ(n)z&(n)emt. We extend the notation of 7.7,
write this element of B* as u# = v, and refer to it as the convolution of

p* and v. We summarize:

Theorem. Let B be a homogeneous Banach space on T and B* its
dual. Let p € M(T), v € B*, then Y ji(n)0(n)e™" is the Fourier series
of an element (1 x v € B*. Moreover || v| g~ < ||pllprm|lv] 5~ -

The norm estimate follows from (7.14) and the facts that the norm
of the adjoint of an operator is equal to the norm of the operator, and
HM#HM(T) = ||l arcry - .

It follows, in particular, that if i, v € M(T), then Y i(n)(n)e*™ is
the Fourier-Stieltjes series of the measure 1 * v.

7.12  We have introduced the convolution of u, v € M(T) by its
Fourier-Stieltjes series. It can, of course, be done directly. With p
and v given, and for f € C(T), the double integral

1) = [[ fe+ nautav)
is well defined, is clearly linear in f, and satisfies

O] < Nl arery 1] ar ey -

By the Riesz representation theorem, which identifies M (T) as the dual
of C(T), there exists a measure A € M(T) such that I(f) = [ f(t)dA.
Taking f(t) = e~ we obtain A(n) = fi(n)(n), that is, A = p*v. In
other words

(7.19) / fd(p=v)= // flt+1)dp(t)ydv(T) .
Taking a (bounded) sequence of functions f which converge to the in-

dicator function of an arbitrary closed set F, we see that (7.19) is equiv-
alent to (denoting £ — 7= {t:t+ 7 € E})

(7.20) (nxv)(E)= /;L(E — T)dv(T).

By regularity, (7.20) holds for every Borel set E.
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7.13  We recall that a measure ¢ € M(T) is discrete if o = 3 a;0;,
where o’ are complex numbers; we then have ||u| sy = Ylaj|. A
measure 4 is continuous if u(t) = 0 for every ¢t € T ({¢} is the set
whose only member is the point ¢). Equivalently n is continuous if
lim, o ]:jﬂdm =0 forallt € T. Every u € M(T) can be uniquely
decomposed to a sum g = p. + pg where . is continuous and g is
discrete.

It is clear from (7.20) that if 4 is a continuous measure then, for
every v € M(T), uxv is continuous. Also, since §(7) xd(7') = d(r+71'),
if p = > a0, and v = 3 bd,y then pxv = 3. a;bpdy . If
i = pe + pq is the decomposition of p into continuous and discrete
parts, then u# the continuous part of x# and p7 is its discrete part.
Thus

g ¥ = (e i + e x 1 + pa o+ ) + pa el
the sum of the first three terms is continuous and the last term is dis-
crete. If iy = " a;6,, then ud# = > a;0_., and consequently the mass
at 7 = 0 of the measure p = ¥ is 3"|a;|>. We have proved:

Lemma. Let p € M(T). Then Y |u({7})* = (1 * u#)({0}). In
particular:  is continuous if, and only if,

(o p™)({0}) = 0.

The discrete part of a measure y can be “recovered” from its Fourier-
Stieltjes series.

Theorem. Let pc M(T), 7 € T. Then

inT

N
mvn=@gﬁﬁj§%mk

PROOF: The functions on(t) = 557 DN(t—7) = 557 ZZ_VN e~inTeint
are bounded by 1 and tend to zero uniformly outside any neighborhood
of t = 7. Remembering that

T4
lim - ld(p — p({T})é-)[ =0
we obtain
(7.21) Jim (pn, = p({Th)6,) =0
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Now

N
Town = i0D0) = gy S ™ = ul{r)

and the theorem follows from (7.21). <

Corollary (Wiener). Let € M(T). Then

N
(7.22) STI(E = Jim o >t

In particular: u is continuous if, and only if,

N
1
. li i(n)|> = 0.
(7.23) MmN _ENlu(n)l 0

Remarks: a. The averaging that appears in the Theorem and in the
corollary need not be on intervals symmetric with respect to 0. If {Af;}
is an arbitrary sequence of integers, and N; — oo, then forall 7 € T

M;+N;
(7.24) pir)) = Jim > in)e™.

J

The proof as above, with y replaced by ®; = ﬁ Z%jﬂvf eint

b. The exponent 2 in (7.22) is essential, in (7.23) it can be re-
placed by any positive number. What the condition really says is that
((n) tends to zero in density, that is: given £ > 0, the proportion in all
sufficiently large intervals, of the integers n such that |i(n)| > ¢, is ar-
bitrarily small. In particular, for every £ > 0 and positive N there exist
in any sufficiently large interval on Z, intervals of length N, on which
Al <e.

EXERCISES FOR SECTION 7

1. Let B be homogeneous on T and B* its dual. Show that S ~ > ane'™
is the Fourier series of some p € B™* if and only if ||on(S)|| is bounded as
N — oo.

2. Denote K,, (t) = Kn(t — 7). Show that for every u € M(T)

O'n(#, T) = <Kn:‘r,ﬂ) .
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Deduce that o, (i1, 7) > 0 if p is positive.

3. Show that a trigonometric series » ane'™ such that Ei’N ane™ >0
for all N and ¢ € T is a Fourier-Stieltjes series of a positive measure.

4. We shall prove later (see IV.2.1) that if f € LP(T) with 1 < p < 2, then

e = (@) < il (0= 525).

Assuming this, show that if {a.} € ¢* is a numerical sequence then there exists

a function g € L(T) such that §(n) = an, and ||g[|zacry < [{an}|er .

5. The elements of the dual space of C™(T) are called distributions of
order m on T. We denote by D™ (T) = (C™(T))" the space of distributions of

order m on T. Since C™(T) ¢ C™(T) we have D™(T) D™ (T). Write
D(T) = U D™(T).

(a) Prove that if u € D™ then

|a(n)| < const |n|™ n#0.

(b) Given a numerical sequence {a"} satisfying a, = O (|n|™), there exists a

distribution 2 € D™ such that a,, = fi(n) for all n.
Hint: If f € C™(T) then Z|nmf(n)| < 00.

Thus a trigonometric series _ a,e'™
on T if and only if, for some m, a, = O (|n|™) n #0.

is the Fourier series of a distribution

Let x € D and let O be an open subset of T. We say that 1 vanishes on O
if (¢, u) = 0 for all ¢ € C°°(T) such that the support of ¢ (i.e., the closure

of the set {¢: ¢(¢) # 0}) is contained in O.

(c) Prove that if 1 vanishes on the open sets O1 and Oz, then it vanishes on

01U Os.
Hint: Show that if the support of ¢ € C°°(T) is contained in O1 U Oq

then there exist 1, w2 € C°°(T), with supports contained in O1, Oz re-

spectively, such that ¢ = 1 + 2.

(d) Extend the result of (c) to any finite union of open sets; hence, using the

compactness of the support of the test functions ¢, show that if ;+ vanishes
in the open sets O, o running over some index set /, then 4 vanishess on

U(YEI Ou'

Thus the union of all the open subsets of T on which x vanishes is again

such a set. This is clearly the largest open set on which y vanishes.

DEFINITION:  The support of 1 is the complement in T of the largest open
set O C T on which p vanishes.

(e) Show that if 4 € D™ and if f € C™(T) vanishes on a neighborhood of
the support of p, then (f, u) = 0. The same conclusion holds if for some

homogeneous Banach space B, the distribution ;. belongsto B* and f € B
(see exercise 2.11).
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(f) We define the derivative i of a distribution u € D™ by

(foiy ==(f',p) for f e C™FHT).
Show that ;' € D™ and //(n) = in ju(n).
(g) Show that support(u) C support(z).

(h) Show that the map z — g/ maps D™ onto the subspace of D™ ! consisting
of all u € D™ satisfying /1(0) = 0.
Hence, every . € D™ can be written in the form /i(0)dt + p1 where p is
the mth derivative of a measure.

(i) A distribution p on T is positive if (f, ) > 0 for every nonnegative test
function f € C'°(T). Show that a positive distribution is a measure.

Hint: Positivity implies, for real-valued f, (f,u) < max f(¢){1, u).

6. The dual space of A(T) is commonly denoted by PA(T) and its ele-
ments referred to as pseudo-measures. Show that with the natural identifica-
tions M(T) ¢ PM(T) C D'(T), and PM(T) consists precisely of those  for
which {ji(n)} is bounded. Moreover, the correspondence o — {/i(n)} is an
isometry of PM(T) onto £°°.

7. Leta, B3 € T, let N be an integer, and let 4 be the measure carried by the
arithmetic progression {o + j3};_ _y, which places the mass zero at « and the
mass j~! ata+ jB, 1< |j| < N. Show that ||| parry < 7+ 2.

Hint: See exercise 3.4.

8. Let f € A(T) be real valued and monotonic in a neighborhood of tq € T.
Show that | f(t) — f(to)| = O ((log|t — to| ") ™") as t — to.

9. Let yu, pn € M(T), n = 1,2,.... Prove that i, — p in the weak-star
topology if, and only if, ||zn | ar¢ry = O (1) and i (5) — () for all 5.

10. By definition, a sequence {&, }ary C T is uniformly distributed if for
any arc I C T we have limy—oc N7* 25:1 17(¢) = (2m)7'|I|. Prove the
following statements:

a. {&}n21 C T is uniformly distributed if, and only if, ptn = n~ " >"7 &,
converge in the weak-star topology to (27)'dt, i.e., if for all integers I # 0,
n~!t YT et — 0. (Weyl’s criterion).

b. if ais an irrational multiple of 7, the sequence {na} is uniformly distributed
onT.

11. Show that a measure . € M(T) is absolutely continuous if, and only if,
lim-—o||p- — p|| = 0, where p- is the translate of o by 7 (defined by p-(F) =
WE —T)).

12. Let u € M(T). Prove: o (u,t) converge to zero at every ¢ & support(u),
the convergence uniform on every closed set disjoint from support().

13. Let u € M(T) be singular with respect to dt (that is, there exists a Borel
set Ey of Lebesgue measure zero, such that u(E) = p(E N Ey) for every Borel
set E). Show that o, (u,t) — 0 almost everywhere (dt).
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14. Show that the conclusion of exercise 12 is false if we assume p € D*
instead of 1 € M(T); however, if we replace Fejér’s kernel by Poisson’s, the
conclusion is valid for every 1 € D.

Hint: For 0 < § < m, and positive integers m, lim,_.1 amazg,t) = 0 uniformly
in (4,27 — §).

15. (Bernstein s inequality) Let t;,, = %, and §;,, = dy; ,,. Write

2n—1

1
fin = 5o zﬂ: 3j.ns Un = Kn(t) pin.

(a) Check that ||v,|| = 0»(0) = 1.

(b) Write v = ne'™u,, then ||v:|| = n, and v (5) is periodic of period 4n and

&}L(]) _ J f0r|j| S n,
2n—j forn <j<3n.

(c) Prove Bernstein’s inequality: if P = >"" a;e”", then

(7.25) 1P loc <Pl
Hint: P = v} x P.

(d) Provethatif P = 3" a;e”", then [P/ ||l <71 P||s .
Hint: Find a measure p, of norm n such that /i, (j) = |j| for |j] < n.

(e) Let B be a homogeneous Banach space on T, and P = Ein a;et € B.
Prove that | P'||z < n||P| &, and ||ﬁ'||g <n|P|z.

8 ADDITIONAL COMMENTS AND APPLICATIONS

8.1 Approximation by trigonometric polynomials. The order
of magnitude of the Fourier coefficients of a function f gives some
indication of the smoothenss of the function. We get more precise in-
formation from the rapidity of the approximation of f by trigonometric
polynomials (as a function of their degree), or from the decomposition
of f into a series of polynomials given by (8.8) below.

For ¢ € C(T) denote F,(p) = inf||p — P/, the infimum for all
trigonometric polynomials P of degree < n.

If m is a positive integer and 0 < n < 1, C™*(T) denotes the space
{f ecm™(T): fim ¢ Lip, }, endowed with the norm

[ fllemen = || fllemery + £ Lip, -
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Theorem (Jackson). Let m be a non-negative integer, and0 < n < 1.
If f € C™T(T), then:

8.1) E,(f)=0(n"""").
The converse of the statement is true provided np > 0. See 8.3 below.

The proof will use the information we have in the exercises for Sec-
tion 3, Bernstein’s inequality for derivatives of polynomials (exercise
7.15 above), and the “reverse inequality” which is discussed in the fol-
lowing subsection.

8.2 The “reverse Bernstein inequality”.

Theorem. Let m be a positive infeger. There exist a constant C,,, such
that if f =37 55, a;e”t € C™(T), then

(8.2) 1£lloo < Conlrel ™™ | £ 0.

PROOF: We prove the following statement: given positive integers m.
and n, there exist measures [i,, » such that

(8.3) /‘/w\ln(]) =5 ™ for |j|>n, and ”;um,.n”M(T) <Cpn™ ™

Since f = i iy, * (", this clearly implies (8.2).
Denote by ¢,, .., the positive function in L!(T) whose Fourier coef-
ficients are given by

— jmm for |j| > n
¢m,n(]) = _, . _ - :
n~"+ (n—jHn™™ = (n+1)""™) for|j| <n.

The coefficients in the range |j| < n are chosen so as to fulfill the
conditions of Theorem 4.1: they are symmetric, linear in [0, n+ 1] with
slope matching that of {j =™} on [n,n+ 1], so that @EL( j) is convex on
[0, 00). It follows that

H(ﬁmf””Ll = (bm.n(o) < (m + l)n_"".

For even m set iy, = ¢m ndt and obtain C,, = m + 1.
For m = 1, we use the polynomials

ok, 1 op+1
\Ilnfk, =e' nt K2""(n71) + 561 ntK?"’(ﬁ,fl):
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Clearly ||y, x|l 1 (1) < 3/2, U, x(j) = 0 for negative j, while for j > n
Yoreo \I//,,\k(y ) = 1 (with one or two non-zero summands for each j). It
follows that the function

(I);(t) = Z II’n,k * 4)1:77,2’"
k=0

satisfies: @L(j) =0forj <0, éi(j) =1/j for all j > n, and

(8.4) Hcp*

k3

<3/2 |y poell < 607"

LYT)

We set 1., = (®}:(t) — @5 (—t))dt, and (8.2) holds with C; = 12.
Finally, for m = 2l + 1 we set iy, = a0 * por.n, and Gy, = 12m. <

For polynomials of the form P =3~ _ ; -y, a;¢"/* we have
(8.5) Crl ™ |[Plloo < [P loo < (47)™ | Plloc-

Moreover, the same holds if we replace || || by the norm of any ho-
mogeneous Banach space on T.

8.3 Lemma. Let Py, be trigonometric polynomials of degrees bounded
by 2% and || Py||oc = O (27"+WE). Then f = 3" P, € C™1(T).

PROOF: By Bernstein’s inequality, we have | Py|lcm(r) = O (277%) so

)

the series converges in C"™(T), and f € C™. Focusing on P,Sm we have

86 P =0 (7"), and [Pl =0 (2077)
which imply

Clh|2¥0=m)  for |h| < 27kn

8.7) [P+ n)— Py <
I R S UIEE DA S

the constant C' coming from the O bound. For any h and any ¢ € T,

\f<m>(t+h)—f<m>(t)|gc( PRI ASRCE Y Q‘k”)gcﬂh\",

B <2 || >2kn

and f € C™T(T). <
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If f € C(T), n > 2, the polynomial W,,(f) = (Va, — V,,) % f is of the
form 7, (i<, @;¢7". We set Wi(f) = V2 * f, and have

(8.8) f=HmVo s f = Wa(f).
E>1
Notice that, since ||V, — V,|[z1(m) < 6, we have, for any homoge-
nous Banach space B on T,

(8.9) WalH)lls <61l

Theorem. Let m > 0 be an infeger and 0 < n < 1. A necessary and
sufficient condition for f to be in C""(T) is

(8.10) [Wo( oo =0 (n="77).

For n =0, the condition (8.10) is necessary, but not sufficient.

PROOF: Forany g, W,,(9) = 2(Kan*9—9g) —3(Kapxg—g)+ (K, xg—g),
and hence

8.11) IWalg)loo <6 _max[lon(g) = e

Combine this (for g = f™), where f € C"", and 0 < 5 < 1,) with
exercise 2 at the end of Section 3, and obtain

(8.12) W (f N oo < CIFT™ |[Lip, 77,

where C' is a universal constant. By (8.5), and the fact that convolution
commutes with differentiation, thus |W,,(f)|lec < C||f|lcm+nn= M+,
and we proved the “necessary” part of the theorem. For the proof that
condition (8.10) is sufficient, write P, = Wayr(f) and apply the lemma.

<

This is essentially Jackson’s theorem. Our estimate of W, (f) was
based on the estimate o, (f(™) — 0| < C||f||cm+an", which
implies the same (with a different constant) for |V, * f(™ — fim)||
and the “reverse Bernstein inequality” gives’

En(,f) < an * f — f”oo < C”f||()m+'?n_<m+”)~

This is the “direct” side of Jackson’s theorem. The “converse” follows
from the current theorem combined with the observation that for any
polynomial P of degree less than 2% we have Wor (f) = Wor (f — P),
hence [[War (f)oo < Fo 1 (f).

TThis is the reason we use V., rather than o,: for f = cost, on(f) — f =n~1f.
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8.4 One application of Theorem 8.2 is the fact that if f ¢ C™7,
where m > 0 is an integer, and 0 < 5 < 1, then S[f], the conjugate
Fourier series of f, is also the Fourier series of a function in C™%7, In
the terminology of the next chapter, C"™" admits conjugation. This
follows from

Lemma. Let P be a polynomial of the form P = an\j|§4n ajet, and
P its conjugate, P = Y on<jl<in S&1 ()aje*. Then

[Plloc < 7[Ploo-

PROOF: P = P —2(e~ 3"V, « P). <

Theorem. C" admits conjugation.
PROOF: With some abuse of notation we may write f = 3 _, Wan(f),
use the lemma, and invoke Theorem 8.2. <

8.5 Multipliers on Fourier coefficients. Let B and B; be ho-
mogeneous Banach spaces on T and let T be an operator from B into
B; which commutes with translations. Then, for all n, Te'™ = t(n)e'™
and for f ¢ B the Fourier series of Tf is Y ¢(n)f(n)e™. In other
words, T is expressed as a multiplier on the Fourier coefficients of f.
We have seen concrete examples of this when 7" was differentiation, or
convolution by a fixed measure, and just in the previous subsection—
conjugation, for which the multiplier is ¢(n) = sgn (n).

The proof of Theorem 8.4 can be imitated for other multipliers. For-
mally, if {t(n)} is given, the operator T : f — >_t(n)f(n)e™ is well
defined for polynomials f. If we denote | T||,, the norm of the multiplier
restricted to the sup-normed space of trigonometric polynomials of the
form 37, |j|<on+2 aje”’, then the proof of Theorem 8.4 consisted in
the observation that ||T||,, is uniformly bounded when ¢(n) = sgn (n).
The same argument, using Theorem 8.2, proves

Theorem. A sequence {t(n)} is a multiplier C™ — C", ro ¢ 7, if and
only if ||, = O* (270=="V)) . In particular, this is true if

(8.13) Z |f(n)|2 =0 <22n(r27n)> ]

2n<|j<2nt?
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PROOF: We check that (8.13) implies the estimate ||T|,, = O (2"("2="1)).
For polynomials of the form y. ;| <on+2 aje'’ the operator T is the
convolution with the kernel T,,(t) = 35 5n | <on-2 t( 7)e¥t, and its norm
is bounded by [T, || 2 (r) < Tl L2(r)- <

8.6 The difference equation. Given a function f € L'(T) and
a € T, we are asked to find g such that

(8.14) gt + o) —g(t) = f(f)-

Under what condition can this be done and what can be said about the
“solution” g?

Formally the solution is obvious, at least if g € LY(T): (8.14) is
satisfied if, and only if]

(8.15) foralln € Z g(n)(e™ — 1) = f(n),
in other words, we need to set g(0) = 0 and
(8.16) g(n) = (™ = 1) f(n),

and the question becomes that of identifying (pairs of) spaces on which
the sequence (e* — 1)~! is a multiplier. The answer depends on the
diophantine properties of a, i.e., on the rate of growth of (e?»* — 1)L,

Theorem. [f e — 1| > C|n|~7 then the sequence {(e* — 1)1} is
a multiplier C™(T) — C"(T) whenever r1 — ro > . If ro is not an
integer, the same holds for r1 —ry = 7.

Lemma. Let {z;}*,, C T be such that for j # k, |z; — 2| > a, and
zj — 1| > a. Then Y|z — 1|72 < 4a™2.

PROOF: The worst estimate is obtained when the points are packed as

close to 1 as the condition permits, that is, for z; = €%, j # 0, and

20 = ei([\/[+1)a' <

PROOF OF THE THEOREM. The lemma, with M = 2"t2anda = €277,

implies
Z I(eina_1)|—2:o(22ny)‘

2n <|j<2nt?

Now apply theorem 8.5. <
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EXERCISES FOR SECTION 8

1. Show that if m is an integer, the condition E.(f) = o (n‘m log n) is
necessary for f € C™(T) but is not sufficient. Show also that the condition
> 28 By (f) < oo is sufficient; is it necessary?

2. Let B be a homogenoeous Banach space on T. For f € B consider the
B-valued function (1) = fr. Prove that if ¢ is differentiable at some m € T,
it is uniformly differentiable on T, and that this happens if, and only if, /' € B.

3. Let B be a homogeneous Banach space on T and assume that, for some
1 < p < oo, ||z is equivalent to ||{||Wan(-)||z}|ler. Prove that B admits
conjugation



Chapter 11

The Convergence of Fourier Series

We have mentioned already that the problems of convergence of
Fourier series, that is, the convergence of the (symmetric) partial sums,
Sy(f), are far more delicate than the corresponding problems of summa-
bility with respect to "good" summability kernels such as Fejér’s or
Poisson’s. As in the case of summability, problems of convergence "in
norm" are usually easier than those of pointwise convergence. Many
problems, concerning pointwise convergence for various spaces, are
still unsolved and the convergence almost everywhere of the Fourier
series of square summable functions was proved only recently (L. Car-
leson 1965). Convergence is closely related to the existence and proper-
ties of the conjugate function. In this chapter we give only a temporary
incomplete definition of the conjugate function. A proper definition
and the study of the basic properties of conjugation are to be found in
chapter III.

1 CONVERGENCE IN NORM

1.1 Let B be a homogeneous Banach space on T. As usual we write

(1.0 Sulf) = Sulf.t) =D f(3)e”".

—n

We say that B admits convergence in norm if
(12) lim [/ S, (f) — fll5 = 0.

Our purpose in this section is to characterize the spaces B which have
this property.

We have introduced the operators S, : f — S,(f) in chapter L. S,,
is well defined in every homogeneous Banach space B; we denote its
norm, as an operator on B, by ||S,,||Z.

55
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Theorem. A homogeneous Banach space B admits convergence in
norm if, and only if, ||S,||® are bounded (as n — oc), that is, if there
exist a constant K such that

(1.3) 1SNz < K| flz

forall f € Bandn > 0.

PROOF: If S, (f) converge to f for all f € B, then S,,(f) are bounded
for every f € B. By the uniform boundedness theorem, it follows that
[S..||Z = O(1). On the other hand, if we assume (1.3), let f € B, = >0,
and let P be a trigonometric polynomial satisfying ||f — Pz < &/2K.
For n greater than the degree of P, we have S,,(P) = P and hence

||Sn(f) - fHB :”Sn(f) - S’n(P) +P— f”B

£ &
SUSa(f =Plls + P~ flls <Ko+ 52 <c 4

1.2  The fact that S,,(f) = D,, = f, where D,,, is the Dirichlet kernel

n

(1.4) Da(t) =3 et =

—n

sin(n 4 1/2)t
sint/2

yields a simple bound for [|S,,||Z. In fact, | Dy, * f|| g < [ Dnllz: | f|l 5, s0
that

(1.5) 185117 < || Dalls -

The numbers L,, = ||D,||;: are called the Lebesgue constants; they
tend to infinity like a constant multiple of logn (see exercise 1 at the
end of this section).

In the case B = L!(T) the inequality (1.5) becomes an equality. This
can be seen as follows: denote by Ky the Fejér kernel and remember
that K| 2 = 1. We have [[S,.[[£" > [|Su(Kn)| 2 = [lon(Dy)]|z: and
since on(D,,) — D,,, as N — oo, we obtain

1 1
I1SallZ @ > |Dallrr;  hence [S,[|F ™ =D,

It follows that L*(T) does not admit convergence in norm.
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1.3 In the case B = C(T) convergence in norm is simply uniform
convergence. We show that Fourier series of continuous functions need
not converge uniformly by showing that ||S,,||“(™ are unbounded; more
precisely we show that ||S,,||“(™ = L,,. For this, we consider continu-
ous functions 1, satisfying

HwﬂHOO = Supt|1/}n(t)| S 1

and such that v, (¢) = sgn (D, (t)) except in small intervals around the
points of discontinuity of sgn (D,,(¢)). If the sum of the lengths of these
intervals 1s smaller than £/2n, we have

1
I8 > 8,6, 0)| = 5 [ Dult)sultyde > L~ =

which, together with (1.5), proves our statement.

1.4 For a class of homogeneous Banach spaces on T, the problem
of convergence in norm can be related to invariance under conjugation.
In chapter I we defined the conjugate series of a trigonometric series
> anet™ to be the series —i Y sgn (n)a,e™. If f € LY(T) and if the
series conjugate to > f(n)e'™ is the Fourier series of some function
g € L*(T), we call ¢ the conjugate function of f and denote it by f.
This definition is adequate for the purposes of this section; however, it
does not define f for all f € L'(T) and we shall extend it later.

DEFINITION: A space of functions B C L*(T) admits conjugation
if for every f € B, f is defined and belongs to B.

If B is a homogeneous Banach space which admits conjugation,
then the mapping f — f is a bounded linear operator on 3. The linear-
ity is evident from the definition and in order to prove the boundedness
we apply the closed graph theorem. All that we have to do is show that
the operator f — f is closed, that is, that if lim f, = f and lim f,, = ¢ in
B, then g = f . This follows from the fact that for every integer j

,@(]) = ,Lh_{%o fn(]) = ”h_)n;o —isgn (])fn(]) = —isgn(j) ,Lh_)ngo fn(])

= —isgn ()1 (j) = f(5).

If B admits conjugation then the mapping

N | =

. L = o
(1.6) frof = f(0>+§(;+zf>~;f<y>e
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is a well-defined, bounded linear operator on B. Conversely, if the map-
ping f — f* is well-defined in a space B, then B admits conjugation

since f = —i(2f° — f — £(0)).

Theorem. Let B be a homogeneous Banach space on T and assume
that for f € B and for all n, ¢ f ¢ B and

(1.7) e flz =11z

Then B admits conjugation if, and only if, B admits convergence in
norm.

PROOF: By Theorem 1.1 and the foregoing remarks, it is clearly suf-
ficient to prove that the mapping f — f° is well defined in B if, and
only if, the operators S,, are uniformly bounded on B. Assume first
that there exists a constant K such that ||S,,||? < K. Define

2n
(18) Sp(f) =2 _f(@)e’" = "8, (7 f);
0

by (1.7) we have ||S"||# < K.

let f € Bande > 0; let P € B be a trigonometric polynomial
satisfying || f — P||p < €/2K. We have
£

S’t@,(f_P)HB S a

(1.9) 182(f) = Sn(P)ls = 5

If n and m are both greater than the degree of P, S°(P) = S (P) and
it follows from (1.9) that

I150.(f) = Spu( )8 < e.

The sequence { S’ (f)} is thus a Cauchy sequence in B; it converges and
its limit has the Fourier series 3 0° f(j)e”!. So f” = lim S”(f) € B.
Assume conversely that f — f° is well defined, hence bounded, in
B. Then
S,I;f — fb o 61’(2n+1)t(e—i@n—!-l)tf)b

which means that ||S?,||# is bounded by twice the norm over B of the
mapping f — f°. Since, by (1.7) and (1.8), ||S,.||® = ||S” ||?, the theo-
rem follows. <
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1.5 We shall see in chapter III that, for 1 < p < co, LP(T) admits
conjugation, hence:

Theorem. For 1 < p < oo, the Fourier series of every f € LP(T)
converges to f in the LP(T) norm.

EXERCISES FOR SECTION 1

1. Show that the Lebesgue constants Ly, = || Dy || 111y, satisfy
L, =4/7*logn + O (1).

Hint:'
sin(n + 1)t s |sm(n+ o
L, = dt = —="dt 1);
/ ‘ sint/2 | Z/ +oW
'r|.+1/2
remember that
(]+1)’f
" sin(n + 1/2)tldt — —>
sin n T
J o n+1
n+1/2

2. Show that if the sequence {N;} tends to infinity fast enough, then the
Fourier series of the function

f) =) 27 Kn; (1)

does not converge in L'(T).

3. Let {an} be an even sequence of positive numbers, convex on (0, co)
and vanishing at infinity (cf. 1.4.1). Prove that the partial sums of the series
>~ ane’™® are bounded in L'(T) if, and only if, an logn = O (1) and the series
converges in L'(T) if, and only if, lim a,, logn = 0.

4. Show that B = C"™(T) does not admit convergence in norm.

Hint: S, commute with derivation.

5. Let ¢ be a continuous, concave (i.e., p(h) + ¢(h +26) < 2¢(h+ §)), and
increasing function on [0, 1], satisfying ¢(0) = 0. Denote by A, the subspace
of C(T) consisting of the functions f for which, as h — 0, w(f, h) = O (¢(h)).
Denote by A, the subspace of A, consisting of the functions f for which

w(f,h) = o(w(h)) as h — 0. (w(f,h) is the modulus of continuity of f; see
1.4.6.) Consider the following statements:

(a) p(h) = O (—(logh)~') as h — 0.

(b) For every f € A, S[f] is uniformly convergent.

(©) ¢(h) = o(—(log h)~') as h — 0.

(d) For every f € A, S[f] is uniformly convergent.

Show that (a) is equivalent to (b) and that (c) is equivalent to (d).

TFor another way, see [16].
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2 CONVERGENCE AND DIVERGENCE AT A POINT

We have seen in the previous section that the Fourier series of a
continuous function need not converge uniformly. In this section we
show that it may even fail to converge pointwise, and then give two
criteria for the convergence of Fourier series at a point.

2.1 Theorem. There exists a continuous function whose Fourier se-
ries diverges at a point.

We give two proofs which are in fact one; the first is "abstract"”
based on the Uniform Boundedness Principle, and is very short. The
second is a construction of a concrete example in essentially the way
one proves the Uniform Boundedness Principle.

PROOF A: The mappings [ — 5, (f,0) are continuous linear function-
als on C(T), We saw in the previous section that these functionals are
not uniformly bounded and consequently, by the Uniform Boundedness
theorem, there exists an f € C(T) such that {S,,(f,0)} is not bounded.
In other words, the Fourier series of f diverges unboundedly at ¢ = 0.

<

PROOF B: As we have seen in section 1, there exists a sequence of
functions v,, € C(T) satisfying:

2.1 [¥nlle <1,

1 1
(2.2) |Sn(tm, 0)| > §||DTL||L1 > Elog n.

We put ¢, (t) = 0,2(¢¥n,t) and notice that ¢, is a trigonometric
polynomial of degree n? satisfying

2.17) lenlloo <1,

and [Sn(on.t) = Snign.n] <2
hence

(2.2) |Sn(©n,0)] > 1—10 logn — 2.

With \,, = 23" we define

23) 50 = 3 —5n, Ot
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and claim that f is a continuous function whose Fourier series diverges
at t = 0. The continuity of f follows immediately from the uniform
convergence of the series in (2.3); to show the divergence of the Fourier
series of f at zero, we notice that oy, (\;1) =3, x, (m)e'™*; hence

- n 1 oo 1 -
13.(7:0)| = 1833 (32 a, (031),0) + 3 75,0
1 n+1
2 4 n—1 1 1 oo 1
(24) = ‘Z P@AJ‘(O)‘FES’AH(WAMO)‘FZ]ﬁ&k\j(o)‘
1 n+1 -
K
> — log A,, — 3,
T
which tends to oo, and the theorem follows. <

Remark:
m—1

‘ 1 — 1
f (t) = Z ﬁ(pAn(Ant) =+ Z E‘P)m (Ant)
1 n

The first sum is a trigonometric polynomial and so does not affect the
convergence of the Fourier series of f. The second sum is periodic
with period 27/, (since A, divides A\, for k& > m); consequently the
partial sums of the Fourier series of f are unbounded at every point of
the form 275/, for any positive integers j and m. If we want to obtain
divergence at every rational multiple of 27, all that we have to do is put
A = nl23".

2.2 Our first convergence criterion is really a simple Tauberian theo-

rem due to Hardy.

Theorem. Let f € L'(T) and assume
2.5) fn) =0 (%) as |n| — oo

Then S, (f,t) and o,.(f,t) converge for the same values of t and to the
same limit. Also, if 0,(f,t) converges uniformly on some set, so does

Sn(f,t).

PROOF: The condition (2.5) implies the following weaker condition
which is really all that we need: for every £ > 0 there exists a A > 1
such that

2.5%) limsup > [f(j)] <e.

n<|j|<An
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Letz > 0 and let A > 1 be such that (2.5°) is valid. We have

_[An]+1 n+1
. Sn(ft) =D = O (fit) - mffn(f-t)
’ [An] +1 7l 20N it
D D G m+1)'f(-f)e :

n<[i|<an

(where [An] denotes the integral part of An). By (2.5°) there exists an
ny such that if n > ng, the last term in (2.6) is bounded by . If ¢, ([, to)
converge to a limit o(f, ¢y), it follows from (2.6) that for n; sufficiently
large, n > ny implies

(27) |S"(f7t0) _U(fat0)| < 251
in other words,
(28) lim Sn(f, t()) = O(f, to).

The choice of n; depends only on the rate of convergence of ¢,,(f, o)
to o(f,to) so that if this convergence is uniform on some set, so is (2.8).
<

Corollary. Let [ be of bounded variation on I; then the partial sums
S, (f,t) converge to 3(f(t+0)+ f(t—0)) and in particular to f(t) at ev-
ery point of continuity. The convergence is uniform on closed intervals
of continuity of f.

PROOF: By Fejér’s theorem the foregoing holds true for o,,(f,t), and
the statement follows from the fact that for functions of bounded varia-
tion, (2.5) is valid (cf. Theorem 1.4.5). <

2.3 Lemma. Let f ¢ LY(T) and assume f_ll]@‘dt < 0. Then

lim S, (f,0) = 0.

PROOF:
_ L@ B
00 Sn(f,0) =5 / sin & sin(n + 1/2)tdt =

1
— / f(t) cos ntdt +
27

1 f S
27 sint/2

By our assumption FIOLC7E S (T); hence, by the Riemann-Lebesgue

sint/2

lemma, all the integrals in (2.9) tend to zero. <
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2.4 Theorem (Principle of localization). Let f ¢ L'(T) and as-
sume that f vanishes in an open interval I. Then S, (f,t) converge to
zero for t € I, and the convergence is uniform on closed subsets of I.

PROOF: The convergence to zero at every ¢ € I is an immediate conse-

quence of Lemma 2.3. If I; is a closed subinterval of I, the functions

Vi, () = %W, to € Iy, form a compact family in L*(T),

hence by Remark 1.2.8, the integrals in (2.9) corresponding to f(t — ),
tg € Iy, tend to zero uniformly. <

The principle of localization is often stated as follows: let f, g € L*(T)
and assume that f(t) = g(t) in some neighborhood of a point ty. Then
the Fourier series of [ and g at ty are either both convergent and to the
same limit or both divergent and in the same manner.

2.5 Another immediate application of Lemma 2.3 yields

Theorem (Dini’s test). Let f ¢ L*(T). If

1 J—
[ =)
. t
then
Sn(fito) — f(to).
EXERCISES FOR SECTION 2

1. Show that if a sequence of continuous functions on some interval is
unbounded on a dense subset of the interval, then it is bounded only on a set of
the first category. Use that to show that the Fourier series of f (defined in (2.3))
converges only on a set of the first category.

2. Show that for every given (countable) sequence {#,} there exists a con-
tinuous function whose Fourier series diverges at every t,.

3. Let g be the 27-periodic function defined by: ¢(0) = 0, g(¢t) =t — = for
0<t<2m.

(a) Discuss the convergence of the Fourier series of g.

(b) Show that |S,.(g,t)| < 7+ 2 for all n and ¢.

(©) Put o, (t) = (74+2) 1€ S, (g, t); show that ||, ]|c < 1and|S»(pn,0)| >
K'log n for some constant K > 0.

(d) Show that for || < /2, some constant K1, and all n and m,

|Sm(om, )] < ’le
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(e) Show that for a proper choice of the integers n; and );, the Fourier
series of the continuous function

o]

1= e 6, (0

j=1

diverges for t = 0 and converges for all other ¢ € T.

*3  SETS OF DIVERGENCE
3.1 We consider a homogeneous Banach space B on T.

DEFINITION: A set E C T is a set of divergence for B if there exists
an f € B whose Fourier series diverges at every point of E.

3.2 DEFINITION: For f € L*(T) we put

Su(fit) =sup,,c,, [Sm (S, 1)]

(3.1)
S*(f,t) =sup,,|S.(f.t)].

Theorem. FE is a set of divergence for B if, and only if, there exists an
element f € B such that

3.2) S*(f,t)=00 for teE.
The theorem is an easy consequence of the following:

Lemma. Let g € B. There exist an element [ € B, and a positive even
sequence {S;} such that lim;_., 2; = co monotonically, and such that

FG) = Q,;9() for all j € Z.

PROOF OF THE LEMMA: Let A(n) be such that ||oy,)(g9) — glls < 27"
We write [ = g+ > (g — o, (g)). The series converges in norm; hence
f € B. Also f(j) = ©;9(j) where Q; = 1+ 5>, min(1, [j|/(A\, + 1)).

<

PROOF OF THE THEOREM: Condition (3.2) is clearly sufficient for the
divergence of 3" f(j)et for all t € E. Assume, on the other hand, that
for some g € B, Y §(j)e¥? diverges at every point of E. Let f € B
and {€;} be the function and the sequence corresponding to g by the
lemma. We claim that (3.2) holds for f.
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This follows from: for n > m,

n

Sn(97t) - Sm(g:t) = Z (Sj(f7 t) - ‘jfl(fz t))971

m—+1
(3.3) =Su(f, )0, = Sl f. 00
n—1
+ (O = )S (.0,
m—+1

hence

[Su(f.1) = Sm(£,8)] <287 (F,)9,1,
It follows that if S*(f,¢) < oo, the Fourier series of g converges and
t¢ E. <

Remark: Let w,, n > 1, be positive numbers such that w; = O (Q;),
and > 77 (1 — Q1 )w; < oo. Then, for all t € E, S;(f.t) # ow;).

This follows immediately from (3.3).

3.3 For the sake of simplicity we assume throughout the rest of this
section that

(34) IffcBand ncZ then ¢™fc Band | f|g = |fl5

Lemma. Assume (3.4); then E is a set of divergence for B if, and
only if, there exists a sequence of trigonometric polynomials P; € B
such that

3.5) ZHPjHB <oo and supS*(Pj,t)y=00 on E.

PROOF: Assume the existence of a sequence { P, } satisfying (3.5). De-
note by m; the degree of P; and let v; be integers satisfying

Vi > Vi1 M1+ my.
Put f(t) = > €' P;(t). For n < m; we have
S;/j+n(f~,. t) - Sl/j—‘n—l(f7 t) = ewjts‘n(Pj?t);

hence 37 f(j)e'* diverges on E.
Conversely, assume that F is a set of divergence for B. By Remark
3.2 there exists a monotone sequence w, — oo and a function f € B
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such that |S,,(f,t)| > w, infinitely often for every ¢ € E. We now pick
a sequence of integers {\;} such that

(3.6) If —ox (Hllz <277

and then integers p; such that
(3.7 Wy, > 2sup, S* (o, (f), 1)

and write P; =V, * (f — ox,(f)) where as usual V,, denotes de la
Vallée Poussin’s kernel (see 1.2.13). It follows immediately from (3.6)
that > || Pj|| g < oo. Ift € E and n is an integer such that |.S,,(f, )| > wy,,
then for some j, p; < n < p;1 and

S’fl(Pj‘ t) = Sn(f — O, (f))t) = Sn(.f) f) - Sn(O—A]‘ (f)> f)
Hence, by (3.7), [S.(P;, t)| > Fw,, and (3.5) follows. <

Theorem. Assume (3.4). Let E;, j = 1,2,..., be sets of divergence
Jor B. Then E = UE; is a set of divergence for B.

PROOF: Let {PJ} be the sequence of polynomials corresponding to E;.
Omitting a finite number of terms for each j does not change (3.5), but
permits us to assume 3 [|P]|| < oo which shows, by the lemma, that
E is a set of divergence for B. <

3.4 We turn now to examine the sets of divergence for B = C(T).

Lemma. Let E be a union of a finite number of intervals on T, denote
the measure of E by . There exists a trigonometric polynomial ¢ such
that

S*(p, 1) >% log(i) on E

(3.8) 36
lolloe < 1.

PROOF: It will be convenient to identify T with the unit circumference
{z:|z| = 1}. Let I be a (small) interval on T, I = {e"|t —ty| <e:};
the function ¢y = (1 + ¢ — ze *)~! has a positive real part throughout
the unit disc, its real part is larger than 1/3¢< on I, and its value at the
origin (z = 0) is (1 +¢) 1. We now write £ C U I, the I; being small
intervals of equal length 2z such that Ne < 4, and consider the function

9 = 23, ).
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1 has the following properties:

R(w(z)) >0 for |z| <1

(3.9) $(0) =1
1 1
> —_— > — .
PE) ZROE) > > o on B
The function log v which takes the value zero at z = 0 is holomorphic
in a neighborhood of {z:|z| < 1} and has the properties

|S(logy(z))| < onT

(3.10) llog ¢(2)| > log(35)™ onE

Since the Taylor series of log ¥ converges uniformly on T, we can take
a partial sum ®(z) = Ziw anz" of that series such that (3.10) is valid
for ® in place of log . We can now put

1 1 M M
Sﬂ(t) — ;G_IA'TtS((I)(@'Lt)) — Ee—zkft (Z ancznt _ Z aﬂg—mt)
1 1

and notice that
1 i
[Sulp 1) = 5—|(e - <

Theorem. Every set of measure zero is a set of divergence for C(T).

PROOF: If E is a set of measure zero, it can be covered by a union
UI,,, the I,, being intervals of length |7,,| such that }|7,,| < 1 and such
that every ¢ € F belongs to infinitely many /,,’s. Grouping finite sets
of intervals we can cover E infinitely often by UE,, such that every
E, is a finite union of intervals and such that |F,| < 2" Let ©n be
a polynomial satisfying (3.8) for £ = E,, and put P, = n 2, We
clearly have > || P, /|0 < oo and S*(P,,t) > 2"~!/27n? on E,. Since
every t € I belongs to infinitely many £,,’s, our theorem follows from
Lemma 3.3. <

3.5 Theorem. Let B be a homogeneous Banach space on T satisfy-
ing the condition (3.4). Assume B D C(T), then either T is a set of
divergence for B or the sets of divergence for B are precisely the sets
of measure zero.
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PROOF: By Theorem 3.4 it is clear that every set of measure zero is a
set of divergence for B. All that we have to show in order to complete
the proof is that, if some set of positive measure is a set of divergence
for B, then T is a set of divergence for B.

Assume that £ is a set of divergence of positive measure. For a € T
denote by E,, the translate of F by «; FE, is clearly a set of divergence
for B. Let {a.,} be the sequence of all rational multiples of 27 and put
E = UE,. By Theorem 3.2 E is a set of divergence, and we claim that
T \ E is a set of measure zero. In order to prove that, we denote by
the indicator function of E and notice that

x(t — a) = x(t) for all ¢ and «,.

This means
Yo x(eTimIet =y j(j)e!
J J

or
X(e 7 =x0) @llay)
If j # 0, this implies x(j) = 0; hence x(¢) =constant almost everywhere
and, since y is an indicator function, this implies that the measure of £
is either zero or 2. Since £ O F, E is almost all of T.

Now T\ E is a set of divergence (being of measure zero) and F is a
set of divergence, hence T is a set of divergence. <

3.6 Thus, for spaces B satisfying the conditions of Theorem 3.5, and
in particular for B = LP(T), 1 < p < oo, or B = C(T), either there
exists a function f € B whose Fourier series diverges everywhere, or
the Fourier series of every f € B converges almost everywhere. In the
case B = L}(T) it was shown by Kolmogorov that the first possibility
holds. The case of B = L?(T) was settled only recently by L. Carleson
[4], who proved the famous "Lusin conjecture"; namely that the Fourier
series of functions in L?(T) converge almost everywhere. This result
was extended by Hunt [12] to all L*(T) with p > 1. The proof of these
results is still rather complicated and we do not include it. We finish
this section with Kolmogorov’s theorem.

Theorem. There exists a Fourier series diverging everywhere.

PROOF: For arbitrary £ > 0 we shall describe a positive measure fi,;, of
total mass one having the property that for almost all ¢t € T

(3.11) S* (s t) = sUp,, |Sn (s )| > .
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Assume for the moment that such pu, exist; it follows from (3.11) that
there exists an integer N, and a set E,; of (normalized Lebesgue) mea-
sure greater than 1 — 1/k, such that for ¢t € E,

(3.12) SUp,, <y, [Sn(p, 1) > 5

If we write now ¢, = p,. * Vy,, (Vn, being de la Vallée Poussin’s
kernel), then ¢, is a trigonometric polynomial, ||¢.| 71 (1) < 3 and

S (pr,t) > Supn<Nn|Sn(‘Pmt)| = Supn<N,€|Sn(/‘mt)‘ >k

on E,. Applying Lemma 3.3 with P; = j~?¢»; we obtain that the set
E = Ny, Um<; Fos is a set of divergence for LY(T). Since E is almost
all T, Kolmogorov’s theorem would follow from Theorem 3.5.

The description of the measures g, is very simple; however, for the
proof that (3.11) holds for almost all ¢ € T, we shall need the following
very important theorem of Kronecker (see VI.9).

Theorem (Kronecker). Let {1]}7 ", N > 1, be real numbers such
that x1,...,xzN,7 are linearly independent over the field of rational
numbers. Let € > 0 and o, . ..,an be real numbers, then there exists
an integer n such that

|Cinmj*€i(xj|<€ ]:1,,N

We construct now the measures ,, as follows: let N be an integer,

let x1,...,zy be real numbers such that z1, ..., zy, 7 are linearly inde-
pendent over the rationals and such that |z; — (27 /N)| < 1/N?, and let
p=1/N3 0g,.

Fort € T we have

N
S, ;Lt)—/Dﬂ?‘—:r)d,u Nz (t—zj) =
N in
oyl )
- sin( t — iL]>
For almost all ¢ € T, the numbers ¢t — x1,...,t — zx, 7 are linearly

independent over the rationals. By Kronecker’s theorem there exist, for
each such ¢, integers n such that

8i(rz+%)(tij)

. . t—ﬂfj . i
— isgn (sin 5 )‘<— j=1,...,N:
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hence

sin(n+ 3)(t—x;) 1|, t—x;?

%m(.n T )0~ 75) —‘C mj‘ for all j.

sin 5 (t — x;) 2 2
It follows that
N
1 t—x; 7t
1 — | J

(3.13) Snlp,t) > 2Nj2:;§m 5

and since the z;’s are so close to the roots of unity of order N, the
sum in (3.13) is bounded below by 3 [['[sint/2| 'dt > logN > &,
provided we take N large enough. <

EXERCISE FOR SECTION 3

1. Let B be a homogeneous Banach space on T. Show that for every f € B
there exist g € B and h € L*(T) such that f = ¢  h.
Hint: Use Lemma 3.2 and Theorem [.4.1.



Chapter 111

The Conjugate Function and Functions
Analytic in the Unit Disc

We defined the conjugate function for some summable functions by
means of their conjugate Fourier series. Our first purpose in this chap-
ter is to extend the notion to all summable functions and to study the
basic properties of the conjugate function for various classes of func-
tions. This is done mainly in the first two sections. In section 1 we use
the "complex variable" approach to define the conjugate function and
obtain some basic results about the distribution functions of conjugates
to functions belonging to various classes. In section 2 we introduce
the Hardy-Littlewood maximal functions and use them to obtain re-
sults about the so-called maximal conjugate function. We show that the
conjugate function can also be defined by a singular integral and use
this to obtain some of its local properties. In section 3 we discuss the
Hardy spaces HP. As further reading we mention [11].

1 THE CONJUGATE FUNCTION

1.1  We identify T with the unit circumference {z:z = ¢} in the
complex plane. The unit disc {z:|z| < 1} is denoted by D and the
closed unit disc, {z:]2| < 1}, by D. For f € LY(T) we denote by
f(rei), r < 1, the Poisson integral of f,

(1.1) fre'y = (P(r,) = f)(t) = Z?‘l"’lf(n)emﬁ

In chapter I we have considered P(r, ) * f as a family of functions
on T, depending on the parameter r, 0 < r < 1. The main idea in this
section is to consider it as a function of the complex variable z = re
in D.

71
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The functions /"¢, —co < n < oo, are harmonic in D, and,
since the series in (1.1) converges uniformly on compact subsets of
D, it follows that f(re*) is harmonic in D. We saw in [.3.3 that at
every point ¢ where f is the derivative of its integral (hence almost
everywhere) f(c') = lim,_; f(re). Actually it is not very hard to see
that for almost all ¢, f(z) — f(e'") as z — ¢'* nontangentially (i.e., if
z — e*, remaining in a sector of the form {(: Jarg(1 —Ce )| < a < 7}
(See [28], Vol. 1, p. 101.)

The harmonic conjugate to (1.1) is the function

oo

(1.2) flre'y = =iy sgn(m)(m)r™ fn)e™ = (Q(r,) « f)(1)

—0C

where

, o > Il int 2rsint
(12 ) Q(’I,t) = —’L;Sgﬂ('ﬂ)(n)'f' |)6 = m
is the harmonic conjugate of Poisson’s kernel P(r, ¢) (normalized by the
condition Q(0, ) = sgn (0) = 0). We shall show that f(re®) has a radial
limit for almost all ¢. Denoting this radial limit by f(¢*) we shall show
that if f has a conjugate in the sense of section II.1, then this conjugate
is f (e''). We may therefore call f the conjugate function of f.

1.2 Lemma. Every function harmonic and bounded in D is the Pois-
son integral of some bounded function on T.

PROOF: Let F' be harmonic and bounded in D. Let r, T 1 and write
fn(ey = F(rpe'). The sequence { f,, } is a bounded sequence in L>(T);
hence for some sequence n; — oo, fp, converges in the weak-star
topology (L>(T) being the dual of L'(T)) to some function F'(e®). Let
pe'™ € D, then

1 ity o L _ i
27 / Plp,t —7)F(e")dt = lim o / Plont =) fu, ()l

= Jll)rgo F(rp, pe'™) = F(pe'). <

1.3 Lemma. Assume f € L'(T) and let f(re') be defined by (1.2) .
Then, for almost all t, f(re') tends to a limit as r — 1.

PROOF: Since the mapping f — f(re"") is clearly linear and since any
f in L*(T) can be written as f1 — fo + ifs —ifs with f; > 0 in L(T),
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there is no loss of generality in assuming f > 0. The function F(z) =
e~1{2)=1/(*) is holomorphic (hence harmonic) in D. Since the Poisson
integral of a nonnegative function is nonnegative f(z) > 0, and since
f is real valued (being the harmonic conjugate of the real valued f),
it follows that |F(z)| < 1 in D. By Lemma 1.2 (and 1.3.3) F has a
radial limit of modulus ¢~ /() almost everywhere. Since f € L*(T),
f(e") < oo, hence lim,_,; F(re®) # 0 almost everywhere; and at every
point where F(e®) exists and is nonzero, f(re’') has a finite radial limit.

<

1.4 DEFINITION: The conjugate function of a function f € L'(T)
is the function f(e“) = lim,_1 f(re“).

If the series conjugate to the Fourier series of f is the Fourier series
of some g € L'(T), then the Poisson integral of g is clearly f(re®),
which converges radially to g(e*) for almost all ¢ (theorem 1.3.3). It
follows that in this case f = ¢ and our new definition of the conjugate
function extends that of I1.1.

We have seen in 1.4.2 that > 7, Cf,i?f is a Fourier series while
(=}

o sinnt
n=2 logn
oo cosnt
n=2 logn
we can check that 3, % ¢ L*(T). Thus the conjugate function
of a summable function need not be summable.

Remark: At this point we cannot deduce that >, % g LY(T)
from the mere fact that the series is not a Fourier series. fiowever, we
shall prove in section 3 that if f € L(T), for some f € L!(T), then
f(re™) is the Poisson integral of f. From that we can deduce that if
f € LY(T) then its Fourier series is S[f] so that if S[f] is not a Fourier
series then f ¢ L!(T).

The difficulty in asserting immediately that f (re') is the Poisson
integral of f stems from the fact that we have only established point-
wise convergence almost everywhere of f(reit) to f(e't) and this type
of convergence is not sufficient to imply convergence of integrals.

oo ginnt
n=2 logn >

the conjugate series, > is not. Since ) converges

everywhere, its sum is the conjugate function of f = > and

1.5 We denote the (Lebesgue) measure of a measurable set £ C T by
|E].

DEFINITION:  The distribution function of a measurable, real-valued
function f on T is the function

m(z) =m (z) = |[{t: f(t) <z}|, —oc<z< o0
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Distribution functions are clearly continuous to the right and mono-
tone, increasing from zero at x = —oo to 27 as x — oo. The basic
property of distribution functions is: for every continuous function F
onR

(1.3) /']r F(f(0)dt = / F(z)dm,(z).

DEFINITION: A measurable function f is of weak L? type, 0 < p < oo,
if there exists a constant C such that for all A > 0

(1.4) m;()) > 27 — CA™P

(or equivalently, |{t:|f(t)| > A} < CA7P).
Every f € LP(T) is clearly of weak L? type. In fact, for all A > 0

1 [ 1o
HfHZI),P = 7 /O dem|f| (z) > G /)\ xF dmm(ﬂ?)
Lo, [~ AP
> E)\ A dm|f|(3:) = %(271' — mm()\))
hence (1.4) is satisfied with C' = 27| f||7,. It is equally clear that there

are functions of weak L? type which are not in LP(T); [sint|~1/7 is a
simple example.

Lemma. [f f is of weak L? type then f ¢ LP (T) for every p' < p.

PROOF:
/\_fvfdt:/o 2 dm j (z) < ml,l(l)f/1 2Pdmy(x) =
= m\f](l) — [9:”/(27T — m|f|(x))]‘f° +K (27T — m‘f‘(a:))d(xp/)
- —p (P — - p' —p—1
§27T+C/1 7 Pd(z? ) 27r+C/1 x dzr < 0.

1.6 Theorem. [f f ¢ L'(T) then [ is of weak L' type.

PROOF: We assume first that f > 0; also, we normalize f by assuming
I/l = 1. We want to evaluate the measure of the set of points where

If| > A. The function Hy(z) = 1+ Larg 222 = 1 + %‘\‘9(100 Z—M) is

T z+iX S Z+iX
clearly harmonic and nonnegative in the half plane R(z) > 0, and its
level lines are circular arcs passing through the points ¢:A and —i\. The
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level line Hy(z) = 3 is the half circle z = Ae?’, —7/2 < ¥} < 7/2, hence
if |2| > A then Hy(z) > ;. Also it is clear that

H)(1) =1— (2n)arctan A < 2/mwA.

Now Hj(f(z) + if(z)) is a well-defined positive harmonic function in
D, hence

(15) o [ (e +iftre) it = H(70) = Hy(1) <

and remembering that H(f + if) > Sif|f+ if] > A, we obtain,

eyl > ) <

Since the mapping f — f is linear it is clear that if we omit the normal-
ization || f||z: = 1 we obtain, letting  — 1, that for f > 0 in L*(T)

{17 > A} < 81 fll A~
Every f € L*(T) can be written as f = f1 — fo + ifs —ifs where f; > 0
and || f5llor < ||f]lz:. We have f = f1 — fo +1if3 — ifs and consequently

HJﬂﬂﬂ>Ah:Uﬁﬂﬁwm>AM}

It follows that for ¢ = 128 and every f € L*(T)

(1.6) {t:1f(re™) > A < el flar™ <
Corollary. If f € L(T) then f € L*(T) for all a < 1.

PROOF: Lemma 1.5. <

1.7 The method of proof of Theorem 1.6 can be used for bounded
functions as well.

Theorem. If f is real valued and |f| < 1, then for 0 < o < /2

(1.7) i/meWS 2

2 COS (¥
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PROOF: Put F(z) = f(z) — if(z). Since cos(af(z)) > cos a, we have
R(e ) > cos a|e*F @ | = cos ae“ﬂz),

and since o= [ R(e"FC N dt = R(e*FO) = cosaf(0) < 1, it follows
that

1 r3 it 1 r3 it
— [ g < Similarly, — [ e /gt < .
27 cos & 27 Ccos o
Adding and letting » — 1 we obtain (1.7). <

Corollary. If|f| < 1, then

(1.8) m; (V) > 27r(1 - COjﬁe**)

13R00~F: Write f=hA+if wyere f1, fo are real valued. We have
f = f1 +if, and consequently | f(e'*)| > A happens only if either

fi(e™)]>273x or  |fale)] >2 2
Now, by (1.7) with a = /2,

~ 47
telfil >27 20 <« — e, =1
{t: 1l } o va J

and (1.8) follows. <

2

?

*1.8 We shall see in chapter VI that a finite Borel measure on R is com-
pletely determined by its Fourier-Stieltjes transform (just as measures
on T are determined by their Fourier-Stieltjes coefficients). This means
that two distribution functions, m; (z) and ms(z), of real-valued func-
tions on T are equal if [e“?dm;(z) = [e***dms(z) for all £ € R.
Using this remark we shall show now that if f is the indicator func-
tion of some set U C T, then m f(/\) depends only on the measure of U
and not on the particular structure of U. Thus we can compute m j;(A)
explicitly by replacing U by an interval of the same measure.

Theorem. Let U C T be a set of measure 2. Let f be the indicator
function of U and let x, be the indicator function of (—a,a). Write
m, () = mg (A). Then m(\) = m,(N).
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PROOF: Apply Cauchy’s formula on z = re' to the analytic functions
F&(z) = U (:)+if(2) let r — 1 and remember that f = 0 on T \ U and
f=1onU; this gives

(1.9) / T gt 4 € / I gy = 20 FE(0) = 276t/
JT\U JuU

Rewriting (1.9) for —¢ instead of £ and then taking complex conjugates,
we obtain

(1.10) / ST gy 4 6 / T gp = o=t/
™NU U
From (1.9) and (1.10) we obtain
sinh %

i£f(€“’)dt -9
/Ue g sinh &

gy = (= 2)
nu sinh &

We write now m#(A) = ni(A) + no(A) where

(1.11)

m(N) = U N {t: f(e") <A}

and L
ny(N) = [(T\U) N {t: fe*) <A}

and we can rewrite (1.11) as

. Lo
itx _ sinh ==
/e dm (z) =2m Snh ¢
(1.12) ( )
L sinh £(1 — &
i s =92 > n/
/e dns(zx) Wisinhf

We see that n; (x)~and ns(z) are uniquely detenpined by a and so they
are the same for f and y, We thus obtain that f and Xo have the same
distribution of values not only on T but also on U for f and (—«, o) for

Xo- |

The Fourier series of x,, is

. sin >, sin
sinno « sin no
E et =242 E cosnt
™ T ™
T 1
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hence

falrei) =2 i o sin nao sin nt — i €08 n(t — a) — cosn(t + «)
« - B -
™
1 1

™
1 /=1 . <1
:_§R( _ 'n/"l(tfﬂt) _ - nlln(t—}—a))
™ ; TLT ¢ ; nr €
1 ,,.6’it o eia
= 8] it —gia
and finally
i 1 eft — el 1 1 —cos(t — a)
113 ‘~a it :—10'7. — :—107.
(113) ale) = mloa| =] = g tor o

It follows from (1.13) that for A > 1 the set {t: ¥,(e®) > A} is an

interval containing ¢ = —« and contained in (—a — 81, —a + 32) where
61 _ 62 __ T

ot = Ta T = ¢ , hence

(1.14) m,(\) > 27 — 5ae” ™.

Corollary. Let [ be the indicator function of a set U of measure 2
on'T. Then, for A > 1

(1.15) Ht: |f(e')] > A < 10ce™™.

1.9 Returning to L'(T), we use Theorem 1.6 and the fact that conjuga-
tion is an operator of norm 1 on L?(T) to obtain the following theorem.
The method applies in a general context which we discuss briefly in the
following subsection.

Theorem. IfT flog™|f| € L*(T), then f ¢ L'(T).

PROOF: We shall use the fact that for g € L*(T) we have § € L*(T) and
1]l < |lgllr2. This is an immediate corollary of Theorem 1.5.5. As
we have seen in 1.5, this implies

(1.16) myg(A) > 2n(1 = [|lg]7A71).

We have to prove that [ Adm 7 ()) < oo which is the same thing as
_flR Adm, 7 (A) = O (1) as R — oo. Integrating by parts and remembering

Nog™ & = sup(log z, 0) for z > 0.
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(1.6) we see that the theorem is equivalent to
R
(1.17) / (2m —m 7 (N)d\=0(1) asR— oc.
1

In order to estimate 27 —m, 7 () we write f = g+ h, where g = f when
| < Aand h = f when |f| > \. We have f = j+ h and consequently

(1.18) {t:1F(0)] > A} € {t:]g()] > A/2} U {t:|h(t)] > A/2}.

By (1.16)
€ ‘>\ .
(119) {150 > A/2}] < 87A[lglf%s = 8TA~ / dm ;
J0

and by (1.6)

[{t:[R()] > A/2}] < 2eA71[[h] 1 = 2eA™ / vdm

JN
for 2 > A, (logz)2 > (log A)z and we obtain
~ 2¢ e

(1.20) He: (D) > A2} < W/A 2y/log zdm

By (1.18), (1.19), and (1.20) we have

A oo
. . 2¢
21 —m 5 (A) < 8rAT2 2d ~+—/ :/log zdm, 7.
T mm( ) <8 /0 z7dm, Wi A z+/log zdm,

Thus (1.17), and hence the theorem, will follow if we show that as

R — oo,
AT
/1 A (/0 a2dm 7, )d\ = O (1)

R 1 oo
/1 A\/m(/A x\/log:cdmm)d)\=0(1)

(1.21)

The information that we have concerning m 5 is that it is a monotonic
function tending to 2 at infinity and such that

(1.22) / xlogxdmm < 00
1
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In order to derive (1.21) from (1.22) we apply Fubini’s theorem. The
domain for the first integral is the trapezoid

{{z,\): 1< A< R, 0<z<A}

and integrating first with respect to A we obtain

'/I‘R AZ(’/Oszdmlfl)d)\ :/01(1 - %)xzdmm + /1

R
§27r—|—/ zdm 5 = O(1)
1

R
(% - %)xzdm\i\

The domain for the second integral is the strip
{(z,\): 1< A< R, A<z}

Integrating first with respect to A we obtain

/1R ! (/:O x\/@dmm)d)\ -

A/log A
‘R 00
2/ zlog zdm, ¢ —|—2\/logR/ zy/log zdm 5 = o(1)
J1 JR
and the proof is complete. <

1.10 When the underlying measure space is infinite, e.g. the line R
rather than T, we can use p({z: f(z)} > \) instead of the distribution
function. For postive integrable functions it gives the complete infor-
mation about the distribution of f.

A slightly coarser gauge, which is often more transparent and easier
than the distribution function to work with, even when the underlying
measure is finite, is the “lumping” of dm, defined (for arbitrary mea-
sure space {X, B, u}, finite or infinite), as follows:

DEFINITION: For a measurable real-valued f and n € Z set
m, =m,(f) = ﬂ({I:2n_1 <[f(z)| <2"}).
Observe that:  a) f is of weak type p if, and only if, m,(f) = O (27"P),
b) f € L? ifand only if > 2"Pm,(f) < oo, in fact

(1.23) 11, <27 m,(f) < 27| 117
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1.11 What we have done in 1.9 is interpolate, using what we know
about the properties of an operator (the conjugation operator f — f)
on L'(T) and on L*(T), to prove that it maps the intermediate space
Llog L(T) into L*(T).

The same method can be used to prove M. Riesz’ theorem below.
We use the parameters m,, rather than the distribution functions, and
the reader should compare the first proof below to that of 1.9.

Riesz’ original proof is given as second proof.

Theorem (M. Riesz). For 1 < p < oo, the mapping [ — f is a
bounded linear operator on LP(T).

We have mentioned already that for p = 2 the theorem is obvious
(from Theorem 1.5.5). From Parseval’s formula (I.7.1) it follows that
if p and ¢ are conjugate exponents, the mappings f — f in LP(T) and
in LY(T) are, except for a sign, each other’s adjoints and consequently
if one is bounded, so is the other and by the same bound. Thus it is
enough to prove the theorem for 1 < p < 2.

FIRST PROOF: Assume 1 < p < 2. We need to show that there exists a
constant C,, such that if f € LP(T) then f € LP(T), and |l fllo < Collfllp-

Since || |7, < 32%°_2"m,,(f), we estimate m,(f). Given n, we
write f = fon + fl,n where fon(t) = f(t) if | f(t)] > 2" (and is zero
elsewhere) and f1 ,(t) = f(¢) if |f(t)] < 2", (and is zero elsewhere).

Since 1 <p <2, fo, € L' and f1 ,, € L?. We have
(1.24)  fonlr <D 2"mu(f),  Nfinlez <D 2% m,(f)
n+1

As f = f(),n + flyn, the inequality |f(t)| > 2™ implies at least one of
the inequlities | fo,,(t)| > 27! or | f1.,(t)| > 277!, so that

(1.25) mnaa(f) < pl{t: fon®)] > 2271 + ul{t: | in(t)] > 2771

By 1.6 we have

”f() n”L

(1.26)  p({t:|fon(t) >2" 1)) < <c2‘"ZmJ 2,

n+1

and since conjugation has norm 1 on L?(T),

: 2 n
(127)  p({t:1fin(] > 2771} < "2—” <27y my(f)2Y.
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It follows that

ma(f) < 27"y my(£)2 + 272 my(f)2

and [|fI[F, <> 2""m,(f)

<ezd_2m(2 i m;(f)2’ + 272" Z m;()2%)

n+1

—cy (Z 2N g (F)277 1 37 20D i) (f)gjp)

n<y n>j

the sums with respect to both n and j. Summing first with respect to n
produces constants which depend only on p and we have

17155 < e > m,(£)27 < Co) | f17s-
J <

SECOND PROOF: Let f € LP(T), f > 0. Let f(re) be its Poisson inte-
gral, f(re') the harmonic conjugate, and H(re') = f(re™) + if(re).
We may clearly assume that f does not vanish identically, and, since
f >0, it follows that f(re') > 0, hence H(re®) # 0in D. Let G(re™)
be the branch of (H(re'))? which is real at » = 0. Let v be a real
number satisfying

(1.28) y <
For 0 < r < 1 we have
L /\G(re”)|df 1 /|G(r€“)|df + 4 / |G (re™ | dt
271'. ) 27'[" I ’ ” 277, i i -

where [, is taken over the set where |arg(H (z))| < v and [, is taken
over the complementary set (defined by the condition v < |arg(H(z))|
< m/2, where z = re'). In [, we have

|H(2)] < f(2)(cosy) ™",

hence

1 ,
(129) 37 G dt < (cosn) Pl
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and, in particular,
1 )

(130) 3y [ RGlrea < (cos) 7 11
T

On the other hand, we have in |, T

(1.31) G(2)| < R(G(2))(cos py) ™"

(both factors being negative). Now, since

1
27 .

it follows from (1.30) that

R(G(re™))dt = G(0) = ((0))",

o | IR < (FO)P + (0057) e

and this, combined with (1.31) and (1.29), implies

1 ; ,
(1.32) o 160t < 111,

where ¢, is a constant depending only on p.
Since |f(re')|P < |H(re')|P = |G(ret)], it follows from (1.32),
letting r — 1, that f € L?(T) and

1Flze < /P 1S zs-

The theorem now follows from the case f > 0 and the linearity of the
mapping f — f. <

EXERCISES FOR SECTION 1

1. Show that there exists a constant A such that for all n, A and f € C(T),
such that || f||ec <1,
[{t:Sn(f.t) > A} < Ae™

2. Show that for 1 < p < oo there exist constants A, such that for all n, A
and f € L?(T), such that || f||zr <1

. AP
[{t:Sa(f,1) > A} < VR
3. Prove thatif f € L¥(T), 1 < p < o, then

lim || f(re*®) — f(e")llze = 0.
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4. Prove that if f € IP(T), g € LY(T), wherep™ ' +¢7 ' = 1,1 <p <
then % f(n)g(n) converges.

5. Show that Theorem 1.7 is sharp in the sense that there exist real valued
functions f such that | f| < 1and [ e™/1/?dt = co.
Hint: Take f = 2y, — 1. .

6. Prove that if f € C(T) then e’ € L'(T) no matter how large || f||o is.

Hint: Write f = P+ f1 where P is a polynomial and || f1|| < 1

it iox it i
7. Show that log ﬁ‘ = %(log(ﬁ)) is a constant multi-

ple of the conjugate function of the indicator function of («, §) by examining

o~ eit o eia
2(os( =) )
8. Let 1 < p < oco. Show that there exists a constant ¢, such that for f in

LP(T), and A > 0,

{t: 17 ()] > N < epllFII7 A7,

Remark: This is an immediate consequence of 1.11; try, however, to prove it
by using 1.8.

Hint: Assume that f is real valued. Denote Uy = {t: f(e*) > A} and Vy, =
{t: (") < —A}. Denote by g the indicator function of Uy; deduce from
Parseval’s formula that (with ¢ = p/(p — 1))

AU < /f(eit)gx(eit)dt = —/f(eit)sfx(c“)dt <27l fllzrllgallza
and use (1.15) to evaluate ||gx||z«. Repeat for V.

2 THE MAXIMAL FUNCTION OF HARDY AND LITTLEWOOD

2.1 DEFINITION: The maximal function of a function f ¢ L'(T) is

the function
1 t+h
%/i f(T)dT‘.
" Jt—h

If we allow the value +oo then M(t) is well defined for all ¢t € T. We
shall see presently that A/,(t) is finite for almost all ¢ € T and that M
is of weak L!-type. This will follow from the following simple

2.1 My(t) = supy p<n

Lemma (Vitali). From any family Q = {1,} of intervals on T one can
extract a sequence {I,,} of pairwise disjoint intervals, such that

>i|gfa|.

2.2) ‘G I,
n=1
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PROOF: Denote a; = sup;.q|I| and let I, be any interval of Q satisfy-
ing |I;| > %al; let Q5 be the subfamily of all the intervals in Q@ which
do not intersect I;. Denote ay = sup;.q_ |I| and let I € € be such
that || > 2a,. We continue by induction; having picked 11, ..., I
we consider the family Q11 of the intervals of Q which intersect none
of I;,j < k, and pick Iy, € Q1 such that [I4| > 2a,.;, where
Gk+1 = SUP;cq, ., |I|. We claim that the sequence {/,,} so obtained sat-
isfies (2.2). In fact, denoting by .J,, the interval of length 4|7,,| of which
I,, is the center part, we claim that | J J,, D |J I, which clearly implies
(2.2).

We notice first that a;, — 0 and consequently N2, = . For I € Q let
k denote the first index such that I & Q,; then I N I,_; # () and, since
[Ix—1| = 2|1|, I C Jx—1 and the lemma is proved. <

2.2 Theorem. For f € L'(T), My is of weak L' type.

PROOF: Since M;(t) < M (t), we may assume that f > 0. Let A > 0;
if M#(t) > Alet I; be an interval centered at ¢ such that

(2.3) f(t)ydt > A L.

I
Thus we cover the set {t: My(t) > A} by a family of intervals {I,}. Let
{I,,} be a pairwise disjoint subsequence of {I,} satisfying (2.2). Then,
by (2.2) and (2.3),

Q.4 [{t: My(t) > N} < UL < 4UL| < 5 [, f(Ddt < 5 [p f(8)dt.
<

2.3 The maximal function of a bounded function is clearly bounded
by the same bound so that the map f +— M, has norm 1 in L>(T).
The map is subliniear’ rather then linear, but we can still interpolate
between L'(T) and L>(T).

Lemma. Let f € L'(T) and let m(\) = m (A} be the distribution
SJunction of | f|. Then

(2.5) [{t: M(t) > 2A} < %/:0 ydm(y).

T An operator S is sublinear if S(f1 + f2) is defined whenever Sf1 and S fo are both
defined, and if
IS(f1 + f2)l S 1Sf1] + S f2| a-e.
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PROOF: Write f = g+ h where g = f when |f| < X and h = f when
|f] > X We have M (t) < My(t) + My(t) < A+ My(t); hence, by (2.4),

£ My(8) > 20} < |{t: M(t) > A\}| < §/|h(r)|d7 < %/:O ydm(y).
<

In terms of the “lumped” distribution this says, (with n shifted to n—2),

(2.6)  m,(M;) <4227 Y 2my(f) =16 Y 207 m,(f)

j>n—1 j>n—1

Theorem. (a) For 1 < p < oo there exists a constant ¢, such that if
f e LP(T), then My € LP(T) and ||My||1r < cp| fllzr-
(b) If flog™|f| € L}(T) then M; ¢ L*(T) and

M| < 2+ 4 / | Fllog™ | |dt.
PROOF: (a) If f € L¥(T) then ¥, 297m, (f) < 27| f|%,.. By (2.6),

1M%< ZZ-rL?)mn(MI) <16 Z 2np+(j—n)m].(f‘)

j+1>n
=16 Y 200D 9my(f) =16 20" 372 my()
Jj+izn n<1 7
<16 27U f17, = B £ 117
n<l

(B)If flog™|f| € L}(T) then 3, . ¢ jm;(f) < log2-5; [|f|log™|].

Mgl <14+ 2"m,(Mp) <1+16 Y 2" my(f)

=t j+1>n>1
=1+16Z Z 2my(f) = 1+16Z(j+1)2‘jmj(f).
i>01<n<j+1 >0
by (2.6). )

The use of the “lumped distribution” necessarily gives somewhat
worse constants than the same proof done with the distribution func-
tions. Here is the proof done “properly”.
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PROOF: Denote by m()\) and n(\) the distribution functions of | f| and
M respectively. We can rewrite (2.5) in the form

oo

2.7) 27 —n(2X) < %/)\ y dm(y) < %/)\ y? dm(y);

hence if f € LP(T), 1 < p < oo, we have \?(27 — n(\)) — 0 as A — oo.
We have [|[M;]|7, = & [7 Adn(X) = Z [ \dn(2)); integrating by
parts we obtain (1 < p < o)

/OO Mdn(2)) = WP (27 — n(2\)F + / (27 — n(2A))pArtd
0 0

< 8p [y A2 [T ydm(y)dA ifp>1
o 2r 8 AT [ ydm(y)dh  ifp=1

and integrating by parts again we finally obtain:

(for p>1) / APdn(ZA)SS—p APdm(\) = il 27| (175 5
o p—1J p—1

/ Adn(2)) §27r—|—8/ Alog Addm(\)

(for p=1) o ! _

:27T+8/|f|log+[f|dt.
Jr

2.4 Lemma. Let k be a nonnegative even function on (—r, ), mono-
tone nonincreasing on (0,7), such that [*_k(t)dt = 1. Then for all
ferim

(2.8) ’/k(t - T)f(T)dT‘ < My(1).

PROOF: The definition (2.1) is equivalent to

M (1) = supy e / bt — 1) f(7)dr

where ¢, is the indicator function of (—/, h) multiplied by 1/2h (so that
[ ¢ndt = 1). A function k satisfying the conditions of the lemma can
be uniformly approximated by convex combinations of ¢;,, 0 < h < ,
and (2.8) is then obvious. <
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2.5 Let f € L'(T), let f(re') be its Poisson integral and let f(rei) be
the harmonic conjugate,

DEFINITION: The maximal conjugate function of f is the function
ey = supy, | f(re™)].
Theorem. Let f € LP(T), 1 < p < o, then f € LP(T) and

1lze < Coll fllze

PROOF: Since f(re') is the Poisson integral of f(e**) and the Pois-
son kernel satisfies the condition of Lemma 2.4, we obtain [£(rett)| <
M¢(t). Hence fle)y < M 7(t) and the theorem follows from 2.3 and
1.11. <

2.6 We have defined the conjugate f of a function f € L1(T) as the
boundary value of the harmonic function f(re®) = (Q(r,-) * f)(t) where

2rsint
2.9 )= — " " i
(2.9) Qr?) 1—2rcost+ 12
is the conjugate Poisson kernel. Since the limit
sint cost/2 t
2.10 1,t) =1 t) = = = cot -
(2.19) QLY P @) 1—cost sint/2 g

is so obvious and so explicit, we are tempted to reverse the order of the
operations and write

(2.11) F=Qut)xf

The difficulty, however, is that Q(1, ¢) is not Lebesgue integrable so that
the convolution (2.11) is, as yet, undefined. We propose to show next
that, the convolution appearing in (2.11) can be defined as an improper
integral and that, with this definition, (2.11) is valid almost everywhere.

Lemma. For f € LY(T) and ¥ =1 —r, we have

22—

E(r.t) = \% / QUL f(t = 7)dr — F(re™)| < 40, (1).

9
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PROOF: Write

27—

Be<ly [ (@ - Qs - narl+
(2.12) v

We notice that the function

(1 —7)%sint
(1 —cost)(1 —2rcost+r?)
1—r

=1 rQ(l,t)P(r, t)

Q(lv t) - Q(T7 t) =
(2.13)

is odd, and is monotone decreasing on (0, 7). Ford <t <=«

1- 1—r, B
1+:Q(1,t) < 1+:(s1n19/2) Yen
so that
(2.14) Q(1,t) — Q(r, t) < wP(r,t).

It follows that

1 2r—1
B0 <5 [ 1000 - Qe - m)lar
(2.15) S

< %/P(r, DIF(E = 7)|dr < Mg (8):

In order to estimate Fs(r,t) it is sufficient to notice that in (—, 1) we
have |Q(r,t)| < 2= and consequently

—7r

1 v 2
(2.16) Ex(rt) < oy | = mldr < ZMip @),

Corollary.

/; . QU7 f(t — r)dr| < F(e) +4Mip ()

SUP oy <r
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2.7 The estimates (2.15) and (2.16) are clearly very wasteful. They
do not take into account the fact that Q(r,t) is odd and we can improve
them by writing

@17 Birt) = |5 /;(Q(LT) — QU ) (f(t—7) — f(t+ 7)) dr|

and

1 9
Ba(rt) = |5~ | Qrm)(f(t —7)— f(t+7))dr
(2.18) |27T/0 ‘

1

<l [ v e mar

where 0 < ¥, < ¢ (the mean value theorem).
At every point ¢ of continuity of f, and more generally, at every
point in which the primitive of f is differentiable, we have:

(2.19) /O“(f(th)ff(t+7))dT=o(1>‘1).

By (2.18) it is clear that if (2.19) holds, Ex(r,t) — 0.

Theorem. Let f € LY(T), at every t € T for which (2.19) is valid we
have, (9 =1—r),

27 —19

E(r.t) = ‘%/ﬁ QL) f(t —T)dr — f(re“) —0
asr — 1.

PROOF: As in (2.12), E(r,t) < Ei(r,t) + Es(r,t). We have already
remarked that under the assumption (2.19), lim,_,; Es(r,t) = 0 so that
we can confine our attention to F(r,t). For e > 0, let » > 0 be such
that for 0 < v <19

1
(2.20) ‘ /0 (f(t—7) = f(t+ T))dT] < ety

and write

21 B (re't) = (/;—I—/:) (Q(1,7) — Q(r,7)) (f(t —7)— f(t +7‘))d7" .
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The second integral tends to zero by virtue of the fact that on (7, ),
Q(r,7) — Q(1,7) uniformly. The first integral is integrated by parts.
Writing

~N
B(0,) = /O (F(t—7) — f(t+7))dr,

we see that it is bounded by

[@(01)(Q(L91) — Q(r,01))]5 + =

/; 9:1d(Q(1,91) — Qr, 01)

?

integrating by parts once more and remembering that Q(1,91) < 7w /v,
it follows from (2.14) and (2.20) that Fi(r,t) < 10e + o(1) and the
theorem is proved. <

2.8 Let F' be defined on T and assume that for all ¥ > 0, F'is integrable
on T\ (—¥,9).
DEFINITION:  The principal value of [ F(t)dt is

27—
PV / F(t)dt = lim / P(t)dt.
T 19—)0_ ,0

For f € LY(T) condition (2.19) is satisfied for almost all ¢+ € T; since
f(ret) — f(e*) almost everywhere, we obtain,

Theorem. Let f € L*(T). The principal value of 5= [ f(t—7)cot Zdr
exists for almost all t € T, and, almost everywhere,

fleity = PV% / F(t = 7) cot %dT.

2.9 Theorem 2.7 can be used both ways. We can use it to show the
existence of the principal value of PV [ f(t — 7) cot Zdr if we know
that f(e%) exists or to obtain the existence of f(e%) at points where

PV/f(t — 7)cot %d'r
clearly exists. For instance, if f satisfies a Lipschitz condition at ¢,

that is, if |f(¢t + h) — f(t)| < K|h|* for some K > 0 and a > 0, then
Jo [f(t = 7) — f(t+7)| cot Fdr < oo and it follows that f(e™) exists and

(2.21) f(e”) = % /Oﬁ(f(t —-7)— f(t—!—T)) cot %dT
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If f satisfies a Lipschitz condition uniformly on a set £ C T, that is, if
forsome K > 0and o > 0

|f(t+h)— f(t)] < K|h|* forallt € F,

then the integrals (2.21) are uniformly bounded and

1"
2,

(F(t = 7) = f(t+ 7)) cot odr — f(c*)

£

uniformly int € E as ¢ — 0. It follows, reexamining the proof of 2.7,
that f(re'*) — f(e') uniformly for ¢ € E as r — 1. In particular, if E is
an interval, it follows that f(e’’) is continuous on E.

2.10 Conjugation is not a local operation; that is, it is not true that if
f(t) = g(t) in some interval I, then f(¢) = g(¢) on I, or equivalently,
that if f(¢) = 0 on I, then f(#) = 0 on I. However,

Theorem. [f f(t) = 0 on an interval I, then f(t) is analytic on I.

PROOF: By the previous remarks f is continuous on /. Thus the func-
tion F = f+if is analytic in D and is continuous and purely imaginary
on /. By Schwarz’s reflection principle /' admits an analytic extension
through 7, and since F(e'*) = if(e'*) on I, the theorem follows. <

Remark: Using (2.21) we can estimate the successive derivatives of f
at points ¢ € I and show that f is analytic on / without the use of the
"complex" reflection principle.

EXERCISES FOR SECTION 2

The first three exercises were covered already in Theorem 1.8.4. The main
point here is the localization (exercise 4).

1. Assume f € Lip_(T), 0 < o < 1. Show that f € Lip,, (T) forall & < a.

2. Assume f € C™(T), n > 1. Show that f € C" *(T) and f* Y ¢
Lip,,(T) forall o < 1.

3. Assume f € Lip,(T), 0 < a < 1. Show that f € Lip, (T)
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Hint:

ft+h)— f(t) :% /(f(t +h—1) = f(t+h)) cot %df

— % /‘(f(t—‘r) - f(f)) cot %dr

27 —2h
=0 (h™) +/ (f(t—7) = f(t+ h)) cot T;th—

2h

f/ B (£(t=7) = f(1)) cot Zdr

:O(ha)-)—/ ) (f(t—T)—f(t))(COtT;—h — cot %)dr

2w —2h r+ h,
— (f(t+h) — F(1)) /2h cot ——dr.

4. Localize exercises 1-3, that is, assume that f satisfies the respective
conditions on an an interval I C T and show that the conclusions hold in I.

3 THE HARDY SPACES

In this section we study some spaces of functions holomorphic in
the unit disc D. These spaces are closely related to spaces of functions
on T and we obtain, for example, a characterization of L? functions
and of measures whose Fourier coefficients vanish for negative values
of n. We also prove that if for some f € L'(T), f(e') is summahie
then S[f] = S[f], and, finally, we obtain results concerning the absolute
convergence of some classes of Fourier series. We start with some

preliminary remarks about products of Moebius functions.

3.1 Let 0 < [¢] < 1; the function b(z,{) = |<C|<<§:j~)< defines, as is
well known, a conformal representation of D onto itseff, taking (¢ into
zero and zero into [¢|. The important thing for us now is that b(z, ¢)
vanishes only at z = ¢ and |b(z,{)| = 1on |z| = 1. If 0 < [{| < 7, then

b(2. &) = Tmf((r%g’) is holomorphic in |z| < r, vanishes only at z = (,
and |b(2,¢)| =1 on|z| = r. For { = 0 we define b(z,0) = 2.

Let f be holomorphic in |z| < r and denote its zeros there by
(1, ...,k (counting each zero as many times as its multiplicity). The

Ty

-1
function fi(z) = f(z) (H b(2 C—")) is holomorphic in |z| < 7, is
zero-free and satisfies |f1(z)| = |f(z)| for |z| = r. Since log|fi(z)| is
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harmonic in |z| < 7 we have

log|/1(0)] = — / log] f1 (re*) dt

and if we assume, for simplicity, that f(0) # 0, the formula above is
equivalent to Poisson-Jensen's formula:

G.1)  log|f(0)] + log Hr|§n| ! —/log\fre”ﬂdz‘

We implicitly assumed that f has no zeros of modulus r; however,
since both sides of the formula depend continuously on r, the above is
valid even if f vanishes on |z| = r. The reader should check the form
that Poisson-Jensen’s formula takes when f vanishes at z = 0.

The term log [T%_, 7|¢,| ™! is positive, and removing it from (3.1)
we obtain Jensen's inequality

1 7/ ,
(32) log (0)| < 5 [ logl (7<) .
or, if f has a zero of order s at z =0,
1
logllimy 2 £(2)] +log(r*) < 5 [ loglf(re"ldt.

Another form of Jensen’s inequality is: let f be holomorphic in
|z| < randlet(],...,{,, be (some) zeros of f in |z| < r, counted each
one at most as many times as its multiplicity. Then

m

(33) FOI+3 ot ) < 5 5 [ ol et

Inequality (3.3) is obtained from (3.1) by deleting some (positive) terms
of the form log(r|¢,|~!) from the left-hand side.

3.2 Letp > 0 and let f be holomorphic in D. We introduce the nota-
tion

(.4 molfr) = 5= [Iftre)pat.

If0 <7 < Iandp < 1wehave f(rpeit) = f(re*) « P(p,t) and conse-
quently for p > 1 we have

hp(f,rp) = || f(rpe s < 1f(re) 7 = hyp(for)



1II. THE CONJUGATE FUNCTION 95

or, in other words, h,(f,r) is a monotone nondecreasing function of r.
The case p = 2 is particularly obvious since for f(2) = > a,2™ we have
ha(f,7) = |a,|?r®". We show now that the same is true for all p > 0.

Lemma. Let f be holomorphic in D and p > 0. Then hy,(f,r) is a
monotone nondecreasing function of r.

PROOF: We reduce the case of an arbitrary positive p to the case p = 2.
Letr; < r < 1. Assume first that f has no zeros on |z| < r and consider
the function® g(z) = (f(2))?/?; then

1 ‘ 1 : 1 .
o7 [lrtnetypar= oo [lgtriePar <o [lotre)Pa
o= [Irtrepra

or hy(f,r1) < hy(f, 7).

If f has zeros inside |z| < r but not on |z| = r, we denote the zeros,
repeating each according to its multiplicity, by (i, . .., (x, and write

- e(ITsC2)

For |z| < r we have |f(2)| < |fi(z)|, for |z| = r we have |f(z)| = | f1(2)]
and f; is zero-free in |z| < r. It follows that

hp(fv r) < hp(.flv?"l) < h'p(fbr) = h/p(f)"v)-

Since h,(f,r) is a continuous function of r, the same is true even if f
does have zeros on |z| = r, and the lemma is proved, <

3.3 Lemma. Let {(,} be a sequence of complex numbers satisfying
|Cn] < 1and > (1 —|¢a]) < co. Then the product

(3.5) B(z) = Hz@%fﬁlg“‘

CnF#0 |Cn Zg’”)

converges absolutely and uniformly in every disc D, = {z:|z| < r},
r <1l

T Any branch of (f(z))#/2.
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PROOF: It is sufficient to show that }*|1 — lg”l((i%?)\ converges uni-
formly in |z| <r < 1. But

Cn Cn — Z) |Cn| + ZC,, |Cn|) 1+7r
— ‘Cn 1 — ZCW | |§n (1 — zCn) S 1_ ’I“(l - |CILD
and the series converges Y (1 — |(,|) < oo. <

The product (3.5), often called the Blaschke product corresponding
to {¢,}, is clearly holomorphic in D and it vanishes precisely at the
points (,. Nothing prevents, of course, repeating the same complex
number a (finite) number of times in {¢, }, so that we can prescribe not
only the zeros but their multiplicities as well. Since all the terms in
(3.5) are bounded by 1 in modulus, we have |B(z)| < 1 in D.

3.4 We now introduce the spaces H? (H for Hardy) and N' (N for
Nevanlinna).

DEFINITION: The space HP, p > 0, is the (linear) space of all func-
tions f holomorphic in D, such that

G6) (Il = lim hy(f.r) = supoercrhy(f.r) < oc.

The space N is the space of all functions f holomorphic in D, such that

1 .
3.7) 1l = supo, o1 o / log™*|f(re™)|dt < oo.

2w

Remarks: (a) For p > 1, || ||g» as defined in (3.6) is a norm and we
shall show later that H? endowed with this norm, can be identified with
a closed subspace of LP(T). For p < 1, || ||, satisfies the triangle
inequality and is homogeneous of degree p. It can be used as a metric
for H?; || ||g» is homogeneous of degree one but does not satisfy the
triangle inequality. || ||ar is not homogeneous and does not satisfy the
triangle inequality.

(b) Ifp/ < pwe have N' > HY > HP.

The space H? has a simple characterization:

Lemma. Lef f(z) = Y a,2™; then f € H? if, and only if, 3" |a,|? is
finite.

PROOF: ha(f,7) = 30 |an|?r?™. Tt follows that || f||%. = Yo |anl*. <
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An immediate consequence is that in this case f is the Poisson integral
of f(eit) ~ 280 aneint_

3.5 Lemma. Let f ¢ N and denote its zeros in D by (1,(s, ..., each
repeated according to its multiplicity. Then Y (1 —|(,|) < oc.

Remark: The convergence of the series ) (1 —|(,|) is equivalent to the
convergence of the product []|{,| hence to the boundedhess (below) of
the series > log|(,,| (not counting the zeros at the origin, if any).

PROOF: We may assume f(0) # 0. By Jensen’s inequality (3.3), if M
is fixed and r sufficiently close to 1

M
log|f(0)] = [ fllx < log|¢u| — Mlogr
1

Letting » — 1 we obtain

M
log| F(0)] = [Illx < D og|én|
1
and since M is arbitrary the lemma follows <

3.6 If we combine Lemma 3.3 with 3.5 we see that if f € N, the
Blaschke product corresponding to the sequence of zeros of f is a well-
defined holomorphic function in D, having the same zeros (with the
same multiplicities) as f and satisfying |B(z)| < 1 in D. If we write
F(z) = f(2)(B(2))~! then F is holomorphic and satisfies |F(z)| >
|f(z)| in D. We shall refer to f = BF as the canonical factorization
of f.

Theorem. Let f € H”, p > 0, and let f = BF be its canonical
Sactorization. Then F € H? and ||F| » = || f| 1z»-

PROOF: The Blaschke product B has the form
N
B(z) = ]\}Enoo z™ ];[b(z, Cn)-

If we write Fy(z) = f(z)(2™ H{V b(z, Cn))ﬁl, then Fi converges to F
uniformly on every disc of the form |z| < » < 1. Since the absolute
value of the finite product appearing in the definition of F) tends to
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one uniformly as |z| — 1, it follows from Lemma 3.2 that Fiy € H? and
| Fnllar = || fllge. Letr < 1, then

hp(Fyr) = T hy(F,7) < T ([Exll = |

Now h,(F,r) < ||f|[%, for all r < 1 is equivalent to ||F||gr = || f]lzr,
and since the reverse inequality is obvious, the theorem is proved. <«

Theorem 3.6 is a key theorem in the theory of H? spaces. It allows
us to operate mainly with zero-free functions which, by the fact of being
zero-free, can be raised to arbitrary powers and thereby move from one
H? to a more convenient one. This idea was already used in the proof
of Lemma 3.2. Our first corollary to Theorem 3.6 deals with Blaschke
products.

3.7 Corollary. Let B be a Blaschke product. Then |(et)| = 1 almost
everywhere.

PROOF: Since |B(z)| < 1 in D it follows from Lemma 1.2 that B(e')
exists as a radial (actually: nontangential), limit for almost all ¢ € T.
The canonical factorization of f = B is trivial, the function F' is identi-
cally one, and consequently

I1B1 = 5 [ 1B P

Since |B(e')| < 1, the equality above can hold only if |B(e*)| = 1
almost everywhere. <

3.8 Theorem. Assume f € HP, p > 0. Then the limit lim,_ f(re')
exists for almost all t € T and, denoting it by f(e'), we have

91 = 55 [P

PROOF: The case p = 2 follows from 3.4.

For arbitrary p > 0, let f = BF be the canonical factorization of
f, and write G(z) = (F(2))?/?. Then G belongs to H> and conse-
quently G(re) — G(e') for almost all ¢ € T; at every such ¢, F(re't)
converges to some F(e') such that |[F(e)[P/? = |G(e)|. Since B
has radial limit of absolute value one almost everywhere we see that
f(e™) = lim f(re') exists and |f(e®)[P/? = |G(e)| almost everywhere.
Now |11, = % = |Gl4s = & [1G(e)Pdt = & [1/(e")” and
the proof is complete. <
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3.9 The convergence assured by Theorem 3.8 is pointwise conver-
gence almost everywhere. For p > 2 we know that f is the Poisson
integral of f(e') and consequently f(re'*) converges to f(e’) in the
L?(T) norm. We shall show that the same holds for p = 1 (hence for
p > 1); first, however, we use the case p > 2 to prove:

Theorem. Let 0 < p < p/ and suppose f € H? and f(e') € L¥ (T).
Then f ¢ H” .

PROOF: As before, if we write f = BF, G(z) = (F(2))?/?, then G ¢
H? and G(e't) e L2"/¢(T). G is the Poisson integral of G(e'*) and
consequently G € H?"'/? which means F € H? , hence f € H? . <

Corollary. Let f € L'(T) and assume f € L'(T): then (f +if) € H'.
PROOF: We know (Corollary 1.6) that (f+if) € H? forall p < 1 and
by the assumption (f +if)(e't) € L(T). <
3.10 Theorem. Every function f in H' can be factored as f = fi f»
with fi, fa € H?.

PROOF: Let f = BF be the canonical factorization of f. We can take
h=F'2, fo = BF'/2. «
3.11 We can now prove:

Theorem. Let f € H' and let f(e*) be its boundary value. Then f is
the Poisson integral of f(e't).

PROOF: We prove the theorem by showing that f(re’t) converges to
f(e®) in the L' norm. This implies that if f(z) = 3 a,2", then a,, are
the Fourier coefficients of f(e®) which is clearly equivalent to f being
the Poisson integral of f(e™*).

Write f=nhht with fj € H2, j=1,2.

J(ret) = f(e) = [ilre™) folre™) — () fole);

adding and subtracting fi(e®) fa(re®) and using the Cauchy-Schwarz
inequality, we obtain

1f(re™) — f(e)|er < | fall 2l fr(re™) — fr(e™)]| 2
+ | il fo(re™) — fole™)| 2

Asr — 1, | fi(re®) — fi(e")|lr2 — 0, and the proof is complete. <
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Remark: See exercise 2 at the end of the section for an extension of
the theorem to the case 0 < p < 1.

Corollary. Let f € LY(T) and f € L'(T). Then S[f] = S[f].

}
PROOF: From 3.9 and the theorem above follows that f(re™) is the
Poisson integral of f(e®) (see Remark 1.4). <

3.12 Theorem. Assume p > 1. A function [ belongs to H? if, and
only if, it is the Poisson integral of some f(e?*) € LP(T) satisfying

(3.8) f(n)=0 foralln<O.

PROOF: Let f € HP; by Theorem 3.11, f is the Poisson integral of
f(e') and (3.8) is clearly satisfied. On the other hand, let f ¢ L?(T)
and assume (3.8); the Poisson integral of f,

frey =3 fyremt =3 fln)a
0 0

is holomorphic in D, and since || f(re')||z» < | f(e'*)] v, it follows that
f(z) € HP. <

3.13 For p > 1, we can prove that every f € H? is the Poisson integral
of f(e) without appeal to Theorem 3.11 or any other result obtained in
this section. We just repeat the proof of Lemma 1.2 (which is the case
p = o0 of 3.12): if f € LP(R), || f(re™)|, is bounded as » — 1; we can
pick a sequence 7, — 1 such that f,(e®) = f(r,e") converge weakly
in L?(T) to some f(e"). Since weak convergence in LP(T) implies
convergenee of Fourier coefficients, it is clear that (3.8) is satisfied and
that the function f with which we started is the Poisson integral of
f(e®).

For p = 1 the proof as given above is insufficient. L(T) is a sub-
space of M (T), the space of Borel measures on T, which is the dual of
C(T), and the argument above can be used to show that every f € H*
is the Poisson integral of some measure ;o on T. This measure has the

property
(3.9 a(n) =0, foralln <O0.

All that we have to do in order to complete the (alternative) proof of
Theorem 3.12 in the case p = 1 is to prove that the measures satisfying
(3.9), often called analytic measures, are absolutely continuous with
respect to the Lebesgue measure on T.
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Theorem (F. and M. Riesz). Let i be a Borel measure on T satisfy-
ing
3.9 a(n) =0, foralln <D0.
Then p is absolutely continuous with respect to Lebesgue measure.
We first prove:

Lemma. Let E C T be a closed set of measure zero. There exists a
function ¢ holomorphic in D and continuous in D such that:

(i) ¢(ey=1 onE,

3.10) (41) |<p(€it)| <1 onD\E-

PROOF: Since F is closed and of measure zero we can construct a func-
tion 1 on T such that ¥(e't) > 0 everywhere, 1(e*) is continuously dif-
ferentiable in each component of T \ E, (e") — oo as t approaches
E, and ¢(e**) ¢ L*(T). The Poisson integral () of (e'') is positive
on D and ¥(z) — oc as z approaches E. The conjugate function is
continuous in D \ E (see the end of section 2) and consequently, if we
put o(z) = % then ¢ is holomorphic in D and continuous in
D\ E. At every point where (z) < co we have |¢(z)| < 1, and as
¥(z) — oc, p(z) — 1. If we define p(z) = 1 on F then ¢ satisfies
(3.10). <

PROOF OF THE THEOREM: Assume that u satisfies the condition (3.9).
We can assume /:(0) = 0 as well (otherwise consider p — 1(0)dt) and it
then follows from Parseval’s formula that

(3.11) (Foe) =/fdu=0

for every f € C(T) which is the boundary value of a holomorphic func-
tion in D or, equivalently, such that f(n) = 0 for all negative n. Let
E C T be closed and of (Lebesgue) measure zero. Let ¢ be a function
satisfying (3.10). Then, by (3.11)

/ @"dp =0 forallm >0

and by (3.10)
lim [ ¢™du = p(FE).

m—0oQ

Thus p(E) = 0 for every closed set E of Lebesgue measure zero and,
since p 1s regular, the theorem follows. <
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3.14 Theorem 3.13 can be given a more complete form in view of the
following important

Theorem. Let f € HP, p > 0, then
log| f(e"")| € L*(T)

Remarks: The same conclusion holds under the weaker assumption
f € N. We state it for H? since we did not prove the existence of f(e*)
for f € N (cf. [28], Vol. 1, p. 276). Since plog™|f| < | f|? we already
know that log™|f(¢**)| € L'(T). Thus the content of the theorem is that
f(e) cannot be too small on a large set.

PROOF: Replacing f by z~™f, if f has a zero of order m at z = 0, we
may assume f(0) # 0. Let » < 1; then, by Jensen’s inequality

logl£(0)] = £y < ~5- [ log~[7(re")ldt <0

(where log™ 2 = —logz if z < 1 and zero otherwise). It follows that
J|log| f(re')||dt is bounded as r — 1 and the theorem follows from
Fatou’s lemma. <

Corollary. If f # 0isin H?, f(e*) can vanish only on a set of measure
zero.

Combining Theorem 3.13 with our last corollary we obtain that ana-
lytic measures are equivalent to Lebesgue’s measure (i.e., they all have
the same null sets).

3.15 Theorem. Let E be a closed proper subset of T. Any continuous
function on E can be approximated uniformly by Taylor polynomials*.

PROOF: We denote by C(FE) the algebra of all continuous functions on
E endowed with the supremum norm. The theorem claims that the
restrictions to E of Taylor polynomials are dense in C(E).

If a measure p carried by £ is orthogonal to all 2", n = 0,1,...,
it is analytic: (2™, u) = j(n) = 0, and hence p = fdt with f € H', f
carried by E. By Theorem 3.14, f = 0. Hence there is no nontrivial
functional on C(F), which is orthogonal to all Taylor polynomials, and

the theorem follows from the Hahn-Banach theorem. <

TWe use the term "Taylor polynomial” to designate trigonometric polynomials of the
form Z(]]V anei™t,
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3.16 We finish this section with another application of 3.10.
Theorem (Hardy). Let f(z)=) o anz" € H'. Then ) "|a,|n"' <ooc.

Remark: The theorem can also be stated: Ler f € L(T) satisfy (3.8),
then 37| f(n)|n =t < [ f] e

PROOF: If F(c%) is a primitive of f(e®) then F is continuous on T and
consequently its Fourier series is Abel summable to F' at every ¢t € T.
In particular »_{"(a, /n)r™ tends to a finite limit as » — 1. If we assume
a, > 0 for all n then Y [° a,/n is clearly convergent (compare with
1.4.2).

In the general case we write f = fifo with f; = Y. A;,2" € H?,
j = 1,2 Write £ () = Y| A, ulz", and J*() = f{(2)f3 () = L aj2V.

The functions f; are clearly in H?, hence f* ¢ H' and, since aj, > 0,
it follows from the first part of the proof that > (a} /n) < co. But

T n

lay| = ‘ZAl,kAZn—kl < ZlAl,k”AZ,n—kl =a,
k=0 k=0
and the theorem follows. <

3.17 Let f € H! and assume that f(e%) is of bounded variation on
T. If f ~ > ane’™ then > 7" ina,e™ is the Fourier-Stieltjes series
of df. Thus the measure df satisfies the condition of Theorem 3.13 and
consequently df = f'dt and f/(z) is in H'. Combining this with 3.16
we obtain:

Theorem. Let f € H' and assume that f(e') is of bounded variation
oo

onT. Then f(e'') is absolutely continuous and 3°°__| f(n)| < oo
An equivalent form of the theorem is (see 3.9):

Theorem. Let f,f € LY(T) and assume that both f and f are of
bounded variation. Then both f and [ are absolutely continuous. and

S ()] < oo

EXERCISES FOR SECTION 3

1. Deduce Theorem 3.13 (F. and M. Riesz) from Theorem 3.11.
2. Show that for all p > 0, if f € H?, then [[f(e") — f(re®)|Pdt — 0 as

r— 1.
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Hint: Reduce the general case to the case in which f is zero-free. In the case
. ~ . 1
that f is zero-free, write fi = f2; then f; € H?? and

F(e) = fre’) = (fu(e") = falre™) (f(e") + frre™));

hence show that if the statement is valid for 2p is also valid for p. Use the fact
that it is valid for p > 2.

3. Let E be a closed set of measure zero on T. Let ¢ be a continuous
function on E.

(a) Show that there exists a function ®, holomorphic in D and continuous
on D such that ®(¢*) = p(e'’) on E.

(b) Show that @ can be chosen satisfying the additional condition

p(e)].

Hint: Construct ® by successive approximation using 3.15 and Lemma 3.13.
4. Let f € L*(T) be absolutely continuous and assume f’log™|f’| € L(T).
Prove that 37| f(n)] < cc.

sup, . p|®(2)| = supitc



Chapter IV

Interpolation of Linear Operators and the
Theorem of Hausdorff-Young

Interpolation of norms and of linear operators is really a topic in
functional analysis rather than harmonic analysis proper; but, though
less so than ten years ago, it still seems esoteric among authors in func-
tional analysis and we include a brief account. The interpolation theo-
rems that are the most useful in Fourier analysis are the Riesz-Thorin
theorem and the Marcinkiewicz theorem. We give a general description
of the complex interpolation method and prove the Riesz-Thorin theo-
rem in section 1. In the second section we use Riesz-Thorin to prove
the Hausdorft-Young theorem. We do not discuss the Marcinkiewicz
theorem although it appeared implicitly in the proof of theorem III.1.9.
We refer the reader to Zygmund ([28] chap. XII) for a complete account
of Marcinkiewicz’s theorem.

1 INTERPOLATION OF NORMS AND OF LINEAR OPERATORS

1.1 Let B be a normed linear space and let F' be defined in some do-
main 2 in the complex plane, taking values in B. We say that F' is
holomorphic in € if, for every continuous linear functional i on B, the
numerical function h(z) = (F(z), u) is holomorphic in §2. Assume now
that B is a linear space with two norms || || and || ||; defined on it. We
consider the family B of all B-valued functions which are holomorphic
and bounded, with respect to both norms, in a neighborhood of the strip
Q = {2:0 < R(z) < 1}. Bis a linear space which we norm as follows:
for F € B put

(1.1) IE1 = sup, {1 F(iy)llo; [|1F(1+iy)ll1}-

For 0 < a < 1, the set B, = {F € B: F(«a) = 0} a linear subspace of
B. We shall say that || ||o and || |1 are consistent if B,, is closed in 3 for

105
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all 0 < o < 1. A convenient criterion for consistency is the following
lemma:

Lemma. Assume that forevery f € B, f # 0, there exists a functional
u continuous with respect to both || |0 and || |1 , such that {f, ) # 0.
Then || ||o and || |1 are consistent.

PROOF: Let0 < o < landlet F,, € B, F, — Fin 5. Let ux be an
arbitrary linear functional continuous with respect to both norms. The
functions (Fn(z), 1) are bounded on the strip Q and tend to (F(z), u)
uniformly on the lines z = iy and z = 1 + iy. By the theorem of
Phragmen-Lindelof the convergence is uniform throughout €2 and in
particular (F(«),p) = lim,_ o (F,(a),u = 0. Since this is true for
every functional It it follows that F(«) = 0, that is, F' € B3, and the
lemma is proved. <

Remark: The condition of the lemma is satisfied if || ||o and || |1 both
majorize a third norm || ||2. This follows from the Hahn-Banach theo-
rem: if f # 0, there exists a functional 1 continuous with respect to || |2
such that (f, u) # 0. Itis clear that if , || ||; > || ||2 then x is continuous
with respectto || ||;, 7 =10, 1.

1.2 We interpolate consistent norms on B as follows: for 0 < o < 1,
the quotient space B/B,, is algebraically isomorphic to B (through the
mapping F — F(a)). Since B, is closed in B, B/8, has a canonical
quotient norm which we can transfer to B through the aforementioned
isomorphism; we denote this new norm on B by || |-

The usefulness of this method of interpolating norms comes from
the fact that it permits us to interpolate linear operators in the following
sense:

Theorem. Let B (resp. B') be a normed linear space with two consis-
tent norms || ||o and || ||1 (vesp. || || and || ||}. Denote the interpolating
norms by || ||o (resp. || ||I), 0 < a < 1. Let S be a linear transformation
from B to B' which is bounded as

S , , .
(1.2) (B[l l; = (B I'l;) 7=0,1
Then S is bounded as
S ’ /
(1.3) (B, [ la) = (B lla)s

and its norm ||S||., satisfies

(1.4) ISlla < ISlla~lISII5
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PROOF: We denote by B’ the space of holomorphic B’-valued functions
which is used in defining || ||/,. The map B S, B’ can be extended to a
map B > B by writing SF(z) = S(F(z)). To show that SF' so defined
is holomorphic, we consider an arbitrary functional p continuous with
respect to || || or || ||} and notice that (SF(z), u) = (F(z),S*u). Since
SF(z) is clearly bounded it follows that SF € B'.

Let f € B, || f|lla = 1; then there exists an F' € B such that F'(«) = f
and such that || F|| < 1+ e. Applying S to F, we obtain

1Sflla < ISFI < (14 2) max([[S[lo, [[S]1);

hence
[IS]le < max([[Slo, [IS]l1)

which proves the continuity of (1.3). To prove the better estimate (1.4),
we consider the function ¢**=*) F(z), where e* = S|, |IS|I;*. We
have

ISl < IS(e*=== F(2))|
= sup, {e**[SF(it) o, "~ |SF(1+it)]||, }
< (1+ ) sup{e*[Slo, " ]IS 1}
=(1+o)|Sl5 IS5 . <

Remark: The idea of using the function ¢**~%) goes back to Hadamard
(the "three-circles theorem"); it can be used to show that, for every
[ €B,

(L.5) e < NG NANE -

1.3 A very important example of interpolation of norms is the follow-
ing: let (X,dr) be a measure space, let 1 < py < p; < oo, and let B
be a subspace of LP0 N LP*(dy). We claim that the norms || |lo and || |1
induced on B by LP*(dr) and LP*(dr), respectively, are consistent. By
Lemma 1.1, all we have to show is that, given f € B, f # 0, there exists
a linear functional p, continuous with respect to both norms, such that
(f, 1) # 0; we can take as y the functional defined by (f, ) = [ fgdx
where g € L' N L>(dr) has the property' that fg > 0 whenever |f| > 0.

TIf we write f = | f|e?? with real-valued ¢, we may take g = min(1, | f|Po)ei?,
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Theorem. Let (X,dy) be a measure space, B = LPo N LP1(dy) (with
1 <py < p1 < ). Denote by || ||;, the norms induced by LPi (dx), and
by || |lo the interpolating norms. Then || |, coincides with the norm
induced on B by LP~(dx) where

Dop1 Po .
1.6 pm—— (= =),
(1.6) p et prl—a) T Im oc)
PROOF: Let f € B and ||f||,« < 1. Consider F(z) = |f|e(zT)+1eir
where f = | f|e* and

g Po— DM (: —1
1

== ° if p =oo>.
poa+pi(l —a) '

We have F(a) = f and consequently | f|[, < [[F. Notice now that
|F(iy)| = | f|*~2* = | fP=/P°| so that

Eol = ( [1ma) " <1

similarly ||F(1+it)||; <1 (use the same argument if p; < oo and check
directly if p; = o0); hence ||f]l« < 1. This proves || |« < || |lrre. In
order to prove the reverse inequality, we denote by qu, ¢1 the conjugate
exponents of py and p; and notice that the exponent conjugate to p,, is

> qoq1 q .
(1.6%) qazm (:g if qo—oc)
We now set B’ = L% N L% (dr) and denote by B’ the corresponding
space of holomorphic B’-valued functions.

Let fB and assume || f||». > 1; then, since B’ is dense in LY~ there
exists a g € B’ such that ||g|| e« <1 and such that [ fgdr > 1. As in the
first part of this proof, there exists a function G € B’ such that G(a) = ¢
and ||G|| (with respect to go,¢1) is bounded by 1. Let F' € I3 such that
F(a) = f . The function h(z) = fF(2)G(z)dr (remember that for each
z € Q, F(z) € B and G(z) € B') is holomorphic and bounded in  (see
Appendix A). Now h(a) > 1, hence, by the Phragmén-Lindel6tf theo-
rem, |h(z)| must exceed 1 on the boundary. However, on the boundary
|h(z)| < |F|IIG]| < || F| so that |F|| > 1. This proves || f|» > 1 and it

follows that || ||, and || || L. are identical. <

1.4 As a corollary to Theorems 1.2 and 1.3, we obtain the Riesz-
Thorin theorem.



IV. INTERPOLATION OF LINEAR OPERATORS 109

Theorem. Let (X.1) and (2),9) be measure spaces. Let B = LP° N
LP(dx) and B' = LPo N LP(dy), and let S be a linear transformation
from B to B, continuous as S : (B, || ||;) — (B, |I}), = 0,1, where
| 1l; (resp. || |I}) is the norm induced by LFi(dy) (resp. LPi(dy)). Then S
is continuous as

S: (Bl lla) — (B ll5)

where || ||, (resp. || ||L,) is the norm induced by LP= (dx) (resp. LP~(dy)),
Po and pl, are defined in (1.6)).

A bounded linear transformation S from one normed space B to
another can be completed in one and only one way, to a transformation
having the same norm, from the completion of B into the completion
of the range space of S. Thus, under the assumption of 1.4, S can
be extended as a transformation from L?=(x) into LP=(n) with norm
satisfying (1.4). The same remark is clearly valid for Theorem 1.2.

1.5 Our first application of the Riesz-Thorin theorem is Bochner’s
proof of M. Riesz’ Theorem III.1.11. We show that L?(T) admits con-
jugation if p is an even integer. It then follows by interpolation that the
same is true for all p > 2, and by duality, for all p > 1.

Let f be a real-valued trigonometric polynomial and assume, for
simplicity, f(0) = 0. As usual we denote the conjugate by f and put
= %(f +if ). f” is a Taylor polynomial* and its constant term is
zero; the same is clearly true for (f°)?, p being any positive integer.
Consequently

o / (F(e)Pdt = 0.

Assume now that p is even, p = 2k, and consider the real part of the
identity above; we obtain:

5 fursa- ()5 [irras () [t
=0,

By Holder’s inequality

1

o [ (PP ] < | IS

TWe use the term "Taylor polynomial” to designate trigonometric polynomials of the
form E(J]V eint,
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hence

If

- 2k\ | z108— 2K\ | = o
the < (5 )10 + () 1A+

or, denoting
Y = ||l |1 o

we have

Y2 < (ZQk)szz—l— (24k)Y2k4y2k4_._“._’_ 1

which implies that Y is bounded by a constant depending on % (i.e.,
on p). Thus the mapping f — [ is bounded in the L?(T) norm for all
polynomials f, and, since polynomials are dense in L?(T), the theorem
follows.

EXERCISES FOR SECTION 1

1. Prove inequality (1.5).

2. Let {an} be a sequence of numbers. Find min()_|an|) under the con-
ditions Y |an|* = 1, Y Jan|* = a. 3. Let B be a vector space with consistent
norms || ||o, || |1, and B a space of linear functionals on B which are continu-
ous with respect to both || |lo and || [|2. Let || ||; be the norm on B induced by
the duality with (B, || [|;), 7 = 0,1, and || || the interpolating norms. Let || ||o»
be the norm on B induced by the dual of (B, || ||a). Prove that for f € B,

I fllas < flla-

4. Let (X , B) be a measurable space, and let ;+ and v be positive measures
onit. Let B = L*(X,B,u) N L*(X,B,v).
i. What are necessary and sufficient conditions for the consistency of the
norms (on B): | flo = [| |22y, and || [lr = [| 220

ii. When the norms above are consistent, what are the interpolating norms
12

1
5. Let0 < a < b. For f € C°°(T), define || f|lo = <Z|f(n)|2|n|2“) * and

1
1£l: = (1F(n)%n*) " Show that the norms so defined are consistent on

C*°(T) and find the interpolating norms || || «.

6. Assume 0 < a < b. What are the interpolating norms between the ones
induced on C°°(T) by C%(T) and by C*(T)?
Hint: For f € L*(T) define ||f|lwx = ||[Wor (f)||lco; the notation is that of
1.8.2. For 0 < a < b, and for f € C°°(T), define || f|lo = sup,||f||w.x2°* and
14112 = sup, | fllw.x 2.
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2 THE THEOREM OF HAUSDORFF-YOUNG

The theorem of Riesz-Thorin enables us to prove now a theorem
that we stated without proof at the end of 1.4 (Theorem 1.4.7); it is
known as the Hausdorff-Young theorem:

2.1 Theorem. Let 1 < p < 2 and let q be the conjugate exponent,
thatis, g = p/(p — 1). If f € LP(T) then >_|f(n)|? < co. More precisely

(SIF DT < |1 f|1oe

PROOF: The mapping F : f — {f(n)} is a transformation of functions
on the measure space (T, dt) into functions on (Z, dn), Z being the group
of integers and dn the so-called counting measure, that is, the measure
that places a unit mass at each integer. We know that the norm of the
mapping as L'(T) — L>(Z) = £*° is 1 (1.1.4) and we know that it is an
isometry of L?(T) onto L?(Z) = ¢* (1.5.5). It follows from the Riesz-
Thorin theorem that F is a transformation of norm < 1 from L?(T) into
LY(Z) = ¢7, which is precisely the statement of our theorem. We can
add that since the exponentials are mapped with no loss in norm, the
norm of F on LP(T) into ¢? is exactly 1. <

2.2 Theorem. Let 1 < p < 2 and let q be the conjugate exponent. If
{an} € (P then there exists a function [ € Li(T) such that a,, = f(n).
Moreover; ||f||s < (3 |an[P)!/P.

PROOF: Theorem 2.2 is the exact analog to 2.1 with the roles of the
groups T and Z reversed. The proof is identical: if {a,} € £' then
f(t) = Y a,e™ is continuous on T and f(n) = a,,. The case p = 2 is
again given by Theorem L1.5.5 and the case 1 < p < 2 is obtained by
interpolation. <

2.3 We have already made the remark (end of 1.4) that Theorem 2.1
cannot be extended to the case p > 2 since there exist continuous func-
tions f such that 3| f(n)|*~< = oo for all ¢ > 0. An example of such
a function is f(t) = >07, nl‘;;n(l%emt (see [28], vol. L, p. 199);
another example is g(t) = 3. m~227"/2f,.(t) where f,, are the Rudin-
Shapiro polynomials (see exercise 6, part ¢ of [.6). We can try to ex-
plain the phenomenon by a less explicit but more elementary construc-
tion.

The first remark is that this, like many problems in analysis, is a
problem of comparison of norms. It is sufficient, we claim, to show
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that, given p < 2, there exist functions g such that |||« < 1 and
> |g(n)|P is arbitrarily big. If we assume that, we may assume that our
functions ¢ are polynomials (replace g by 0,(g) with sufficiently big
n) and then, taking a sequence p; — 2, g; satisfying ||g;|l.c << 1 and
Mg (n)|Pi > 27 we can write f = 3 j~le"™i!g;(t) where the integers
m; increase fast enough to ensure that e”™i%g;(¢) and e"™* g, () have
no frequencies in common if j # k. The series defining f converges
uniformly and for any p < 2 we have

Simr =Y Slamr 2 3 Sl = .

pj>p’

One way to show the existence of the functions g above is to show that,
given £ > 0, there exist functions g satisfying

1 .
(21) HgHOO <1, ”g”L2 > 57 Supn,|g(n)‘ <e.

In fact, if (2.1) is valid then

. 1 .
SlglP > e Y lgm)f? > e,

and if £ can be chosen arbitrarily small, the corresponding g will have
> 1g(n) P arbitrarily large.

Functions satisfying (2.1) are not hard to find; however, it is im-
portant to realize that when we need a function satisfying certain con-
ditions, it may be easier to construct an example rather than look for
one in our inventory. We therefore include a construction of functions
satisfying (2.1). The key remark in the construction is simple yet very
useful: if P is a trigonometric polynomial of degree N, f € L*(T) and
A > 2N is an integer, then the Fourier coefficients of p(t) = f(\t)P(t)
are either zero or have the form f(m)P(k). This follows from the iden-
tity (1) = D\ maken f(m)P(k) and the fact that there is at most one
way to write n = Am + k with integers m, k such that |k| < N < A\/2.

Consider now any continuous function of modulus 1 on T, which is
not an exponential (of the form ¢'*); for example the function (t) =
e'eost. Since Y |¢[> = [#[|2. = 1 and the sum contains more than one
term, it follows that sup|t(n)| = p < 1. Let M be an integer such that
pM < e. Letp < 1 be such that n™ > L. Let ¢ = on(¢), where the
order N is high enough to ensure 1 < |p(t)| < 1. It follows from the
preceding remark that if we set A = 3N and g(t) = H;Vil o(Nt), the
Fourier coefficients of ¢ are products of M Fourier coefficients of ¢;
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hence |§(n)| < pM < . On the other hand § < 7™ < [g(t)] < 1 and
(2.1) is valid.

2.4 We can use the polynomials satisfying (2.1) to show also that The-
orem 2.2 does not admit an extension to the case p > 2. In fact, we
can construct a trigonometric series > a, ¢ which is not a Fourier-
Stieltjes series, and such that )" |a,|? < co forall p > 2.

Let g, be a trigonometric polynomial satisfying (2.1) with e = 277,
Since now p > 2 we have

S g ()P < &2 3 g;(n))? < 27902

and consequently, for any choice of the integers m;, > je"™itg;(t) =
S ane™ does satisfy 3 |a, [P < oo for all p > 2. We now choose the
integers m; increasing very rapidly in order to well separate the blocks
corresponding to je"™'g;() in the series above. If we denote by N;
the degree of the polynomial g;, we can take m; so that m; — 3N; >
mj_1+3N;_1. If Y a,e™ is the Fourier-Stieltjes series of a measure
then

im;t

pok eI = je™g; (W, being de la Vallée Poussin’s kernel)

and consequently

. J
3wl arery > dllgsllr > 1

which is impossible. We have thus proved

Theorem. (a) There exists a continuous function f such that for all
p <2 YIf(n)l = . |

(b) There exists a trigonometric series, > a,e™, which is not a Fourier-
Stieltjes series, such that | f(n)|P < oo for all p > 2.

Both statements can be improved. See Appendix B.

2.5 We finish this section with another construction: that of a set £
of positive measure on T which carries no function with Fourier coeffi-
cients in £? for any p < 2. Such a set clearly must be totally disconnected
and therefore carries no continuous functions. Its indicator function,
however, is a bounded function whose Fourier coefficients belong to no
2, p < 2.

Theorem. There exists a compact set E on T such that E has pos-
itive measure and such that, the only function [ carried by E with
SIFG)P < oo for some p < 2, is f =0.
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First, we introduce the notation?

22)  flres = suplfDI I fllrer = 17
and prove:

Lemma. Let = > 0, 1 < p < 2. There exists a closed set E.,, C T
having the following properties:

(1) The measure of E. , is > 2w — &.

(2) If f is carried by E. ,, then

[ fllzee < ellfllFer -

PROOF: Lety > 0. Put

¥

(1) = 12T for 0 <t<+v mod 27
= 1 fory <t <27 mod 27.

Then, by Theorem 2.1

1

1_ 1 1
(23) H(pn{”]—'gq < ”‘p’)’”L” < 27'(’)’1’ s where ]; + 5 =1.

We notice that ¢, (0) = 0 so that, if we choose the integers Ay, Az, ..., Ax
increasing fast enough, every Fourier coefficient of Z{V ©y(A;t) is es-

sentially a Fourier coefficient of one of the summands. It then follows
that

N
1 1
2.4) |5 X, <N sz
- :
We take a large value for N and put v = ¢/N and
1 X
B(t) = 1 D ev(At).
1
Then, by (2.3) and (2.4), it follows that
@700 <Amyr 'Ni ' =dmer INi b
so that if N is large enough ||®|| ¢ < e. We can take

N
Eop={t:2() =1} = ﬂ{ﬁ:%(/\jt) =1}

TNotice that || || ze1 is the same as || [lacr)-
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Since ., (A;t) # 1 on a set of measure v, it follows that
|Eep| > 27 — Ny =21 —=.

Now if f is carried by FE. ,, then for arbitrary n,

2 _ 1 —int _ i —int
fo =5 [emrna= o e iooa.
It follows from Parseval’s formula that

) =1Y" fn—m)@(m)| < 1@zl fllze < el fllre;

and the proof of the lemma is complete. <

PROOF OF THE THEOREM: Take E = N2 E,_,, wheree, = 37", and
Pn = 2 — £,,. The measure of E is clearly positive, and if f is carried by
E and | f||7e < 00, it follows that for all n large enough

| fll7e < enllfllFern < enllfllFer,

hence f =0 and so f = 0. <

EXERCISES FOR SECTION 2

1. Verify that 27 (m+D/2¢ (£ as defined in exercise 6 part c) of 1.6,
satisfy (2.1) when 2-0"+D/2 < ¢,

2. Show that if N > ! and if m,, increases fast enough, then g, defined
by: g(t) = eV for 2nn/N < t < 2m(n+1)/N,n =0,..., N, satisfies (2.1).

3. Let {an} be an even sequence of positive numbers. A closed set E C T
is a set of type Ul(ay) if the only distribution x4 carried by F and satisfying
i(n) = o(an) as |n| — oo, is u = 0. Show that if a,, — O there exist sets E of
positive measure which are of type U(a, ). Hint: For 0 < a < 7 we write (see
exercise 3 of 1.6):

1—a™? <
Aa(t):{ oY [t <a

0 a<|t| <.

We have A, € A(T), ||Aallacy = 1, and A,(0) = a/2m. Choose n; so that
|n| > n; implies an < 1077; put B; = {t: Ay—j(2n;t) = 0} and E = N5, E;.
Notice that |E| > 2w — > 2' ™7 > 0. If i is carried by E we have, for all m and
7, <€imtA3—j(2njt>, ) = 0 since Az—;(2n;t) vanishes in a neighborhood of E.
By Parseval’s formula

im 37— A T
0= (€™ Ag-s(zn 1), ) = 5 ) + ;agfj(w(w 2n,k).
00
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Ifn; > |m| and if |i(n)| < a, we have for k > 0, |i(m +2n;k)| < 1077, hence
(377 /27)|a(m)| < 1079, Letting j — oo we obtain ji(m) = 0, and, m being
arbitrary, ;4 = 0.



Chapter V

Lacunary Series and Quasi-analytic
Classes

The theme of this chapter is that of 1.4, namely, the study of the
ways in which properties of functions or of classes of functions are
reflected by their Fourier series.

We consider important special cases of the following general prob-
lem: let A be a sequence of integers and B a homogeneous Banach
space on T; denote by B the closed subspace of B spanned by {e*t}\ea
or, equivalently, the space of all f € B with Fourier series of the form
D oneA axe'M. Describe the properties of functions in B, in terms of
their Fourier series (and A). An obvious example of the above is the
case of a finite A in which all the functions in B, are polynomials. If
A is the sequence of nonnegative integers and B = LP(T), 1 < p <
oo, then B, is the space of boundary values of functions in the cor-
responding H?. In the first section we consider lacunary sequences
A and show, for instance, that if A is lacunary a la Hadamard then
(LY(T))p = (L*(T)), and every bounded function in (L*(T)), has an
absolutely convergent Fourier series.

In the second section we prove the Denjoy-Carleman theorem on
the quasi-analyticity of classes of infinitely differentiable functions and
discuss briefly some related problems.

1 LACUNARY SERIES

1.1 A sequence of positive integers {\,,} is said to be Hadamard la-
cunary, or simply lacunary, if there exists a constant ¢ > 1 such that
Ant1 > gA, for all n. A power series Zanz*" is lacunary if the se-
quence {A,} is, and a trigonometric series is lacunary if all the fre-
quencies appearing in it have the form +\,, where {\,} is lacunary.
The reason for mentioning Hadamard’s name is his classical theo-

117
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rem stating that the circle of convergence of a lacunary power series is a
natural boundary for the function given by the sum of the series within
its domain of convergence. The general idea behind Hadamard’s theo-
rem and behind most of the results concerning lacunary series is that the
sparsity of the exponents appearing in the series forces on it a certain
homogeneity of behavior.

1.2 Lacunarity can be used technically in a number of ways. Our first
example is "local"; it illustrates how a Fourier coefficient that stands
apart from the others is affected by the behavior of the function in a
neighborhood of a point.

Lemma. Let f € L*(T) and assume that f(j) = 0 for all j satisfying
1 <|ng — j| <2N. Assume that f(t) = O (t) as t — 0. Then

(1.1) |f(no)| < 27T4(N_1 sup|yy < n-1/a [t (1) + N_ZHfHLl)

PROOF: We use the condition f(j) = 0 for1 < |ng—j| < 2N as follows:
if g be any polynomial of degree 2N satisfying g (0) = 1, then

fng) = % / | e~ f(t)gn (t)dt.

As gn we take the Jackson kernel, Jy = ||KNHZ§K?\,. By 1.(3.10), and

N2
the estimate Ky ||, = ZI,VN(I — ]\I,ill) > &, we obtain

Jn(t) <27t N34,

We now write

) < o [170x G =

. . . 1
= (/ +/ + | ) SOyt
[t|<N-1 JN-l1<|t|<N-/4 JN-Vi<|t|<n ™

The first integral is bounded by

_ _ 1 _ _
N~=tsup oyt 1f(it)|%/|JN(lf)|Cft=N tsupyy oy [T A

The second integral is bounded by

N—L/4

TN sup oyt ()] / 1 t73dt < TN supyy oy oualtTHF(D)]
JN—
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The third integral is bounded by

BN [17(0ldt = 20N
Adding up the three estimates we obtain (1.1). <

Corollary. Let {\,} be a lacunary sequence and f ~ 3 a,cos \,t
be in L*(T). Assume that f is differentiable at one point. Then a,, =
oA ).

PROOF: Assume that f is differentiable at ¢ = 0. Replacing it, if nec-
essary, by f — f(0)cost — f/(0)sint we can assume f(0) = f'(0) = 0.
It follows that f(t) = o(t) as t — 0. The lacunarity condition on {\,}
is equivalent to saying that there exists a positive constant ¢ such that,
for all n, none of the numbers j satisfying 1 < |\, — j| < ¢\, isin
the sequence; hence f(5) = 0 for all such j. Applying the lemma with
ng = A, and 2N = ¢),,, we obtain a,, = 2f(\,) = o(A;1). <

Corollary. The Weierstrass function ) 27" cos 2™ is nowhere differ-
entiable.

The condition a,, = o(A;!) clearly implies that 3"|a,| < oo. It is not
hard to see (see Zygmund [28], chap. 2, §3, 4) that f(t) = > a, cos A\t
is then in Lip,(T) for all @ < 1 and that it is differentiable on a set
having the power of the continuum in every interval. Thus, for a lacu-
nary series, differentiability at one point implies differentiability on an
everywhere dense set. This is one example of the "certain homogeneity
of behavior" mentioned earlier. We can obtain a more striking result
if instead of differentiability we consider Lipschitz conditions. For in-
stant, if 0 < « < 1, a lacunary series that satisfies a Lip,, condition at a
point satisfies the same condition everywhere (see exercise 1 at the end
of the section).

1.3 Another typical use of the condition of lacunarity is through its
arithmetical consequences. A useful remark is that if A\;; > ¢); with
g > 3, then every integer n has at most one representation of the form
n = n;\; where n; = —1,0,1. With this remark in mind we consider
products of the form

N
(1.2) Py (t) = [J(1+ ajcos(Ast + ;)

1
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the a;’s being arbitrary complex numbers and ¢; € T.
The Fourier coefficients of a factor 1 + a; cos(\;t + ;) are: 1 for

n = 0, Lajie"? for n = X;), Lajie ™ n = —)\;), and zero else-
where. If we assume the lacunarity condition with ¢ > 3, it follows
that Py(n) = O unless n = >_n;);, with ; = —1,0,1, in which case

Py(n) = 1L, 20 Ta;ie™¥i; in particular Py (0) = 1. If we compare the
Fourier series of Py to that of Py we see that Py, contains Py as
a partial sum, and contains two more blocks: Jay.iie?¥N+1erv+1t Py
and Yay ieT¥N+1e7 a1 Py The frequencies appearing in the first
block lie within the interval (Ay.1— Y~ Aj, Awi+201 A7) € (A (g—
2)/(q—1), Any+19/(g—1)) and the second block is symmetric to the first
with respect to the origin. No matter what coefficients a; we take, the

(formal) infinite product

P(t) = H(l + a; cos(A\;t + cpj))

can be expanded as a well-defined trigonometric series, and if the prod-
uct converges in the weak-star topology of M(T) to a function f or a
measure u, then the corresponding trigonometric series is the Fourier
series of f (resp. p).

We shall refer to the finite or infinite products described above as
Riesz products. Two classes of Riesz products will be of special inter-
est.

1. The coefficients a; are all real and |a;| < 1. In this case 1 +
aj cos(A;t+p;) > 0hence Py(t) > 0 for all N. It follows that | Py || ;: =
1 and, taking a weak-star limit point, it follows that P is a positive mea-
sure of total mass 1 (i.e., that the trigonometric series formally corre-
sponding to P is ’the Fourier-Stieltjes series of a positive measure of
mass 1).

2. The coefficients a; are purely imaginary (in which case we shall
write P(t) = [[(1+ia; cos(A;t+p;)) with a; real) and satisfy >"|a;|* <
oo. In this case 1 < |1+ ia; cos(A;t + @;)|* < 1+a] 1 < [Py(t)]* <
[+ af) < 0. Since the Py are uniformly bounded we can pick a
sequence N; such that Py; converge weakly to a bounded function P
whose Fourier series is the formal expansion of P.

1.4 The usefulness of the Riesz products can be seen in the proof of

Lemma. Ler f(t) = YN, ¢;e™t with A\_j = =\;, M > 0 and, for
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some q > 1, \j1 > qN;, 7=1,2,...,N. Then

(1.3) Y leil < Agllflloo
and
(14 [fllz2 < Byl fllz2

where A, and B, are constants depending only on q.

PROOF: We remark first that it is sufficient to prove (1.3) and (1.4) in
the case that f is real valued (i.e., ¢; = ¢_;) since we can then apply
them separately to the real and imaginary parts of arbitrary f, thereby
at most doubling the constants A, and B,.

Assume first that ¢ > 3. In order to prove (1.3) we consider the
Riesz product P(t) = Hiv(l + cos(\;t + ¢;)) where ¢, is defined by
the condition ¢;e®/ = |¢;|. We have ||[P|1 = 1 and consequently
[1/27 [ P(t)f(t)dt| < ||f||sc- Since P();) = 3€'?i we obtain from Par-
seval’s formula: 3 ¢;e% = £ 3[¢;| < || f|oo, and (1.3) follows with
A, = 2 for real-valued f and A, = 4 in the general case.

For the proof of (1.4) we consider a Riesz product of the second
type. We remark that || f||2, = >7|c;|* and if we take a; = |c;| || f]l 2
and ¢; such that icje’? = |¢;| then P(t) = [](1 + ia; cos(\;t + ¢;))
is uniformly bounded by [[(1 + a‘f)é < e3 2.9 < e2. By Parseval’s
formula

1 1 — 1
£ = 5 Yleslas = 5= [ POT@E < el

which is (1.4) with B, = 2e3. Again if we put B, = 4e7 then (1.4) is
valid for complex-valued functions as well.

If 1 < g < 3 and we try to repeat the proofs above, we face the dif-
ficulty that, having set the product P the way we did, we cannot assert
that P();) is 2e#s (or Lia;e’#i in case 2) since \; may happen to sat-
isfy nontrivial relations of the form \; = >~ n A\, with iy, = 0,1, —1. We
can, however, construct the Riesz products for subsequences of {),}.
Let M = M, be an integer large enough so that

A 1 1 1

(1.5) g’ >3 1——>5 and 1+C}M—

M —1 _1<q.

For k < m < M write )\;m) = Am+;m and notice that )\jﬂ > gM /\Em).
By the remark concerning the frequencies appearing in a Riesz product
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it follows that all the frequencies n appearing in any product corre-

()

sponding to {/\Sf'”)} satisfy ||n| — )\§m)| < q/‘\.‘,f,fl for some j, hence by
(1.5)ifk > 0, k #m mod M, +A; does not appear as a frequency in a
Riesz product constructed on {)\g.m)}. It follows that if

N

P(t) - H(l + am,+j]\/1 COS(A’HL—FJ'J\:{t + @'rn—b—j]\l))
1

then

- 1 . _ » .
% P(t)f(t)dt = Z §G‘M+j1\4 (el‘Pm+JM Cm+jM + e tmtiM cwaﬁjJ\J)

and repeating the two constructions used above we obtain

(1.3 D lemeinl <4l

(14) (D lemesnl?)” < 41151

Adding (1.3°) and (1.4°) for m = 1,..., M we obtain (1.3) and (1.4)
with A, = 4M, and B, = 4¢3 M,,. <

Theorem. Let {)\;} be lacunary. (a) If f = 3" c;e™i' is the Fourier
series of a bounded function, theny_|c;| < .
(b) If' Y cje'™it is a Fourier series, then Y| c;|? < oo.

PROOF: Write f ~ Y c;e™i% and apply (1.3) resp.(1.4) to o, (f,t). <«

1.5 The role of the Riesz products in the proof of Lemma 1.4 may
become clearer if we consider the statements obtained from 1.4 by du-
ality. For an arbitrary sequence of integers A, we denote by C, the
space of all continuous functions f on T such that f (n) =01fn ¢ A.
Cy 1s clearly a closed subspace of C(T).

DEFINITION: A set of integers A is a Sidon set if every f € C has an
absolutely convergent Fourier series. It follows from the closed-graph
theorem that A is a Sidon set if, and only if, there exists a constant K
such that

(1.6) > 1) < K| flloo

for every polynomial f € Cj.
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Lemma. A4 set (of integers) A is a Sidon set if, and only if, for every
bounded sequence {dy} e there exists a measure y € M(T) such that
(X)) = dy for A € A.

PROOF: Let A be a Sidon set and {dx}xea a bounded sequence on A.
The mapping f — > o f(N\)d, is a well-defined linear functional on
C. By the Hahn-Banach theorem it can be extended to a functional on
C(T), that is, a measure y. For this measure p we have

(1.7) () = /e“‘t@ =d, forall AcA.

Assume, on the other hand, that the interpolation (1.7) is always pos-
sible. Let f € Cy and write dy = sgn(f()\)). Then, by Parseval’s for-
mula, S|F(\)| = 32 f(A)d, is summable to (f, ;) where p is a measure
which satisfies (1.7). Since for series with positive terms summability
is equivalent to convergence, > |f()\)| < oo and the proof is complete.

<

The statement of part (a) of Theorem 1.4 is that lacunary sequences
are Sidon sets, and the Riesz product is simply an explicit construction
of corresponding interpolating measures.

1.6 The statement of part (b) of Theorem 1.4 is that for lacunary A,
(L'T))a = (L*(T))a. Every sequence {dy} such that > |d)\|? < oo
defines, as above, a linear functional on (L*(T)), which, by 1.4, is a
closed subspace of L!(T). Remembering that the dual space of L' (T)
is L>°(T), we obtain, using the Hahn-Banach theorem, that there exists
a bounded measurable function g such that

(1.8) g\ =dy AeA.

Here, again, Riesz products (of type 2) provide explicit construction of
such functions g. One can actually prove the somewhat finer result:

Theorem. Let A be lacunary and assume that Y |dy|> < oco. Then
there exists a continuous function g such that (1.8) is valid.

We refer the reader to exercise 6 for the proof.

EXERCISES FOR SECTION 1

1. Let {An} be lacunary and let f ~ > an cos Ant. Assume that f satisfies
aLip,, condition with0 < o < 1 at¢ = to. Show that a, = O (A;") asn — oo.
Deduce that f € Lip_(T).
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2. Let {\,} be a sequence of integers and assume that for some 0 < a < 1

the following statement is true: if f ~ ) an cos A, ¢ satisfies a Lip,, condition
at one point, then f € Lip_(T). Show that {\,} is lacunary.
Hint: If the sequence { )\, } is not lacunary it has a subsequence {u } such that
lim piop—1/por = 1 and lim pog+1/p2k = co. For an appropriate sequence {ax},
the function f(t) = Zak(cos part — cos usk—1t) satisfies a Lip,, condition at
t=0but f ¢ Lip (T).

3. Let f € LY(T), f ~ 3" ancos M.t with {\,} lacunary. Assume f(t) =0
for |t| < 71, n being a positive number. Show that f is infinitely differentiable.

4. Show directly, without the use of Riesz products, that if A\, 11 > 4),, and
@)= Zfr an cos A\t is real-valued, then

supl (1) > 2 S lanl.

Hint: Consider the sets {¢: a, cos Ant > |an/2|}.

5. If d, — 0 as n — oo we can write d, = d,¥, where {J,} is bounded
and 1, = ¢(n) for some ¢» € L'(T). (See theorem 1.4.1 and exercise 1.4.1.)
Deduce that if A is a lacunary sequence and dy — 0 as |\| — oo, there exists a
function g € L'(T) such that

dy=g(A) for Ae A

6. Use Theorem 1.4.1 to show that if Z|dn|2 < o0, there exist sequences
{6n} and {¢n} such that d, = 6,¥n, > |6n|> < oo, and ¢, = ¥(n) for some
¢ € L'(T). Remembering that the convolution of a summable function with a
bounded function is continuous, prove Theorem 1.6.

7. Assume Ajy1/A; > g > 1. There exists a number M = M, such that
every integer n has at most one representation of the form n = > 7 Am,+;m
where 7; = —1,0,1, and 1 < m; < M. Use this to show that the product
Hfo(l + Zile g jng €OS(Amtjmt + @m+jar)) has (formally) the Fourier co-
efficient 1dye’* at the point Ax). Show that if 0 < di < I/M, for all k, then
the product above is the Fourier Stieltjes series of a positive measure which
interpolates {3dic’?*} on {\¢}.

8. Assume \j41/)\; > ¢ > 1 and Y |d;|*> < oco. Find a product analogous
to that of exercise 7), which is the Fourier series of a bounded function, and
which interpolates {d;} on {);}.

*9. Show that the following condition is sufficient to imply that the se-
quence A is a Sidon set: to every sequence {d,} such that |d\| < 1 there exists
ameasure y € M(T) such that [2(\) — da| < L.

10. Show that a finite union of lacunary sequences is a Sidon set.

*11. Let A, be positive integers such that A,+1/\. > 3. Show that for
every U > 0 and ¢ > 0 there exists a > 0 such that if b,, are real numbers,
> |bn|* = 2 and sup |by| < a, then, if |u| < U, we have

S 2
/ eiuzbn cos Ant e—“T < e

(1.9) ‘%



V. LACUNARY SERIES AND QUASI-ANALYTIC CLASSES 125

Hint: Write [ e < 2n* = T](1 + iub, cos At — Fu”b, cos® Ant) (L + ¢n)
with |e,| < U®|ba|?. If aU® << &, we have |[[(1+¢,) —1| << &, and the factor
[1(1+¢cn) can be ignored. In the main factor replace cos® Ant by 1 (1+cos 2Ant),
and check that the constant term of the product is the product of the constant
terms of the factors.

*2 QUASI-ANALYTIC CLASSES

2.1 We consider classes of infinitely differentiable functions on T. Let
{M,,} be a sequence of positive numbers; we denote by C*{M,,} the
class of all infinitely differentiable functions f on T such that for an
appropriate R > 0

2.1 [f™ o < R"M,, n=1,2,...

We shall denote by C#{M,,} the class of infinitely differentiable func-
tions on T satisfying:

(2.2) If ™z < R"M,, n=1,2,...

for some R (depending on f).

The inclusion C*{M,} c C#{M,} is obvious; on the other hand,
since the mean value of derivatives on T is zero, we obtain || £ (£) |0 <
[f+V| L2 and consequently C#{M,} C C*{M,+:}. Thus the two
classes are fairly close to each other.

Examples: 1f M,, = 1 for all n, then C#{M,,} is precisely the class of
all trigonometric polynomials on T.

If M,, = n!, C#{M,} is precisely the class of all functions analytic
on T. (See exercise 1.4.3)

We recall that a sequence {c,, }, ¢, > 0, is log-convex if the sequence
{log ¢,,} is a convex function of n. This amounts to saying that, given
k < I < m in the range of n, we have

b — i — K

(2.3) log ¢ < —— log cx + p— log ¢,
or equivalently
(24) a < Cgcm_”')/(m_k) (15,,[1_k)/(1rb_k)

2.2 The identity ||f™ 2 = (3 f(j)2j?")2 allows an expression of
condition (2.2) directly in terms of the Fourier coefficients of f. Also it
implies
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Lemma. Let f be N times differentiable on T. Then the sequence
{1 £ 12} is monotone increasing and log-convex for 1 < n < N.

PROOF: The fact that ||f(™]|2 = (3 £(j)2j2")% is monotone increas-
ing is obvious. In order to prove (2.4) we write p = (m — k)/(m — 1),
and g = (m — k)/(l — k); then 1/p +1/q = 1 and by Hélder’s inequality

SIFG) 252 = G R/Pg2E) (| F5) |2 252m ey < || FR 2200 o |28

which is exactly (2.4). <

It follows from lemma 2.2 (cf. exercise 2 at the end of this section) that
for every sequence { M/, } there exists a sequence {,, } which is mono-
tone increasing and log-convex such that C#{M,} = C#{M]}. Thus,
when studying classes C#{M,,} we may assume without loss of gener-
ality that { M,,} is monotone increasing and log-convex; throughout the
rest of this section we always assume that, for k < [ < m,

2.5) M, < MO/ TR (k) /(m=k)

2.3 For a (monotone increasing and log-convex) sequence we define
the associated function v(r) by

(2.6) T(r) = ,gfo M,r—™.

We consider sequences M,, which increase faster that R™ for all R > 0;
the infimum in (2.6) is attained and we can write 7(r) = min,, > M, r ™.
If we write 4y = M’l’l, and w, = M,_1/M, for n > 1; then pu,, is
monotone-decreasing since by (2.5), fin+1/ptin = M2/My,_1My1 < 1;

3

we have M, r~" = [[{'(u;7) ' and consequently
(2.67) r(ry= ][ (wm)™
pir>1

The function 7(r) was implicitly introduced in 1.4; thus it follows from
[.4.4 that if f € C#{M,,} then, for the appropriate R > 0

IfG)I < 7GR,

and exercise 1.4.6 is essentially an estimate for 7(r) in the case M,, =
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2.4 An analytic function on T is completely determined by its Tay-
lor expansion around any point to ¢, € T, that is, by the sequence
{ ™ (t)}°%,. In particular if f(M)(tg) = 0, n = 0,1,2,..., it follows
that f = 0 identically.
DEFINITION: A class of infinitely differentiable functions on T is
quasi-analytic if the only function in the class, which vanishes with
all its derivatives at some tg € T, is the function which vanishes identi-
cally.

The main result of this section is the so-called Denjoy-Carleman
theorem which gives a necessary and sufficient conditions for the quasi-
analyticity of classes C# { M, }.

Theorem. Let{M,} be monotone increasing and log-convex. Let 7(r)
be the associated function (2.6). The following three conditions are
equivalent:

(1) C#{M,} is quasi-analytic
© oo
(14) / og7(r) dr = —
J1

142
M,
(147) My

The proof will consist in establishing the three implications (i7) = (%)
(Theorem 2.4 below), (i) = (iii) (Theorem 2.8), and (4i4) = (i¢) (Lemma
2.9).

We begin with:

2.5 Lemma. Let ¢(z) Z 0 be holomorphic and bounded in the half
plane R(z) > 0 and continuous on R(z) > 0. Then

dy
1+ y?

> —00

/ " loglp(+iy)|
0

PROOF: The function F(¢) = <p(%§) is holomorphic and bounded in

the unit disc D (and is continuous on D except possibly at ( = 1). By
I11.3.14 we have [ log|F(e")|dt > —oco. The change of variables that
we have introduced gives for the boundaries e = (iy — 1)/(iy + 1), or
t = 2arc cot y.

Consequently dt = =23

1+y?

dy 1

log|p(iy ‘:—/logFe“ dt > —o0;
| tosletin |5z = 5 [ ol

and
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similarly f;* 10g|gp(ﬂ'y)|% > —oo and the lemma is proved. <

2.6 Theorem. A sufficient condition for the quasi-analyticity of the
class C*{M,} is that [° l‘igjfg) dr = —oo where 1(r) is defined by
(2.6).

PROOF: Let f ¢ C#{M,} and assume that f()(0) = 0 n = 0,1,....
Define

1 27
o= [ e
T Jo
Integrating by parts we obtain, z # 0,

2
o) = g e Ol + g [ e e

and since f(0) = f(2n) = 0 the first term vanishes for all z # 0 (we have
used the same integration by parts in 1.4.5; there we did not assume
f(0) = 0 but considered only the case z = im, that is, e *'f is 27-
periodic.) Repeating the integration by parts n times (using f)(0) =
9 (2m) = 0 for j < n), we obtain

27
oz = 5 /0 e~ {0 (1) dt.

For R(z) > 0, |[e=**| < 1 on (0, 27) and consequently

forn=0,1....

M,
lp(2)| < |

hence
le(2)| < 7(|2])

or
log|p(2)] < log 7(]z]).

It follows that [ log|¢(iy)| 12 = —occ and by lemma 2.4 y(z) = 0.

1+y2
Since ¢(in) = f(n) it follows that f = 0. <
2.7 Lemma. Assume juj >0, Yo" p; < 1. Write o(k) =[] %

Then f(t) = X7 o(k)e'*" is carried by [—1,1] ( mod 2m), it is in-
Sinitely differentiable and || f™|| < 2Ty ;.
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PROOF: All the factors in the product defining ¢(k) are bounded by 1
so that the product either converges or diverges to zero (actually it con-
verges for all k) and (k) is well defined. (k) clearly tends to zero
faster than any power of k so that the series defining f converges uni-
formly and f is infinitely differentiable. We have ¢(0) = 1 so that f # 0.

sin p; k
ik

oo
The sequence { } is the sequence of Fourier coefficients of
k=—oc

the function I';(t) = mp; 'y, 1. If we write o (k) = 0 Sizy;ﬁk,

have

w¢e

In(t)y = Z(pN(k)eikt =Tg*xTyx...Tn

and the support of fy is equal to [— Z(I)V i, Zév ;] mod 2. Since fu
converges uniformly to f, the support of fisequal to [~ > 07 1, > o #;]
mod 27. Finally, since || f(™[/2, = Y"|o(k)|?k*" and

[e(k)| < H(;ij)—l = (w62,
0 0

we obtain || f]|,2 < (TTg #5) " (Y40 k)'/? and the proof is com-
plete. <

2.8 Theorem. A necessary condition for the quasi-analyticity of the

class C*{M,} is that ¥ 1\%11 =

PROOF: Assume that }_ 5772 < co. Without loss of generality we may
My,

o < % (replacing M,, by M|, = M, R"™ does not change
) . M, _ p— n
the class C#{M,,} while s =R LY ).
Write Mo = M1 = 1/4, Hi = A/Ij—l/]\/[ja _] > 2. Then the function
f defined by Lemma 2.7 has a zero of infinite order (actually vanishes
outside of [—1, 1]), is not identically zero, and f € C#{M,,}. <

assume »

2.9 Lemma. Under the assumption of theorem 2.4 we have

M, = log 7(r)
n < 9t > )
M1 — ¢ /(_,2 14172 dr

In—l

PROOF: As before we write j,, = 2 i We define the counting func-
tion M(r) of {u,} by:

M(r) = the number of elements ; such that p;r > e,
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and recall that 7(r) =[], ,~,(u;r)~"; hence

—logr(r) = Z log(u;r) > Z log(p;m) > M(r).

pir>1 nir>e

Thus for k =2,3,...

E+1 k41
“ —log7(r) M(eF) [° ’
27 /Fk 1472 7= ge2k+2 ok "9 e

on the other hand,

ok

@8 Do < (M) - M) <e

el=F<p;<e?=F

and the theorem follows by summing (2.7) and (2.8) with respect to
k, k=23,.... <

Remark: Theorems 2.4, 2.8, and lemma 2.9 together prove Theorem
2.4. We see in particular that if C#{M,,} is not quasi-analytic, it con-
tains functions (which are not identically zero) having arbitrarily small
supports.

For further reading, generalizations, and related topics we mention

[17]].

EXERCISES FOR SECTION 2

1. Show that {c,} is log-convex if, and only if, ¢2 < ¢,_1¢n+1 for all n.

2. (a) Let {c;}n2; be a log-convex sequence for all o belonging to some
index set I. Assume that M, = supaercy, < oo for all n. Prove that {M,} is
log-convex.

(b) Let {M;,} be a sequence of positive numbers. Let {c%} be the family
of all log-convex sequences satisfying ci < M, for all n. Put M,, = sup,_, c5.
Then C#{M,} = C*{M}}.

3. Let M; < j! for infinitely many values of j. Show that C*{M,} and
C#{M,} are quasi-analytic.

Hint: Assuming f € C*{M,} and f*(0) = 0 for all k, use Taylor’s expansion
with remainder to show f = 0.

4. We say that a function ¢ € C*(T) is quasi-analytic if C7{|o(™||,2} is
quasi-analytic. Let f € C°°(T); show that if the sequence {\;} increases fast
enough and if we set

flt) = ZZ/\gj <k< }\2j+1f(k)eikt’
J
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then both f1 and f> = f — f1 are quasi-analytic. Thus, every infinitely differen-
tiable function is the sum of two quasi-analytic functions.

5. Show that C#{n!(logn)>"} is quasi-analytic if 0 < « < 1, and is
nonquasi-analytic if o > 1.

6. Let 7(r) be the function associated with a sequence { M, }.

(a) Show that (7(r)) ! is log-convex function of r.

(b) Show that M,, = max, r"7 (r).

7. Let {w, } be a log-convex sequence, n = 0,1,..., w, > 1, and let A{w,}
be the space of all f € C(T) such that || f]|(w.} = Y.|F(n)|wn < oo. Show
that with the norm || ||;.,,}, A{wn} is a Banach space. Show that a necessary
and sufficient condition for A{w,} to contain functions with arbitrarily small
support is 5 22 < oo,

8. Let {w,} be log-convex, w, > 1, and assume that w, — oo faster than
any power of n. The sequences o, = { #:l }noc:_

Show that the subspace that o,, ¥ = 0,1,... generate in ¢y (the space
of sequences tending to zero at oo) is uniformly dense in ¢q if, and only if,
aloi%
Hint: The dual space of ¢y is ¢*. If {a,} € ¢* is orthogonal to o4,k =0, ...,
the function f(¢) = > f}—::ei"t, which clearly belongs to A{w:}, has a zero of
infinite order.

9. Let f be as in exercise 1.3. Show that f = 0 identically.

tend to zero as |n| — co.
s

= 0



Chapter VI

Fourier Transforms on the Line

In the preceding chapters we studied objects (functions, measures,
and so on) defined on T. Our aim in this chapter is to extend the study
to objects defined on the real line R. Much of the theory, especially the
L' theory, extends almost verbatim and with only trivial modifications
of the proofs; such results, analogous in statement and in proof to the-
orems that we have proved for T, often are stated without a proof. The
difference between the circle and the line becomes more obvious when
we try to see what happens for L? with p > 1. The (Lebesgue) measure
of Rbeing infinite entails that, unlike Z!(T) which contains most of the
"natural" function spaces on T, L!(R) is relatively small; in particular
LP(R) ¢ L*(R) for p > 1. The definition of Fourier transforms in L'(R)
has now a much more special character and a new definition (i.e., an
extension of the definition) is needed for LP(R), p > 1. The situation
turns out to be quite different for p < 2 and for p > 2. If p < 2, Fourier
transforms of functions in L?(R) can be defined by continuity as func-
tions in LY(R), ¢ = p/(p — 1); however, if p > 2, the only reasonable
way to define the Fourier transform on LP(R) is through duality and
Fourier transforms are now defined as distributions. The plan of this
chapter is as follows: in section 1 we define the Fourier transform in
L*(R) and discuss its elementary properties. We also mention the con-
nection between Fourier transforms and Fourier coefficients and prove
Poisson’s formula. In section 2 we define Fourier-Stieltjes transforms
and obtain various characterizations of Fourier-Stieltjes transforms of
arbitrary and positive measures. In section 3 we prove Plancherel’s
theorem and the Hausdorff-Young inequality, thereby defining Fourier
transforms in LP(R), 1 < p < 2. In section 4 we use Parseval’s for-
mula, that is duality, to define the Fourier transforms of tempered dis-
tributions, and study some of the properties of Fourier transforms of
functions in LP(R),p < oc. Sections 5 and 6 deal with spectral anal-

132
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ysis and synthesis in L>°(R). In section 5 we consider the problems
relative to the norm topology and show that the class of functions for
which we have satisfactory theory is precisely that of Bohr’s almost pe-
riodic functions. In section 6 we study the analogous problems for the
weak-star topology. Sections 7 and 8 are devoted to relations between
Fourier transforms and analytic functions. Finally, section 9 contains
Kronecker’s theorem (which we have already used in chapter II) and
some variations on the same theme.

1 FOURIER TRANSFORMS FOR L' (R)

1.1 We denote by L!(R) the space of Lebesgue integrable functions
on the real line. For f ¢ L'(R) we write

e = [ |1@ld,
and when there is no risk of confusion, we write || f||,: or simply || f|]
instead of || f[| 71 (w)-
The Fourier transform f of f is defined by

(1.1) f(e) = / f(zye ®%dz  for all real &

This definition is analogous to 1.(1.5), and the disappearance of the
factor 1/27 is due to none other than our (arbitrary) choice to remove
it. It was a natural normalizing factor for the Lebesgue measure on T;
but, at this point, it seems arbitrary for R. The factor 1/2x will reappear
in the inversion formula and some authors, seeking more symmetry for
the inversion formula, write /1/2x in front of the integral (1.1) so that
the same factor appear in the Fourier transform and its inverse. The
added symmetry, however, may increase the possibility of confusion
between the domains of definition of a function and its transform. In
L(T) the functions are defined on T whereas the Fourier transforms
are defined on the integers; in L' (R) the functions are defined on R and
the domain of definition of the Fourier is again the real line. It may be
helpful to consider two copies of the real line: one is R and the other,
which will serve as the domain of definition of Fourier transforms of
functions in L' (R), we denote by R. This notation is in accordance with
that of chapter VII.

TThroughout this chapter, integrals with unspecified limits of integration are always
to be taken over the entire real line.
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Most of the elementary properties of Fourier coefficients are valid
for Fourier transforms.

Theorem. Let f, g € L*(R). Then
(@) (F+9)(©) = () +4(©)

(b) For any complex number o

(@f)(&) = af(€)
(c) If f is the complex conjugate of f, then

f©) =9

(d) Denote f,(z) = f(x —y), y € R. Then

£ (&) = Fg)eme
(@) FO1 < [1f(x)|de = |If]
(1) For positive X denote

plx) = Af(Ax);

ole) = (%),

PROOF: The theorem follows immediately from (1.1). Parts (a) through
(e) are analogous to the corresponding parts of I.1.4. Part (f) is obtained
by a change of variable y = \x:

#0 = [ rowe ane = [ fge iy = iG). o

then

1.2 Theorem. Let f € L*(R). Then f is uniformly continuous on R.

PROOF:

fewm -~ F© = [ a) e - e as,
hence
(12) ferm - Fo) < fir@lle ™ - 1jda.

The integral on the right of (1.2) is independent of ¢, the integrand is
bounded by 2|f(x)| and tends to zero everywhere as  — 0. <
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1.3 The following are immediate adaptations of the corresponding the-
orems in chapter L.

Theorem. Let f,g € L}(R). For almost all x, f(x—vy)g(y) is integrable
(as a function of y) and, if we write

h(z) = / F(& — gy,

then h ¢ L*(R) and
IRl < 11 lgll;

moreover,

he) = f(©y(&)  forall&.

As in chapter [ we denote i = fxg, call h the convolution of f and g,
and notice that the convolution operation is commutative, associative,
and distributive.

1.4 Theorem. Let f.h € L'(R) and

) = 5= [ HQeds
with integrable H(&). Then
(13 (he 1)(@) = 5= [ B Fewde

PROOF: The function H(&)f(y) is integrable in (£,y), hence, by Fu-
bini’s theorem,

(h* f)(z) = /h(a: —y)fy)dy = % '//'H(g)ei{me—igyf(y)dgdy
= %/H(f)ei&a:/e—iéyf(y)dydg= %/H(f)f(f)eléldf

<

1.5 Theorem. Let f € L' (R) and define
Fa)= [ oy
Then, if F € L*(R) we have

(1.4) EF(¢) = %f(g) all real € # 0.
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An equivalent statement of the theorem is: if F| F' ¢ L' (R), then
F'(&) = iEF(8).
1.6 Theorem. Let f € L'(R) and . f(x) € L'(R). Then f is differen-

tiable and
(15) d%f(s) = Ciahe).
PROOEF:
¢ _f ) —ithz
(1.6) f(f+h2 f& _ /f(x)e—w(e . 1>dx.

The integrand in (1.6) is bounded by |z f(z)| (which is in L}(R) by
assumption) and tends to —iz f(z)e~** pointwise, hence (Lebesgue) it
converges to —izf(x)e” %" in the L'(R) norm. This implies that, as
h — 0, the right-hand side of (1.6) converges to (fzm\f)(é) and the
theorem follows. <

1.7 Theorem (Riemann-Lebesgue lemma). For f ¢ L'(R)
lim f(¢) =0.

l€]—0
PROOF: If ¢ is continuously differentiable and with compact support
we have, by 1.5 and 1.1, [£3(¢)| < ||¢'|| 1) hence lim ¢ |§(£)| = 0.
For arbitrary f € L'(R), let= > 0 and g be a continuously differentiable,
compactly supported function such that ||f — g[[z1(z). We have both

11(6) = 9(9)] < £ and lim¢_ oo [§(€)| = 0; hence limsupje|_ .|| /(€] < .
This being true for all £ > 0, we obtain lim¢_, . f(£) = 0. <

1.8 We denote by A(R) the space of all functions ¢ on R, which are
the Fourier transforms of functions in L'(R). By the results above,
A(R) is an algebra of continuous functions vanishing at infinity, that
is, a subalgebra of Cy(R), the algebra of all continuous functions on R
which vanish at infinity. We introduce a norm to A(R) by transferring
to it the norm of L!(RR), that is, we write

1F 14y = £ 1122 -

It follows from 1.3 that the norm | ||y, is multiplicative, that is,
satisfies the inequality:

12l o 11 ey 1921l ary
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The norm | |4, is not equivalent to the supremum norm; conse-

quently, A(R) is a proper subalgebra of Cy(RR).
1.9 A summability kernel on the real line is a family of continuous
functions {k,} on R, with either discrete or continuous parameter? sat-
isfying the following:

/ kx(z)de =1
(1.7) |lkxll = O* (1) as A — oo

lim |[kx(z)|dz =0, foralla > 0.

A—00 |z|>6

A common way to produce summability kernels on R is to take a func-
tion f € L'(R) such that [ f(z)dz = 1 and to write ky(z) = Af(Az)
for A > 0. Condition (1.7) is satisfied since, introducing the change of
variable y = Az, we obtain

[m@de= [ sy =1

ksl = [1ksta@lide = [1)idy= 111
and

/' ler ()| dz = / F@)ldy —0 as A— oo,
J|x|>8 y|>Ad8

|y|>Ad
The Fejér kernel on R is defined by
Ki(z) = AK(Az), A >0,

where

L1 [sinz/2 2_ 1! ica
The second equality in (1.8) is obtained directly by integration. By the
previous remark it is clear that the only thing we need to check, in order
to establish that {K,} is a summability kernel, is that [ K(z)dz = 1.
This can be done directly, for example, by contour integration, or using

¥The indexing parameter X is often real valued; however, it should not be considered
as an element of R so that no confusion with the notation of 1.1.d should arise.
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the information that we have about the Fejér kernel of the circle, that
is, thatforall0 < d < 7

5 . o 2
(1.9) lim i/ 1 (s1n(n—|—1)1/2) dz = 1.

n—oo 21 [_smn+1 sin /2

Since [ K(z)dz = [Ky(z)dz, we may take A = n + 1, in which case

_ sin(n+1)z/2
K)‘(KI;) - 27T(71L+1) ( z/2
the ratio of 27K, (z) to the integrand in (1.9) is arbitrarily close to one

in |z| < 6. More precisely, we obtain (A =n + 1):

N § . 2 §
sin ¢ 1 1 sin(n + 1)x/2 1/
el B D K
< 4] ) 27r_/_(5n—|—1( x/2 ) dl<27r _s A@)
s : 2
1 1 (sm(n + 1)37/2) o

<7
2 f_n+1 sin /2

2
) , and notice thatif § > 0 is small enough,

Letting n — oo we see that [ K(z)dz = limy_. Jis Kx(z)dz is a num-
ber between sin” §/6% and 1; since & > 0 is arbitrary [ K(z)dz = 1.

1.10 Theorem. Let f € LY(R) and let {ky} be a summability kernel
on R, then

Jm [ f = kx* fllw =0.

PROOF: Repeat the proof of theorem 1.2.3 and lemma 1.2.4. <

1.11 Specifying theorem 1.10 to the Fejér kernel and using theorem
1.4, we obtain

Theorem. Let f € LY(R), then

(1.10) f= lim i/j (1— %) F(e)e' de

in the L*(R) norm.

Corollary (The uniqueness theorem). Let f ¢ L*(R) and assume
that f(€) =0 for all £ € R then [ = 0.
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1.12 If it happens that f is Lebesgue integrable, the integral on the
right-hand side of (1.10) converges, uniformly in , to 5 [ f(£)e’® de.
We see that f is equivalent to a uniformly continuous function and ob-
tain the so-called "inversion formula":

1 L
(L11) @) = 5 [ e de.
An immediate consequence of (1.11) is
(1.12) () = max (1 .0}

and, by theorem 1.3,

(1.13) (Kx# 1)(€) = {(1'9) 1 €l <A
0 HERS

Combining this with theorem 1.10, we obtain

Theorem. The functions with compactly carried Fourier transforms
Jform a dense subspace of L*(R).

This theorem is analogous to the statement that trigonometric poly-
nomials form a dense subspace of L!(T).

1.13 Besides the Fejér kernel we mention the following:
De la Vallée Poussin’s kernel

(1.14) V() = 2Kox(z) — Kx(2),

whose Fourier transform is given by

1, |l <1
(1.15) Vi) =<2 14, A< g <2A
0, 2) < I¢l.

Poisson’s kernel
P.(z) = AP(Ax),

where

1
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and
(1.17) P(¢) =e 4,
and finally Gauss’ kernel

G,(z) = A\G(\z),

where

(1% G(a) = (2m) be %
and

(1.19) G(¢) = e’g.

To the inversion formula (1.11) and the summability in norm (theo-
rems 1.10 and 1.11, one should add results about pointwise summabil-
ity. Both the statements and the proofs of section 1.3 can be adapted to
L'(R) almost verbatim and we avoid the repetition.

1.14 As in chapter I, we can replace the L' (R) norm, in the statement
of theorems 1.10 and 1.11, by the norm of any homogeneous Banach
space B C L'(R). As in chapter I, a homogeneous Banach space is a
space of functions which is invariant under translation and such that for
every f € B, f, (defined by f,(z) = f(z — y)) depends continuously
on y. The assumption B C L'(R) is more restrictive than was the as-
sumption B C L*(T) in chapter I; it excludes such natural spaces as
LP(R), p > 1. We can obtain a reasonably general theory by consid-
ering homogeneous Banach space of locally summable functions, that
is, functions which are Lebesgue integrable on every finite interval. We
denote by £ the space of all measurable functions f on R such that

y+1
1fllc = sup, / |f(z)]dz < oo
and by L. the subspace of L consisting of all the functions f which
satisfy

“fy“f”ﬁ—’o asy — 0.

Theorem. [f B is a homogeneous Banach space of locally summable
functions on R and if convergence in B implies convergence in measure,
then the L norm is majorized by the B norm and, in particular, B C L.
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PROOF: If the £ norm is not majorized by || |5, we can choose a se-
quence f,, € B such that ||f,, ||z < 27" and ||f,||c > 3". Replacing f,
by fu(z — yn) (if necessary) we may assume [|f,(z)|dz > 3™ Since
|/nllz — 0O, f, converges to zero in measure and it follows that if
n; — oo fast enough }° f,,, which belongs to B, is not integrable on
(0,1). <

We can now extend Theorem 1.10 to homogeneous Banach spaces of
locally summable functions (see exercises 11-14 at the end of this sec-
tion); Theorem 1.11 can be generalized only after we extend the defi-
nition of the Fourier transformation.

1.15 We finish this section with a remark concerning the relation be-
tween Fourier coefficients and Fourier transforms.
Let f € L*(R) and define ¢ by

o(t)y =27 Z f{t+2mj).

j=—o0

t is a real number, but it is clear that »(t) depends only on ¢ (mod 2)
so that we can consider ¢ as defined on T. We clearly have ¢ € L'(T)
and

lellzir < Ifll@)-

For n € Z, we have

~ 1 —int 2 N —int
( = ( m — mn
p(n) / p(t)e dt 4 E /U f (t + 27 j)e dt

so that ¢ is simply the restriction to the integers of f. Similarly, if we
write fy(z) = Af(\x) and:

(1.20) pa(t) =21 > falt +27j),
j=—o0
we obtain, using 1.1,
“ L
(121) oaln) = f(3).
The preceding remarks, as simple as they sound, link the theory of
Fourier integrals to that of Fourier series, and we can obtain a great
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many facts about Fourier integrals from the corresponding facts about
Fourier series. (For examples, see exercises 5 and 6 at the end of this
section.)

An application to the procedure above is the very important formula
of Poisson:

(1.22) oA . feman)= Y f(g).

n—=0oo n=—oc

In order to establish Poisson’s formula, to understand its meaning and
its domain of validity, all that we need to do is simply rewrite it as

oo

(1.23) Pa(0)= > dan).

n=—oc

If 5(0), as defined by (1.20), is well defined and if the Fourier series of
@y converges to ¢, (0) for t = 0, then (1.23) and (1.22) are valid. One
enhances the generality of (1.22) considerably by interpreting the sum

on the right as
N

NIE%OZ;( -5,

that is, using C-1 summability instead of summation. Using Fejér’s
theorem, for instance, one obtains that, with this interpretation, (1.22)
is valid if t = 0 is a point of continuity of ¢,. We remark that the
continuity of f and f is not sufficient to imply (1.22) even if both sides
of (1.22) converge absolutely (see exercise 15).

EXERCISES FOR SECTION I

1. Perform the integration in (1.8).

2. Prove that ;- f(b'j/*f)dx = 1 by contour integration.

3. Prove (1.17).
Hint: Use contour integration.

4. Prove (1.19).
Hint: Show that G(£) satisfies the equation d/d€G(£) = —£G(€), (use 1.5 and
1.6).

5. Let f € L'(R) and () defined by (1.20). Show that lim—co|[¢l| 11 (1)
= || fllz1 (zy; hence deduce the uniqueness theorem from (1.21).

6. Prove Theorem 1.7 using (1.21), the uniform continuity of Fourier trans-
forms and the Riemann-Lebesgue lemma for Fourier coefficients.
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7. Show that A(R) contains every twice continuously differentiable func-
tion with compact support on R. Deduce that A(R) is uniformly dense in Co(R);
however, show that A(R) # Cy(R).

8. Let f € L'(R) be continuous at z = 0 and assume that (&) > 0, £ € R.
Show that f € L'(R) and f(0) = 5 [ f(€)de.

Hint: Use the analog to Fejér’s theorem and the fact that for positive functions
C-1 summability is equivalent to convergence.

9. Show that Cy N L*(R), with the norm [|h|| = sup,|f(z)| + || f||r1ce) is
a homogeneous Banach space on R and conclude that if f € Cy N L*(R) then
F(@) = lma—eo 2 [ (1~ [€]/A) f(€)dé uniformly.

10. Let f be bounded and continuous on R and let {kx} be a summability
kernel. Show that k) * f = f kx(x — y) f(y)dy converges to f uniformly on
compact sets on R.

11. Let f € L. and let ¢ be continuous with compact support; write

p*f= /so(y)f(w —y)dy.

Interpreting the integral above as an L.-valued integral, show that ¢ * f € L.
and [[¢ * fllz < ll¢llzi@wllfllz. Use this to define g x f for g € L*(R) and
feLe.

12. Show that if f € L. then |f| € L. (notice, however, that e'*'°8l*| & £)
and, using exercise 11, prove that if f € £. and g € L'(R) then for almost all
z € R, g(y)f(x —y) € L*(R) and g * f, as defined in exercise 11, is equal to
[ 9() f(z —y)dy.

13. Let f € £ and let g € L'(R). Prove that g(y)f(z — y) € L*'(R) for
almost all z, and that h(z) = [ g(y)f(z — y)dy satisfies [|hllz < [lgllp1ce) )l f]lz-

14. Let {ky} be a summability kernel in L' (R) and let B C L. be a ho-
mogeneous Banach space. Show that for every feB, ||kx = f — f||lB — O, and
conclude that if f € BNL'(R), f = lims—o [, (1~ [€]/A) f(£)e'*d¢ in the B
norm.

15. Construct a continuous function f € L'(R) such that f € L'(R),
f(2mn) = 0 for all integers n, £(0) = 1 and f(n) = 0 for all integers n # 0.
Hints:

(a) We denote || fllacy = 5= [1(€)ldé. Let g be continuous with support in
[0,27] and such that § € L'(R). Write

N .
on) = g S (1 - N%‘l) oz — 2mj).

Show that §n(£) = (N + 1)Ky (£)§(¢) where Ky is the 27-periodic Fejér
kernel, and deduce that ||gn || 4y — 0 as N — oo.
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(b) Let ¢9) be nonnegative continuous functions such that ¢0) € L'(R)
oo (4 1 O<zx<l, . N
and such that 7 gV (z) = * . Then, if N; — oo fast
0 otherwise.

enough, || gg\’,]) lagey <277 and f = 2;0:1 g%]) has the desired properties.

2 FOURIER-STIELTJES TRANSFORMS.

2.1 We denote by M(R) the space of all finite Borel measures on R.
M(R) is identified with the dual space of Cy(R)—the (sup-normed)
space of all continuous functions on R which vanish at infinity—by
means of the coupling

@1 (= [ feCol®), we ME)

The total mass norm on M(R) is defined by ||u| arw) = [|dp| and is
identical to the "dual space" norm defined by means of (2.1). The map-
ping f +— f(z)dz identifies L'(R) with a closed subspace of M(R).
The convolution of a measure 1 € M(R) and a function ¢ € Cy(R) is
defined by the integral

(22) (ux f)(z) = / oz — y)du(y).

and it is clear that puxp € Co(R) and that [|pu*¢[loc < ||l amr(w) [l The

convolution of two measures, p, ¥ € M(R), can be defined by means of
duality and (2.2), analogously to what we have done in 1.7, or directly
by defining

(nxv)(E) = / w(E — y)dv(y)
for every Borel set E. Whichever way we do it, we obtain easily that
= vl < [l V] pw)-

2.2 The Fourier-Stieltjes transform of a measure 1 € M (R) is defined
by:

(2.3) a(é) = /eifxd,u(x) = /e_’fxdp(:b) ¢eR.

It is clear that if p is absolutely continuous with respect to Lebesgue
measure, say du = f(z)dz, then 4(¢) = f(£). Many of the properties
of L' Fourier transforms are shared by Fourier-Stieltjes transforms: if
, v € M(R) then [(€)] < ||p]|arw), £1(§) is uniformly continuous, and
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pFv(€) = p(&)p(€). A departure from the theory of L' Fourier trans-
forms is the failing of the Riemann-Lebesgue lemma (the same way it
fails for A (T)); the Fourier-Stieltjes transform of a measure £ need not
vanish at infinity.

Theorem (Parseval’s formula). Let n € M(R) and let f be a con-
tinuous function in L*(R) such that f ¢ L*(R). Then'

(2.4 [ f@auta) = - [ fen-e).

PrROOF: By (1.11)
@)= 5 [ FOeds
hence
[ @) = 5 [[ i@ duw = [Foico.

Corollary (uniqueness theorem). If (i(£) = 0 for all &, then 1 = 0.

The assumption f(¢) € L'(R) justifies the change of order of integra-
tion (by Fubini’s theorem); however, it is not really needed. Formula
(2.4) is valid under the weaker assumption f(¢)i(—¢) € L'(R), and is
valid for all bounded continuous f € L!(R) if we replace the integral on

the right by lim o 5= [:\A ( — %) &) (—€)de (cf. exercise 1.10).

2.3 The problem of characterizing Fourier-Stieltjes transforms among
bounded and uniformly continuous functions on R is very hard. As
far as local behavior is concerned this is equivalent to characterizing
A(R): every f ¢ A(R) is a Fourier-Stieltjes transform, and on the other
hand, if 4 € M(R) and V is de la Vallée Poussin’s kernel (1.14), then
px Vi € LH(T) and s Vi (€) = ju(8) for [¢] < A

The following theorem is analogous to 1.7.3:

Theorem. Let ¢ be continuous on R, define &y by:

N
Ba(e) = = (1 - %) ()i de

277"_)\

Then ¢ is a Fourier-Stieltjes transform if, and only if, 5 € L*(R) for
all X > 0, and ||| L1 (w) is bounded as X — oc.

TNotice that (2.4) is equivalent to ff(z)@(z) =1/2n j FORo)de
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PROOF: If ¢ = i with y € M(R), then &, = u * K. It follows that for
allA>0,®, € Ll(R) and ”(p)\”Ll(]R) < ||N”]\4(R)-

If we assume that ®, € L'(R) with uniformly bounded norms, we
consider the measures ®,(x)dz and denote by i a weak-star limit point
of @,(x)dxr as A\ — oo. We claim that ¢ = j1 and since both functions
are continuous, this will follow if we show that

2.5) / H(—E)g(€)dE = / A(—€)g(E)de

for every twice continuously differentiable ¢ with compact support. For
such g we have g = G with G € L' N Cy(R); by Parseval’s formula

[ s0e-0ie = tim_ [ a@ro-o (1- 5 ) a
= lim 27 / C(2)B(2)d = 27 / () dp()
- f g()—€)de
and the proof is complete. <

Remark: The application of Parseval’s formula above is typical and is

the, more or less, standard way to check that weak-star limits in M (R)
are what we expect them to be. Nothing like that was needed in the case
of M(T) since weak-star convergence in M (T) implies pointwise con-
vergence of the Fourier-Stieltjes coefficients (the exponentials belng to
C(T) of which M(T) is the dual). The exponentials on R do not belong
to Cy(R) and it is false that weak-star convergence in M (R) implies
pointwise convergence of the Fourier-Stieltjes transforms (cf. exercise
1 at the end of this section.) However, the argument above gives:

Lemma. Let p,, € M(R) and assume that p,, — p in the weak-star
topology. Assume also that [1,,(§) — (&) pointwise, @ being continuous
onR. Then 1 = .

2.4 A similar application of Parseval’s formula gives the following
useful criterion:

Theorem. A function ¢ defined and continuous on R, is a Fourier-
Stieltjes transform if, and only if, there exists a constant C such that

2.6) 5 [ 1©e-0)de] < Csup. ()
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for every continuous f € L*(R) such that f has compact support.

PROOF: If ¢ = fi1, (2.6) follows from (2.4) with C' = ||| ps(w). if (2.6)
holds, f +— 5 [ F(&)p(—€)de defines a bounded linear functional on
a dense subspace of Cy(R), namely on the space of all the functions
f € CoNLY(R) such that fhasa compact support. This functional has a
unique bounded extension to Cy(R), which, by the Riesz representation
theorem, has the form f — [ f(z)du(z). Moreover, (ulym@) < C.
Using (2.4) again we see that i — ¢ is orthogonal to all the continuous,
compactly supported functions f with f ¢ L'(R), and consequently
o= . <

Remark: The family {f} of test functions for which (2.6) should be
valid can be taken in many ways. The only properties that have been
used are that { f} is dense in Cy(R) and {f} is dense in Cy(R). Thus we
could require the validity of (2.6) only for (a) functions f such that f is
infinitely differentiable with compact support; or (b) functions f which
are themselves infinitely differentiable with compact support, and so
on.

2.5 With measures on R we can associate measures on T simply by
integrating 27-periodic functions. Formally: if £ is a Borel set on T
(T being identified with (—=, #]) we denote by E,, the set £ + 27n and
write £ = UE,,; if u € M(R) we define

pr(E) = p(E) .

It is clear that pr is a measure on T and that, identifying continuous
functions on T with 27-periodic functions on R

2.7 /ﬂ%f(x)dxz /ﬂ‘f(t)dt.

The mapping p +— ur is an operator of norm one from M(R) onto
M(T), and its restriction to L' (R) is the mapping that we have discussed
in section 1.15. It follows from (2.7) that i(n) = ar(n) for all n; thus
the restriction of a Fourier-Stieltjes transform to the integers gives a
sequence of Fourier-Stieltjes coefficients.

Theorem. A4 function ¢ defined and continuous on R, is a Fourier-
Stieltjes transform if, and only if, there exists a constant C > 0, such
that for all A > 0, {p(An)}>L_ . are the Fourier-Stieltjes coefficients

of a measure of norm < C on T.
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PROOF: If ¢ = i1 with u € M(R) we have ¢(n) = a(n) = fip(n) with
||l < ||u|- Writing dp(z/A) for the measure satisfying

[ t@au(5) = [ 100)dua

we have ||pu(z/N) || amrw) = l|pllarw) and p(z/X)(€) = (EX). This implies
w(An) = ,U,(/x/\)\)']r(n) and the "only if" part is established.

For the converse we use 2.4. Let f be continuous and integrable
on R and assume that f is infinitely differentiable and compactly sup-
ported. We want to estimate the integral % / f (&)p(—£)d¢ and, since
the integrand is continuous and compactly supported, we can approxi-
mate the integral by its Riemann sums. Thus, for arbitrary £ > 0, if A is

small enough:
@8 o [f@re-0de] <[5 3 Fompp(-am)|+

Now, (A/2) f(An) are the Fourier coefficients of the function ¢, (t) =
Yo J((t+2mm)/A\) on T, and since the infinite differentiability of

f implies a very fast decrease of f(z) as |z| — oo, we see that if X is
sufficiently small

2.9) sup|px(t)| < sup|f(z)| +¢.

Assuming that o(An) = gix(n), px € M(T) and ||pr|aremy < C, we
obtain from Parseval’s formula

e S fOwet-an)

= |3 datmin(-n)| < Csuplia(t)};
by (2.8) and (2.9)
1 [
’gff(f)cp(—a) di‘ < Csuplf(2)| +(C+1)e

and since £ > 0 is arbitrary, (2.6) is satisfied and the theorem follows
from theorem 2.4. <

2.6 Parseval’s formula also offers an obvious criterion for determin-
ing when a function ¢ is the Fourier-Stieltjes transform of a positive
measure. The analog to 2.4 is
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Theorem. A function ¢, bounded and continuous on R, is the Fourier-
Stieltjes transform of a positive measure on R if, and only if,

(2.10) / F©p(— >0

for every nonnegative function f which is infinitely differentiable and
compactly supported.

PROOF: Parseval’s formula clearly implies the "only if" part and also
the fact that if we assume ¢ = i with p € M(R), then p is a positive
measure. To complete the proof we show that (2.10) implies (2.6),
with C' = ¢(0), for every real-valued, compactly supported infinitely
differentiable f (hence with C' = 2¢(0) for complex-valued f).

As usual, we denote by K, () the Fejér kernel (1.8) and notice that

: 2
MK (z) = K(Az) = 5= <“‘;i‘72/2) is nonnegative and tends to 1/2x,
as A — 0, uniformly on compact subsets of R. By (1.12) the Fourier
transform of K(Az) is A~! max(1 — [£|/),0) and, as ¢(€) is continuous

at£ =0,

@.11) lim [ RA©9(=¢) de = ¢(0).

If f is real-valued and compactly supported and ¢ > 0, then, for suffi-
ciently small A and all z,

2m(e + sup|f[) K (Az) — f(x) = 0;

hence, by (2.10) and (2.11), if f € L(R)

212) o [ F©u(=) de < pl0) 22+ supls),

rewriting (2.12) for — f and letting ¢ — 0 we obtain:

L [ i ©0e(=€) de| < o(0) suplfI. <
’271' / ‘

2.7 The analog to 2.5 is:

Theorem. A function ¢, defined and continuous on If& is the Fourier-
Stieltjes transform of a positive measure, if and only if, for all A > 0,
{p(A\n)}SL__ are the Fourier-Stieltjes coefficients of a positive mea-
sure on T.
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PROOF: The "only if" part follows as in 2.5. For the "if" part we notice
first that if p(An) = py(n) with gy > 0 on T, then ||ur] = ¢(0) and
consequently, by 2.5, ¢ is a Fourier-Stieltjes transform. Using the con-
tinuity of ¢ we can now establish (2.10) by approximating the integral
by its Riemann sums as in the proof of 2.5. <

2.8 Definition: A function ¢ defined on R is said to be positive definite

if, for every choice of &1, ..., &x € R and complex numbers z, ..., zy,
we have
N
(2.13) > (& — &)z > 0.
g.k=1

Immediate consequences of (2.13) are:

(2.14) (=€) = 9(©)
and
(2.15) le(E)] < »(0).

In order to prove (2.14) and (2.15), we take N =2, z; =1, 2z = z;
then (2.13) reads

P(0)(L + [2*) + @(&)z + ()2 > 0;

set z = 1, we get p(€) + o(—=¢) real; set z = i, we get i(p(&) — p(—¢&)
real, hence (2.14). If we take z such that z¢(&) = —|p(¢)| we obtain:

2¢(0) — 2[(&)] > 0
which establishes (2.15).

Theorem (Bochner). A function o defined onR, is a Fourier-Stieltjes
transform of a positive measure if, and only if, it is positive definite and
continuous.

PROOF: Assume first ¢ = 4 with ¢ > 0. Let &,...,¢éxy € N and
21,. .., 2N be complex numbers; then

(&5 — &n)2izk = / Ze—isﬂzjemmz_kdﬂ(x)
N h

s
. N
= /‘ Z.?e &
h 1

(2.16) ;
dpfz) >0
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so that Fourier-Stieltjes transforms of positive measures are positive
definite.

If, on the other hand, we assume that ¢ is positive definite, it follows
that for all A > 0, {p(An)} is a positive definite sequence (cf. 1.7.6).
By Herglotz’ theorem 1.7.6, p(An) = jix(n) for some positive measure
ux on T, and by theorem 2.7, = p for some positive u € M(R). <

*2.9 Some assumption of continuity of ¢ in Bochner’s theorem is es-
sential, but one may assume only that it is continuous at £ = 0 since a
positive definite function which is continuous at £ = 0 is uniformly con-
tinuous on the line. This can be obtained directly from condition (2.13)
or as a consequence of Lemma 1.7.7 applied to ¢(An), and letting A — 0
(see exercise 9).

Lemma. Let o = [i for some positive u € M(R). Assume that ¢ is
twice differentiable at € = 0 or just that 20(0) — p(h) — p(—h) = O (h?).
Then [ 2*dp < oo, and p has a uniformly continuous second derivative
on R.

PROOF: The assumption is that for some constant C,

I 2(p(0) — p(h) — p(—h)) = / 2 2(1  cos ha)du(z) < C.
Since the integrand is nonnegative, for every a > o,

/ l w?dp(z) < liini(r)lf/Qh’Z(l — cos hz)du(x) < C.

—a

Now, v = 2% € M(R), and ¢ = —7. <

Notice that if 2¢(0) — @(h) — p(—h) = o(h?), we have = ¢(0)d.
By induction on m we obtain

Proposition. Let ¢ = [i for some positive n € M(R). Assume that
© is 2m-times differentiable at ¢ = 0, then [ 2>™dp < oo, and ¢ has
a uniformly continuous derivative of order 2m on R. If o™ (0) = 0,
then 1 = p(0)dy.

*2.10 Positive definite functions which are analytic at £ = 0 are au-
tomatically analytic in a strip {(:{ = & + in, [n] < a}, with a > 0.
By Bochner’s theorem (and the previous remark) such functions are
Fourier-Stieltjes transforms of positive measures.
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Lemma. Let p be a positive measure on R. Assume that F (&) = [i(€)
is analytic at € = 0. Then there exists b > 0 such that [ €"*du < 0o and
i1 is the restriction to R of the function

(2.17) F(¢) = /.8_i<rd;4(.’)3).

PROOF: The assumption is: for some a > 0, F(§) = Y Mﬁ”

n!
in || < a. This implies |[F("(0)| < Cnla~", and in particular that
[ x*™dp < C(2m)la—?™. Since |z[*™T! < 22" + 2?2, we have

/‘.’1}|2'm+1du < (2 + a2)0(2m 4 2)!a72m+2

and

(218) /e"ﬂTldu,:Z/%duzznnw < 00

for all < a. <

An immediate corollary of (2.17) is the fact that F(£ + in) is positive
definite in &, and (with ( = £ +in),

(2.19) F(Q)] < F(in).
Also, since F(¢) = [(—iz)ke"*"du, we have
(2.20) PR < [FR(im)| +0(1).

It follows that if {¢ = £+ in:ap < n < a1} is a maximal strip in which
F(¢) is holomorphic, then the points iag and ia; are both singular points
of F.

If F is holomorphic on the entire imaginary axis, it is entire and we
obtain the following special case of a theorem of Marcinkiewicz:

Theorem. Assume that ¢©'©) is the Fourier-Stieltjes transform of a
positive measure, with P a polynomial, then deg P < 2.

PROOF: We must have e”(0) = [e~%dy. If P(¢) = Zé a;&l, ap # 0,

there are k directions 9; such that F(re¢¥s) ~ elasr*I+0(r" 1), By (2.19)
¥;=xF and k < 2. <
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*x2.11 Positive measures and positive definite functions are the bread

and butter of Probability theory, which uses its own terminology.

A real-valued random variable is, by definition, a measurable real-
valued function X on some probability measure space (2,5, P).

The expectation of an integrable random variable X is its integral
with respect to P. It is denoted E (X).

The distribution of a (veal-valued) random variable X is the image
of P under X; it is a probability measure on R.

The (cumulative) distribution function of X is the function

(2.21) Fx(A) =P (X < \);

(so that the distribution of X is simply the measure dFx). If ® is con-
tinuous on R then ® o X is integrable on (2, B, P) if, and only if @ is
integrable dF'x, and

(2.22) E(®oX)= / B(N)dFx(N).

The characteristic function of a random variable X is, by definition, the
Fourier-Stieltjes transform of its distribution. Taking ®(X) = €%+ in
equation (2.22), we have

(2.23) X (& =E (%) = / M dFx (N).

The term is justified by the uniqueness theorem 2.2
A normal (veal-valued) variable is one whose distribution dFx is
G(x)dx; X is Gaussian if it is a constant multiple of a normal variable.

Notice that X is normal if, and only if, X (£) = G = e~ ¥,
A sequence X, of real-valued random variables converge in distri-
bution to X, means: dFx, — dFx, in the weak-star topology.

2.12 For the convenience of future reference we state here the analog
to Wiener’s theorem 1.7.13. The theorem can be proved either by es-
sentially repeating the proof of 1.7.13 or by reducing it to 1.7.13. We
leave the proof as an exercise (exercise 7 at the end of this section) to
the reader.

Theorem. Let u € M(R). Then

Sluttah = Jim oo [ i) de.
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In particular, a necessary and sufficient condition for the continuity of
W is

lim /A ()2 dE = 0.

A—oo 2A A

EXERCISES FOR SECTION 2

1. Denote by 6., the measure of mass one on R concentrated at z = n.
Show that lim,,—.« 6, = 0 in the weak-star topology of M(R) and conclude
that weak-star convergence of a sequence of measures does not imply pointwise
convergence of the Fourier-Stieltjes transforms.

2. Let ytn, = n"'(61 + 82 + -+ + §,). Show that u,, — 0 in the weak-
star topology and [, (£) converges for every £ € R; however, lim /i, (£) is not
identically zero.

3. A set B C M(R) is uniformly-boundedly-spread (B € UBS for short),
if it is bounded and lim—.oc sUp ¢ f|z|>>\|df‘| =0.

a. Prove that B € UBS implies equi-continuity of {/i: 1 € B}.

b. If u,, are probability measures, and {ji,} is equi-continuous at £ = 0 then
{pn} € UBS.

c. If {un} € UBS, and u, — p in the weak-star topology, then /i, (&) — 4(£)
uniformly on compact subsets of R.

4. Let urn € M(R) such that ||| < 1. Assume that /i, converges pointwise
to a continuous function . Show that ¢ = [ for some p € M(R) such that
||| < 1; moreover, pn — p weak-star.

5. Let X\, be integers such that Ant1/An > 3. Write X, = \/g > cos Ajt.
(X, are real-valued random variables on the probability space T endowed with
the normalized Lebesgue measure). Prove that X,, converge in distribution to a
normal variable.

Hint: Exercise V.1.11.

6. Show that if ¢ is continuous on R and (2.10) is valid, then ¢ is posi-
tive definite. Conclude from (2.15) that the boundedness assumption of 2.6 is
superfluous.

7. Prove Theorem 2.12.

8. Express u{[a, b]} and p{(a,b)} in terms of fi. ([a, ] is the closed interval
with endpoints a and b, and (a, b) is the open one.)

9. Let an be complex numbers, |a,| < 1. Set by, = ant+1 — an and ¢, =
bp — bp—1 = Gn+1 + Gn—1 — 2an. Prove that if |¢,| < ¢, then |by| < 24/c.

a. How does this imply that a positive definite function which is continuous at
£ = 0 is uniformly continuous on R?

b. Prove that if ¢ is positive definite and ¢ (0) — Rp(h) = o(h?), as h — 0, then
 is a constant.
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10. Show that there exists a uniformly continuous bounded function ¢
which is not a Fourier-Stieltjes transform, and such that {¢(An)} is a sequence
of Fourier-Stieltjes coefficients for every A > 0.

Hint: Construct a continuous function with compact support which is not a
Fourier transform of a summable function.

3 FOURIER TRANSFORMS IN LP(R); 1 <p < 2.

The definition of the Fourier transform (i.e., Fourier coefficients)
for functions in various function spaces on T, was largely simplified
by the fact that all these spaces were contained in L!(T). The fact that
the Lebesgue measure of R is infinite changes the situation radically.
If p > 1 we no longer have L? C L', and, if we want to have Fourier
transforms for functions in LP(R) (or other function spaces on R), we
have to find a new way to define them. In this section we consider the
case 1 < p < 2 and obtain a reasonably satisfactory extension of the
Fourier transformation for this case.

3.1 We start with L2(R).

Lemma. Let f be continuous and with compact support on R; then
Loz 2
.- [P = [15@)Pds.
(L
We give two proofs.

PROOF I: Assume first that the support of f is included in (—7, 7). By
theorem 1.5.5,

o [u@re= ni\%f@)lz

and replacing f by e *** f we have

o

G.1) Jlr@Pds= 5 3 |fn+ ol

n=—o<

integrating both sides of (3.1) with respect to c on 0 < « < 1, we obtain

Jlr@Par= 5 [1ie)Pa



156 AN INTRODUCTION TO HARMONIC ANALYSIS

If the support of f is not in (—=,7), we consider g(x) = A2 f(\z). If
X is sufficiently big, the support of g is included in (-, 7) and, since
§(€) = A2 f(€/X), we obtain

Jir@ras= [@Pds= - fla@rds =5 [1feFde
<

PROOF IT: Write ¢ = f * f(—x); we have ¢(0) = [ f(z)f(z)dz =
[1f(z)Pdz and §(€) = | f(£)]?. If we know that [|f(£)]?dé < oo (e.g., we
assume that f is differentiable), it follows from the inversion formula
(1.11) that

o [\ FOF d=90) = [ 1@ da.

In the general case we may apply Fejér’s theorem and obtain

A—00 A

im o= [ (1= 5 17@Pas =900

and, since the integrand is nonnegative, its C-1 summability is equiva-
lent to its convergence and the proof is complete. <

DEFINITION: For g € L?(R) we write

|wp®=<%/mm%Qw.

Theorem (Plancherel). There exists a unique operator F from L*(R)
onto L*(R) having the properties:

(3.2) Ff=f for feL'nL*R),
(3.3) IFfll 2y = 1l 2qw)-

Remark: In view of (3.2) we shall often write f instead of Ff.

PROOF: We notice first that L' N L?(R) is dense in L?>(R) and conse-
quently any continuous operator defined on L?(R) is determined by its
values on L' N L2(R). This shows that there exists at most one oper-
ator satisfying (3.2) and (3.3). By the lemma, (3.3) is satisfied if f is
continuous with compact support, and since continuous functions with
compact support are dense in L' N L?(R) (with respect to the norm
| ler@) + || lz2@)), (3.3) holds for all f € L' N L?(R). The mapping
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f > f clearly can be extended by continuity to an isometry from L? (R)
into L2(R). Finally, since every twice differentiable compactly sup-
ported function on R is the Fourier transform of a bounded integrable
function on R (1.5 and the inversion formula), it follows that the range
of f — f is dense in L2(R) and hence coincides with it. <

Remarks: (a) Given a function f € L%(R) we define f as the limit (in
L*(R)) of £,, where f,, is any sequence in L' N L?(IR) which converges
to f in L2(R). As such a sequence we can take

L_[f@ lel<n
" 0 |z >n

and obtain the following form of Plancherel’s theorem: the sequence
(3.4) 0 = [ fa)eda

converges, in L?(R), to a function which we denote by f, and for which
(3.2) and (3.3) are valid.

(b) The mapping f — f being an isometry of L2(R) onto L*(R),
clearly has an inverse. Using theorem 1.11 and the fact that we have an
isometry, we obtain the inverse map by f = lim f,,) in L?(R) where

(3.5) fonta) = 5- [ F@ae.
(¢) Parseval’s formula
(36) [tz = o [ Feaee

for f. g € L*(R), follows immediately from (3.3) (and in fact is equiva-
lent to it).

3.2 We turn now to define Fourier transforms for functions in LP(R),
1 < p < 2. Using the Riesz-Thorin theorem and the fact that F : f — f
has norm 1 as operator from L'(R) into L>(R) and from L2(R) onto
L*(R), we obtain as in TV.2:

Theorem (Hausdorff-Young). Let 1 < p < 2, ¢ = p/(p — 1) and
f e L0 L*(R). Then

= |f(s>|‘1d§>l/q <(/ |f<x)|"dx)1/p.
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For f € LP(R), 1 < p < 2, we now define f by continuity; for
example, as the limit in LI(R) of [” ¢~* f(z)dz. The mapping F :
f — f so defined is an operator of norm 1 from LP(R) into L(R);
however, it is no longer an isometry and the range is not the whole of
(see exercise 10 at the end of this section).

3.3 The fact that for p < 2, F is not an invertible operator from L?(R)
onto L(R) makes the inversion problem more delicate than it is for
L?. The situation in the case of LP(R) is similar to that which we
encountered for LP(T). We have inversion formulas both in terms of
summability and in terms of convergence. The summability result can
be stated in terms of general summability kernels without reference to
the Fourier transform as we did in 1.10 for L!(R); and in fact the state-
ment of Theorem 1.10 remains valid if we replace in it L' (R)by LP(R),
1 < p < . For p < 2 we can generalize theorem 1.11. We first
check (see exercise 9 at the end of this section) that if ¢ € LP(R) and
f € L*(R) then f * g is a well-defined element in ZP(R) and f/*\g = fa.
This is particularly simple if we take for f the Fejér kernel Ky : we have

K= (1-5)

and, since K * ¢ is clearly bounded (K, € L4(R), ¢ = p/(p — 1)) and
hence belongs to L' N L>°(R) < L?(R), it follows that

A
arg=g [ (125 aoesa

and from the general form of theorem 1.10 we obtain:
Theorem. Let g € LP(R), 1 < p < 2, then

1 4
o= Jim oo [ (1= 5 acererae
Jox A
in the LP(R) norm.

Corollary. The functions whose Fourier transforms have compact sup-
port form a dense subspace of LP(R).

3.4 The analog to the inversion given by 3.1, remark (b) (i.e., con-
vergence rather than summability) is valid for 1 < p < 2 but not as
easy to prove as for p = 2; it corresponds to theorem II.1.5 and can be
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proved either through the study of conjugate harmonic functions in the
half-plane, analogous to that done for the disc in chapter 111, or directly
from II.1.5. The idea needed in order to obtain the norm inversion for-
mula for L?(R), 1 < p < 2, from I1.1.5 is basically the one we have
used in proof I of lemma 3.1.

For f € Ui<p<a LP(R) we write Sy(f, 2) = &= [N f(€)ei® de.

Lemma. For 1 < p < oo, there exist constants C,, such that

(3.7 1SN fllze@) < eollfllLe @
Jfor every function f with compact support and every N > 0.

PROOF: Inequality (3.7) is equivalent to the statement that, for M — oo

M 1/p
(3.8) (/ [Sn(f, x)l”dw> < Cpllfllorm)-
—M
Writing gay () = M7 f(Mx) we see that |oar e = | f]lzr) and
check that

(3.9) Sun(enr, ) = MYPSy(f, Mz).

In view of (3.9), (3.8) is equivalent to

.1 1/p
(3.10) ( / SMN(ngnpdx) < Cllor o
1

As M — oo, the support of ¢, shrinks to zero and consequently the
lemma will be proved if we show that (3.8) is valid, with an appropriate
C,, for all f with support contained in (—, 7) for M = 1 (or any other
fixed positive number) and for all integers N. We now write

N-1
! 1

3.11 Sn(f,z) = —f(n+ a)einreleg
G.11) v = [ 3 gonr o) da

and notice that Zl_v;,l (=) f(n + a)e™ is a partial sum of the Fourier
series of f(z)e " (it is carried by (—x, 7) which we now identify with
T). As an LP(T)-valued function of «, the integrand in (3.11) is clearly
continuous' and, by I1.1.2 and I1.1.5, it is bounded in L?(T) by a con-
stant multiple of || fe'*® ||, = (27) 7P| f|| Lr (). We therefore obtain

1 1/p n 1/p
( / 1|sN<f,x>|Pdw) <(/ |SN<f7x>|P<zx) < Clfl

TNote that f, having a compact a support, is in L1(R) and f is therefore continuous.
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and the proof is complete. <

Corollary. For 1 < p <2, inequality (3.7) is valid for all f € LP(R).

PROOF: Write f = lim,— fn, with f,, € LP(R), f,, having compact
supports and the limit being taken in the L?(R) norm. By theorem 3.2,
f=1limf, in L2(R) and consequently, we have for every fixed N > 0,
Sn(f,x) =lim,, Sy(f,z) uniformly in z. It follows that

SN (e @) < liH}lianSN(fn) ey <

Cplim|| fo|| Lo @) = Cpll fll o ) - <

Theorem. Let f € LP(R), 1 < p < 2. Then

A}i_r)noo n(f) = fller@) = 0.

PROOF: {Sy} is a uniformly bounded family of operators which con-
verge to the identity, as N — oo, on all functions with compactly sup-
ported Fourier transform, and hence, by corollary 3.3, it converges to
the identity in the strong topology. <

EXERCISES FOR SECTION 3

1. Let B C L. be a homogeneous Banach space on R and let f € B. Show
that: (a) for every ¢ € L'(R), ¢ = f can be approximated (in the B norm)
by linear combinations of translates of f. In other words: for every ¢ > 0,
there exist numbers y1, ..., ¥y, € R and complex numbers A4, ..., A, such that
lo* £ =37y Aify, | < e where f,(2) = f(a —y).

(b) For every y € R, f, can be approximated by functions of the form ¢ * f
with ¢ € L' (R). Deduce that a closed subspace H of B is translation invariant
(ie., f € H implies f, € H for all y € R) if, and only if, f € H implies
@ * f € H for every p € L'(R).

2. Let F,G € L*(R) and assume F(£) = 0 implies G(&) = 0 for almost all
¢ € R. Show that, given ¢ > 0, there exists a twice-differentiable compactly
supported function @ such that

||<I>F — G”Lz(_{g) < E.

3. Let f,g € L*(R) and assume that £(£) = 0 implies §(¢) = 0 for almost
all ¢ € R. Show that g can be approximated on L?(R) by linear combinations
of translates of f. Hint: Use exercises I and 2 and Plancherel’s theorem.
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4. For measurable sets E C R denote Hp = {f € L*(R):f = lLnf}.
Prove that Hg is a closed translation invariant subspace of L*(R), and that
every closed translation invariant subspace of L*(R) is obtained this way.

5. Show that every closed translation invariant subspace of L*(R) is singly
generated.

6. Let f € L?(R). Show that the translates of f generate L*(R) if, and only
if, f # 0 almost everywhere.

7. The information obtained from exercises 2 through 6 can be obtained
very easily by duality arguments (i.e., using the Hahn-Banach theorem). For
instance, by Plancherel’s theorem, exercise 6 is equivalent to the statement that
{/(£)e**"},er spans L2(R) if, and only if, f(¢) # 0 almost everywhere. By the
Hahn-Banach theorem { f(£)e*$”},cx does not span L (R) if, and only if, there
is a function ¢ € L?(R), not identically zero, such that [ f(&)9(¢)e™"d¢ = 0 for
all z € R. By the uniqueness theorem this is equivalent to: f¢ = 0 identically,
that is, f vanishes on the support of 1.

Use the same method to prove exercises 3 through 5.

8. Both the "if" and the "only if" parts of exercise 6 are based on Plancherel’s
theorem and are both false for L?(R), p < 2. Assuming the existence of a mea-
sure p carried by a closed set of measure zero and such that iz € L9 forall g > 2,
construct a function f € L' N L>(R) such that f(£) # 0 almost everywhere and
such that the translates of f do not span L?(R) for any p < 2.

Hint: Put g on R.

9. Show that if f € L(R) and g € LP(R), then f « g = f§.

We denote by FL” the space of all functions f such that f € L?(R), (thus
FL' = A(R)). By definition:

IflFze = 1 fllzr -

10. If p € M(R) and ¢ € FLP,1 < p <2, then fip € FL.
11. Show thatif ¢ € FL?, 1 < p < 2, and if we write

_Jel® £>0
M@—{O £ <,

then ¢ € FLP, and ||¢|| < Cpllpxre||-
12. Let a and § be real numbers, a3 # 0. Show thatif ¢ € FLP, I <p <2,

and if we write
o) — {w(aé) £>0
e(B8) €<0,
then ¢ 3 € FL*.
13. Let f € IP(R), 1 < p < 2. Show that h(z) = 7~ * ff(:z: —y)siny/ydy
is well defined and continuous on R, A € LP(R) and ||A||Lr ey < Cpl| fllorce-
14. Show that, for 1 < p < 2, the norms [¢||zz» and [|¢|| ¢z, are not
equivalent. Deduce that FL? # L(R) (¢ = p/(p — 1)). Hint: See IV.2.
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4 TEMPERED DISTRIBUTIONS AND PSEUDO-MEASURES

In the previous section we defined the Fourier transforms for func-
tions in LP(R), 1 < p < 2, by showing that on dense subspace on which
F : f— fis already well defined (e.g., on L! N L%(R)), we have the
norm inequality

If

and consequently there exists a unique continuous extension of F, as
an operator from LP(R) into LI(R). If p > 2 this procedure fails. It is
not hard to see that not only is it impossible to extend the validity of the
Hausdorff-Young theorem for p > 2, but also there is no homogeneous
Banach space B on R such that for some p > 2, some constant C and
all f € L' N Lo(R),

Lq(]f{) < ”f“LP(]R)

£l < Cllflle)-

So, a different procedure is needed if we want to extend the notion
of Fourier transforms to LP(R), p > 2. Clearly, we try to extend the
notion, keeping as many of its properties as possible; in particular, we
would like to keep some form of the inversion formula and the very use-
ful Parseval’s formula. We realize immediately that, since the Fourier
transforms of measures are bounded functions, if any reasonable form
of inversion is to be valid, the Fourier transforms of some bounded
functions will have to be measures; and once we accept the idea that
Fourier transforms need not be functions but could be other objects,
such as measures, the procedure that we look for is given to us by Par-
seval’s formula.

So far we have established Parseval’s formula for various function
spaces as a theorem following the definition of the Fourier transforms
of functions in the corresponding spaces. In this section we consider
Parseval’s formula as a definition of Fourier transform for a much larger
class of objects. Having proved Parseval’s formula for L7(R), 1 < p <
2, we are assured that our new definition is consistent with the previous
ones.

4.1 We denote by S(RR) the space of all infinitely differentiable func-
tions on R which satisfy:

(4.1) ‘ l‘im 2" fD(zy=0 foralln >0, j>0.

S(R) is a topological vector space, the topology given by the family
of seminorms

4.2) 1£]l;. = supla” £ (2)].
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This topology on S(R) is clearly metrizable! and S(R) is complete, in
other words, S(R) is a Frechet space.

DEFINITION: A tempered distribution on R is a continuous linear
functional on S(R).

We denote the space of tempered distributions on R that is, the dual
of S(R), by S*(R). S(R) is a natural space to study within the theory
of Fourier transforms. By theorems 1.5 and 1.6 we see that if f €
S(R) then f € S(R) (the analogous space on R) and, as £”f()(¢) is
the Fourier transform of (—i)™*7 w, we see that the mapping
f — f is continuous from S(R) into S(R). By the inversion formula
this mapping is onto S(R) and is bicontinuous.

We now define fi, for o € S*(IR), as the tempered distribution on R
satisfying

(4.3) o) ={f,m)

for all f € S(R).

The space of tempered distributions on R is quite large. Every
function ¢ which is measurable and locally summable, and which is
bounded at infinity by a power of = can be identified with a tempered
distribution by means of:

(f.g) = / f@a@ds  f e S(R)

and so can every g € LP(R), for any p > 1, and every measure i € M(R);
thus our definition has a very satisfactory domain. However, the range
of the definition is as large and this is clearly a disadvantage; it gives
relatively little information about the Fourier transform. We thus have
to supplement this definition with studies of the following general prob-
lem: knowing that a distribution i € S*(R) has some special properties,
what can we say about u?

Much of what we have done in the first three sections of this chapter
falls into this category: if p is (identified with) a summable function,
then /i is (identified with) a function in Cy(R); if p is a measure, then

T A sequence of functions fm € S(R) converges to f if imm—oo || fm — f|lj,n = O for
all j > 0 and n > 0. The metric in S(R) can be defined by:

_ B 1 =glljn
dist(f, g) = Z 2j+n m
Jon>0 '
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[ is a uniformly continuous bounded function; if u € LP(R) with
1<p<2thenje LIR), g=p/(p—1).

We shall presently obtain some information about Fourier trans-
forms of functions in LP(R) with 2 < p < oo but we should not leave
the general setup without mentioning the notion of the support of a
tempered distribution.

4.2 DEFINITION: A distribution v € S*(R) vanishes on an open set
O C R, if {p,v) = 0 for all ¢ € S(R) with compact support contained
in O.

Lemma. Let O1, Os be open onR and let K be a compact set such that
K C O1UOs. Then there exist two compactly supported C™ functions
@1 and o satisfying: support of v; C o and p1 + 2 =1 on K.

PROOF: Let U; C O; have the following properties: U; is open, U; is
compact and included in O;, and K C U; U Us. Denote the indicator
function of U; by ; and that of U \ U; by #9. Let & > 0 be smaller
than the distance of K to the boundary of U; U Us and also smaller than
the distance of U; to the complement of O;,j = 1,2. Let §(x) be an
infinitely differentiable function carried by (—z,¢) and whose integral
is 1. Then we can take ¢; = ¢; * <

Corollary. If v € S*(R) vanishes on Oy and on Os, it vanishes on
01 U Os.

PROOF: Let f € S(R) have a compact support included in O; U Os.
Denote the support of f by K and let o1, @2 be the functions described
in the lemma. Then ¢; € S(R), f = f(o1 + v2) = fo1 + fea. Now
(fe1,v) =0, (fe1,v) =0, and consequently (f,v) = 0. <

Our corollary clearly implies that the union of any finite number of
open sets on which v vanishes has the same property, and since our
test functions all have compact support, the same is valid for arbitrary
unions. The union of all the open sets on which v vanishes is clearly
the largest such set.

4.3 DEFINITION: The support (v) of v € S*(R) is the complement
of the largest open set O C R on which v vanishes.

Remarks: (a)Ifv is (identified with) a continuous function g then X(v)
is the closure of {z : g(x) # 0}. If v is a measurable function g then (1)
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is the closure of the set of points of density of {z:g(z) # 0}. The set
of points of density of {z: g(z) # 0} is a finer notion of support which
may be useful (cf. exercise 3.4).

(b) The definition of X(v) implies that if ¢ € S(R) and if the sup-
port of ¢ is compact and disjoint from X(v) then (¢, ) = 0. It may be
useful to notice that if ) € S(R) and if § is infinitely differentiable with
compact support and §(0) = 1, then ¢ = limy_o0(Az)y in S(R), and
consequently if the support of 1 is disjoint from ¥(v) (but not neces-
sarily compact) we have {1, v) = limy—q(6(Ax)®, v) = 0. In particular,
if 3(v) = {) then v = 0.

(¢) Let B > S(R) be a function space and assume that every f € B
with compact support can be approximated in the topology of B by
functions ¢,, € S(R) such that the supports of ¢,, tend to that of f. Let
v € S*(R) and assume that v can be extended to a continuous linear
functional on B. If f € B has a compact support disjoint from X(v),
then (f,v) = 0.

4.4 S(R) is an algebra under pointwise multiplication. The product fv
of a function f € S(R) and a distribution v € S*(R) is defined by

(9, fv) = (gf,v), g € S(R).

i.e., the multiplication by f in S*(IR) is the adjoint of the multiplication
by f in S(R). From the definitions above, it is clear that X(fv) C
3(f) N X(v).

4.5 We denote by FL¥ = FLP(R)) the space of distributions on R
which are Fourier transforms of functions in LP(R),1 < p < oc (we
keep the notation A(R) for FL'(R)). FL? inherits from L?(R) its Ba-
nach space structure; we simply put || f|| 7> = | f||L?(R); and we can
identify FL? with the dual of FL? if ¢ = p/(p — 1) < oo. In par-
ticular, FL* is the dual of A(R). This identification may be consid-
ered as purely formal: writing ( 1, g) = (f,g) carries the duality from
(LP(R), L4(R)) to (FLP, FLY); however, we have already made enough
formal identifications to allow a somewhat clearer meaning to the one
above. Having identified functions with the corresponding distribu-
tions, we clearly have S(R) c FL? and, if p < oo, S(R) is dense
in FLP; consequently, every continuous linear functional on FL? is
canonically identified with a tempered distribution. The identification
of FL? as the dual of FL? now becomes a theorem stating that a dis-
tribution » € S*(R) is continuous on S(R) with respect to the norm
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induced by FL? if, and only if, v € FLY. We leave the proof as an
exercise to the reader.

We now confine our attention to FL>. If y is a measure in M(R),
it is the Fourier transform of the bounded function h(z) = [ e®*du(¢);
thus M(R) ¢ FL*. The elements of FL> are commonly referred to
as pseudo-measures. It is clear that M(R) is a relatively small part of
FL°; for instance, if v € L° is not uniformly continuous on R, ¢
cannot be a measure.

DEFINITION:  The convolution hy * hs of the pseudo-measures hy and
ha, (hj € L(R)), is the Fourier transform of h, hs.

Again we reverse the roles; we take something which we have proved
for measures, as a definition for the larger class of pseudo-measures.
Thus, if hy and hs happen to be measures, h1 * hs is their (measure
theoretic) convolution.

4.6 Another case in which we can identify the convolution is given by

Lemma. Let hy € L°(R) and hy € L' N L®(R); then

(4.4) (hy * ha)(€) = (ha(€ = ), ha(n)).

PROOF: We remark first that hihe € L' N L°°(R) and consequently
hi % hy = hiH> € A(R) so that we can talk about its value at £ € R. If
hi € S(R) we have

(hy * ha)(€) = /hl(z)izg(:r)e_i&"dx = % // ha(n)ho(x)e! =9 da dn

- % / o€ — mha(n)dn = (ha(€ — ), B ().

Since S(R) is dense in L*°(R) in the weak-star topology (as dual of
L'(R)), and since both sides of (4.4) depend on h; continuously with re-
spect to the weak-star topology, (4.4) is valid for arbitrary h; € L(R).

Corollary. Ifh; € L®(R) and hs € L* N L°°(R), then
S(hy % ho) € B(hy) + S(hs).

4.7 This corollary can be improved:

Lemma. Assume hy, hs € L(R). Then

S(hy * he) € B(hy) + B(ha).
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PROOF: Considqr a smogth function f € A(R) witl} compact support
disjoint from (A1) + X (h2). We have to show that (f, h1 ha) = 0 which
is the same as [ fhihodr = (?ﬁ\l, ha) = 0.

Now 2(h) = {¢: —€ € (1)} and, by 4.6, £(fl) € B(f)+2(h).
If & € 2(fh1) N 3(hy), then there exist g € X(f) and n1 € X(hy) such
that & = 1y — m, that is, 9 = & + m. This would contradict the

assumption 3(f) N (E(ﬁl) + E(ﬁz)) = (. Tt follows that E(f/‘ﬁ\l) is

disjoint from E(ﬁ;), hence (f, l@) = (fﬁl,hAz) = 0 and the lemma is
proved. <

4.8 The reader might have noticed that we were using not only the du-
ality between L'(R) and L°°(R) but also the fact that a multiplication
by a bounded function is a bounded operator on L' (R). Another opera-
tion between L' (R) and L>°(R) which we have used is the convolution
that takes L' x L> into L°°(R). Passing to Fourier transforms we see
that FL°° is a module over A(R) the multiplication of a pseudomeasure
by a function in A(R) being the adjoint of the multiplication in A(R).
This extends the notion of multiplication introduced in 4.4.

4.9 Let k be an infinitely differentiable function on R, carried by [—1, 1]
and such that [ k(¢)dé = 1. For f € A(R) we set

fr= MO f = A / kO F(€ — n)dn.

fx is infinitely differentiable, 3(f)) < X(f) + [~1/A,1/A], and as
A — o0, fr— fin A(R).

By 4.3, remark (c) it follows that if v € FL> and if f € A(R) has
a compact support disjoint from X(v), we have (f,~) = 0. Further, if
f € AR) and 2(f) N 2(v) = 0, it follows that (1 — [¢|/A)f,v) = 0
for all A > 0 and letting A — oo, we obtain (f, ) = 0. For convenient
reference we state this as:

Lemma. Let v € FL* and f € AR). If £(f) N 2(v) = 0 then
(f,v)=0.

4.10 We leave the proof of the following lemma as an exercise to the
reader.

Lemma. Letv € FL® and f € A(R): then

(fr) C B(f) N ().
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4.11 We show now that a pseudo-measure with finite support is a mea-
sure. Using the multiplication by elements of A(R) we see that a pseu-
domeasure with finite support is a linear combination of pseudomea-
sures carried by one point each; thus it would be sufficient to prove:

Theorem. A pseudo-measure carried by one point is a measure.

PROOF: Let h € L**(R) and assume 2(h) = {0}. If @1, o € AR
and \pl(g) = ¢2(¢) in a neighborhood of ¢ = 0, then (pr1,h) = <c,02,h>
Put ¢ = (p,h) where ¢ is any function in A(R) such that (¢) =

near £ = 0. As usual we denote by K the Fejér kernel and recall that
K(¢) = sup(1 — |¢],0). By lemma 4.6 we have

(4.5) RK(€) = (K(& — 1), hin)).

For |€] > 1 we clearly have ITR(f) =0. If -1 < & < & < 0 we have

K& —1n) = K& — 1) = & — & for 7 near zero. By (4.5) and the
deﬁmtlon of ¢ we conclude that hK(§2 — hK(ﬁg = C(fg — &), and since
hK(f) is continuous, upon letting £&; — —1 we obtain hK({) =c(1+¢)
for —1 < ¢ < 0. Repeating the argument for 0 < ¢ < 1 we obtain
lfk(f) = ¢K(¢) and by the uniqueness theorem h(z) = c a.e. It follows
that / is the measure of mass ¢ concentrated at the origin. <

4.12 We add a few remarks about distributions in FLP, 2 < p < oo.
There is clearly no inclusion relation between LP(R) and L>°(R) but
it might be useful to notice that locally FL? ¢ FL* if p < p/ and in
particular all distributions in FL? are locally pseudomeasures. (We re-
call that a tempered distribution v belongs locally to a set G ¢ S*(R)
if for every ¢ € R there exists ¢ € G such that ¥(u — v) does not
contain ¢). If v € FL? and £ € R we may take A\ > €| and con-
sider p = Vv where V, is de la Vallée Poussin’s kernel (VA(E) =1
for (] < A, = 2= [¢A7 for A < €] < 2), and = 0 for [¢] > ).
It is clear that v = p on (=X, \), that is, (u — v) N (=A\, A\) = ¢ and if
v = f with f € LP(R), then p1 = m and V, = f € LP N L*=(R) since
V, € L' N LIR), g = p/(p — 1). In particular, if 3(v) is compact, say
3(v) C (—A, ), then p = v; we have thus proved:

Theorem. Ifv € FL? and X(v) is compact, then v € FL>.

4.13 If v € FLP N FL* we can consider the repeated convolution of
v with itself; writing v = f with f € L N L°°(R), the convolution of
v with itself m times is the Fourier transform of f™, and if m > p,
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f™ e LY(R) so that v % --- x v € A(R). In particular, assuming v # 0
S(v*---kv) C B(v)+- -+ X(v) contains an interval. As an immediate
consequence we obtain:

Theorem. Letv € FLP, p < oo, and let J be an open interval on R,
such that J N X(v) # 0. Then J N X(v) is a basis for R.

Theorems 4.11 and 4.13 are equivalent to the following approxima-
tion theorems:

4.11° Theorem. Let ¢ € R and denote

(&) = {f:f € A(R), f(&) = 0}
(&) ={f:f € SR), £ £ 2(f)}

Then 1o(€) is dense in I(€) in the A(R) topology.

4.13° Theorem. Let E C R be closed, and denote
Io(E)y={f:f € S(R),=(f) N E = 0}.

Assume that E + E + - -- + E (m times) has no interior. Let 1 <p <m
and q=p/(p — 1). Then Iy(E) is (norm) dense in FLA.

The proofs of 4.11° and 4.13” are essentially the same and follow
immediately from the Hahn-Banach theorem (and 4.11, 4.13, respec-
tively). A linear functional on A(R) which annihilates I,(¢) is a pseu-
domeasure supported by {£}, hence is constant multiple of the Dirac
measure at £, and hence annihilates 7(£). A linear functional on FL4
which annihilates Iy(E) is an element of F L? supported by E; hence it
must be zero. <

EXERCISES FOR SECTION 4

1. Deduce 4.11 from 4.11°.

2. Deduce 4.13 from 4.13".

3. What is a function h € L™ (R) such that 3(h) is finite?
4.If f € A(R) and v € FL™, then

Ifvllree < 1 lagellvlz
5. Let f € L™(R). Show that S(R(f)) € =(f) U (==()).

6. (Bernstein) Let h € L*(R) and assume that X(h) C [—k, k]. Show that
h is infinitely differentiable and that |27 ||cc < &™[|A|co.
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7. Let h € L°(R), h # 0. Assume that h(x + y) = h(z)h(y) a.e. in (z,y).
Show that for some & € R, h(z) = €*°% ae.

8. Assume v; € FL™,j=0,1,..., and v; — vy in the weak-star topology.
Let U be an open set such that U N X(v;) = 0 for infinitely many j’s. Show that
Un E(I/o) = 0.

9. Fourier transforms of functions in Cy(R) are called pseudofunctions (on

R).

(a) Show that if f € L! (R), then f is a pseudo-function.

(b) Show that if f; are pseudo-functions on R, || f;|| 2 < cand A; — oo
fast enough, then > E™i¢ f; converges (weak-star) in FL>.

10. Let h(z) = sinz®. Show that ¢*¢h, — 0 (weak-star) as |\ — oo

5 ALMOST-PERIODIC FUNCTIONS ON THE LINE

The usefulness of Fourier series of functions on T is largely due
to the information they offer about approximation of the functions by
trigonometric polynomials. On the line, trigonometric polynomials do
not belong to many of the function spaces in which we are interested,
for example, to LP(R) for p < oo; and the positive results, which we
had for LP(R), 1 < p < 2, were in terms of trigonometric integrals rather
than polynomials. Trigonometric polynomials do belong to L>°(IR), and
in this section we characterize the functions that are uniform limits of
trigonometric polynomials.

5.1 DEFINITION: Let f be a complex-valued function on R and let
e > 0. An =-almost-period of f is a number 7 such that

sup, | f(z —7) - f(z)| <e.

Examples: ¢t = 0 is a trivial e-almost-period for all £ > 0; if f is periodic
then its period, or any integral multiple thereof, is an s-almost-period
for all € > 0; if f is uniformly continuous, every sufficiently small ¢ is
an e-almost-period.

5.2 DEFINITION: A function f is (uniformly) almost-periodic on R if
it is continuous and if for every £ > 0 there exists a number A = A(e, f)
such that every interval of length A on R contains an e-almost-period of
f. We denote by AP(RR) the set of all almost-periodic functions on R.

Examples: (a) Continuous periodic functions are almost-periodic.

(b) We shall show (see 5.7) that the sum of two almost-periodic
functions is almost-periodic; hence f = cos z+cos w2 is almost periodic
(see also exercise 1 at the end of this section); noticing, however, that
f(z) = 2 only for x = 0, we see that f is not periodic.
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(¢) If f is almost-periodic, so are |f|, f, af for any complex number
a, and f(A\z) for any real A.

5.3 Lemma. Almost-periodic functions are bounded.

PROOF: Let f be almost-periodic. Take ¢ = 1 and let A = A(1, f). For
arbitrary z € R let 7 be a 1-almost-period in the interval [z — A, z].
We have 0 < z —r < A and |f(z) — f(z — 7)| < 1, consequently

f(2)] < SupogygA‘f(yH + 1 <

Corollary. If f is almost-periodic, so is f>.

PROOF: Without loss of generality we may assume |f(z)| < 1/2 for all
z € R. Wehave f*(z —7) — f2(2) = (f(z — 7) + f(2))(f(z — 7) = f(2))
which implies that, for every ¢ > 0, s-almost-periods of f are also «-
almost-periods of f2. <

5.4 Lemma. Almost-periodic functions are uniformly continuous.

PROOF: Let f be almost-periodic, £ > 0, A = A(e/3, f). Since f is
uniformly continuous on [0, A], there exists 19 > 0 such that for all
| <mo

SupO<x<A|f(33 +n) — flz)] <e/3.

Let y € R; we can find an ¢/3-almost-period of f say 7, within the
interval [y — A, y], and writing

fly+n) —fy)=fly+n) - Ffly—7+n)+
+(fly—7+n) = fly—7)+fly—7)— fW),
we see that each of the three summands is bounded by ¢/3; the first
and the third since 7 is an ¢/3-almost-period, and the second since 0 <

y—71 < Aand || < no. Thus if [n| < no, | f(z +n) — f(x)| <  for all z,
and the proof is complete. <

5.5 For a function f € L°°(R) we denote by Wy(f) the set of all trans-
lates of f; Wy(f) = {fy}yEIRT

Theorem. A function f € L®(R) is almost-periodic if, and only if,
Wo(f) is precompact (in the norm topology of L= (R)).

TRemember the notation fy(z) = f(z —y).
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PROOF: We recall that a set in a complete metric space is precompact
(i.e., has a compact closure) if, and only if; it is totally bounded, that
is, if for every ¢ > 0, it can be covered by a union of a finite number
of balls of radius . Assume first that f is almost-periodic and let us
show that Wy (f) is totally bounded in L>(R). Let £ > 0 be given and
let A = A(e/2, f); by the uniform continuity of f we can find numbers
m,-..,na in [0, A] such thatif 0 < gy < A, inflgjgj\,jufy[) — fﬁj | <=/2.
For arbitrary y € R let 7 be an £/2-almost-period of f in [y — A, y];
writing yo = y — 7 we obtain 0 < yg < A and ||fy — fyollo < €/2;
consequently, inf1 <<l fy — fy, oo < € and Wo(f) is covered by the
union of balls of radius «, centered at f,, , j=1,..., M.

Assume now that Wy( f) is precompact. Lete > 0andlet Oy, ..., 0
be balls of radius /2 such that Wy (f) € UM O;. We may clearly assume
that O; N Wy(f) # 0 and hence pick f,, € O;, j =1,..., M. The balls
of radius ¢ centered at y; cover Wy(f).

We claim that every interval .J of length A = 2 max; <;<ar|y;| con-
tains an es-almost-period of f. If J is such an interval, denote by y
its midpoint. There exists a jo such that [[f, — f,; |l < & writing
T =1y — yj, it is clear that 7 € J and, on the other hand,

”f’r - f”oo = ||f7+yju - f’.l/j[) ”00 <e.

All that we have to do in order to complete the proof is show that, under
the assumption that Wy (f) is precompact, f is continuous.! We show
that it is uniformly continuous, that is, lim, || f;, — f|lc = 0. Given
e > 0, let Oy1,...,0, be balls of radius £/2 covering Wy(f), as above,
and write E; = {7: f, € O;}. Since UE; = R, at least one of these, say
Ej,, has positive mesure. But then E;, — £, is a neighborhood of 0 in
R, and for y € E; — E; we have || f, — f|l« < €. <

5.6 DEFINITION: The translation convex hull, W(f), of a function
f € L>(R) is the closed convex hull of |, |<; Wo(af). Equivalently, it
is the set of uniform limits of functions of the form

(51) Zakfm, zr € R, E|ak\ <1.

Remark: If f is uniformly continuous we can define W(f) as the clo-
sure of the set of all functions of the form

(5.1 pxf with e L'R), el < 1.

IThat is: f is equal a.e. to a continuous function.



V1. FOURIER TRANSFORMS ON THE LINE 173

Another observation that will be useful later is:
(5.2) W(e* f) = {e*g: 9 € W(f)}.

By its very definition W ( f) is convex and closed in L>(R). Since
W(f) D Wu(f), it is clear that if W(f) is compact then Wy(f) is pre-
compact; the converse is also true: if Wy(f) is precompact, there exist
for every € > 0, a finite number of translates {f,, };2; such that every
translate of f lies within less than £ from fo; for some 1 < j < M.
Thus, every function of the form (5.1) lies within e of a function having
the form Y 17, b, f,, with Y3|b;| < 1. In the unit disc [b| < 1 we can
pick a finite number of points {c;}1_, such that every b in the unit disc
lies within e A/ —1 Hszio ® from one of the ¢;’s; thus every combination
>obify, >o|bj| <1 lies within £ of some

M
(5.3) S U fy, Y€ {atils
1

It follows that W ( f) is covered by the union of M N balls of radius
3e centered at the functions of the form (5.3); hence W (f) is precom-
pact and being closed it is compact. We have proved:

Lemma. W(f) is compact if, and only if, Wy(f) is precompact, that
is, if, and only if, f € AP(R).

5.7 Theorem. AP(R) is a closed subalgebra of L™ (R).

PROOF: In order to show that A P(IR)is a subspace, we have to show that
if f,g € AP(R) so does f+g. We clearly have W(f+g) C W(f)+W(g)
and since, by 5.6, W(f) and W(g) are both compact, W(f) + W(g) is
compact and hence W ( f + g) is precompact. Since W(f + g) is closed,
it is compact, and by 5.6, f + g € AP(R).

It follows from the corollary 5.3 that f2, g, (f + 9)> € AP(R) and
consequently fg = 1/2((f + g)> — f> — ¢*) is almost-periodic and we
have proved that AP(R)is a subalgebra of L>°(R). In order to show
that it is closed, we consider a function f in its closure. Since f is the
uniform limit of continuous functions, it is continuous. Given £ > 0
we can find a g € AP(R) such that || f — g||*° < /3, and if 7, is an /3
almost-period of ¢ we have

f‘r_f:(fT_g'r)_'_(g’r_g)_'_(g_f):
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hence ||f; — flloo < £/3 +¢/3+ /3 = £ and 7 is an e-almost-period of
f. Thus every interval of length A(=/3, g) contains an s-almost-period
of f, and f is almost-periodic. <

5.8 DEFINITION: A trigonometric polynomial on R is a function of
the form

flx) = Zajei{fx, & € RR.
1

The numbers ¢; are called the frequencies of f.

By theorem 5.7, all trigonometric polynomials and all uniform lim-
its of trigonometric polynomials are almost-periodic. The main theo-
rem in the theory of almost-periodic functions states that every almost-
periodic function is the uniform limit of trigonometric polynomials,
and actually gives a recipe, analogous to Fejér’s theorem for periodic
functions, for finding the approximating polynomials (see 5.20.

5.9 DEFINITION: The norm spectrum of a function h € L>=(R) is the
set

o(h) = {£:€ € R, ae™ € W(h) for sufficiently small a # 0}.

o(h) may well be empty even if A # 0; for instance, if h € Cy(R) we
have W(h) C Co(R) and consequently o(h) = . We notice that from
(5.2) and our definition above it follows immediately that

(5.4) o(e%%h) = &+ a(h) = {£+1:m € a(h)}.

Lemma. Ifh € L%(R) then o(h) C T(h).

PROOF: Since hy, = ¢€v]y it is clear that X(h,) = X(h) and conse-
quently 3(f) C X(h) for any f € W(h). If f = ae**, then f = ad;

(d¢ is the measure of mass one concentrated at £) and 2(f) = {£}); thus
if £ € o(h) then ¢ € 3(h). <

5.10 Lemma. Let h be bounded and uniformly continuous. Assume
that nK(nx) = h converges uniformly as n — 0 to a limit which is not
identically zero. Then 0 € a(h).

PROOF: Writing g, = nK(nz) = h we have g, = K(¢/n)h, so that
%(3,) C [~n,n] and hence B(lim,_og,) = {0}. By 4.11, lim,_o g,
is a constant, and by the remark following definition 5.6, g, € W(h)
and hence lim,_.o g, € W(h) ; now, as lim g, is a constant different
from zero, we obtain 0 € o(h). <
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Corollary. Let ;i be a measure on R and assume ({0}) # 0. Let
h(z) = [ e**du(€) (so that u = h), then 0 € o(h).

PROOF: Keeping the notations above, we have g, = K(&/n)p and con-
sequently g, tends to u({0})dp in M(R) which implies g, — u({0})
uniformly. <

5.11 Remarks: It is clear that 0 € R plays no specific role in 5.9;
if u({&}) # 0 we have £ € o(h) (h as above). Also, it is not essen-
tial to use Fejér’s kernel: if F € L'(R), and if we assume that F,, «
converges uniformly to a nonvanishing limit, where F;, = nF(nz), it
follows that 0 € o(h). This can be seen as follows: given a sequence
en — 0, we can write F' = G,, + H, such that G,,, H, € L'(R), G,
has compact support, say included in (—c,, c,), and ||H, | p1 ) < £n.
Writing G, ,(z) = nGn(nz), Hn,(z) = nH,(nz) and noticing that
|Hpy % b =@ < €nlh|, we obtain lim, .o, Gp, * h = F, * h. Re-
membering that E(Gﬁh) C (—nen,ne,) we obtain, letting n — 0
faster than ¢,, — oo, E(lim/l—%,\* h) = 0 as before.

The condition of existence of a uniform limit of F;, * h as  — 0 can
clearly be replaced by the less stringent condition of the existence of a
nonvanishing limit point, that is. a limit of some sequence F, x h with
Nn—0. We restate these remarks as:

Lemma. Let f € AP(R) and assume 0 € o(f), then for all F ¢ L'(R)
lim,,—o||nF (nx) * f|| @) = 0.

PROOF: Let F ¢ L}(R); with no loss of generality we may assume that
|F|l 1y < 1. It follows that nF'(nz) « f € W([) and, if it did not tend to
zero as ) — 0, it would have, W ( f) being compact, other limit points.
By the preceding remarks this would imply 0 € o(f). <

5.12 Lemma 5.11 has the following converse:

Lemma. Let f € AP(R), F € L*(R) and [ F(z)dz # 0. If for some
sequence 1, — 0, lim,— oo ||[ 7. F(nnx) * f|| = 0, then 0 & o(f).

PROOF: We notice first that for any translate of f, hence for any lin-
ear combination of translates, and hence for any g € W(f), we have
limy, o0 || F () % gl| o m) = 0. If g = const , n, F(nnz) x g = F(0)g
and consequently the only constant in W(f) is zero, that is, 0 & o(f). «
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5.13 Theorem. 70 every [ € AP(R) there corresponds a unique
number M(f), called the mean value of f, having the property that

0 &o(f—M(f))

PROOF: We have seen before that uniform limit points of nK(nz) * f
as n — 0 are necessarily constants. Since nK(nz) x f € W(f) and
since W (f) is compact, there exists a number « such that for an ap-
propriate sequence 7, — 0, n,K(n,z) * f converges uniformly to «.
Since K(0) = 1, 5,K(1j,z) * (f — &) — 0 uniformly; hence, by 5.12,
0 & o(f — «). If B is another number such that 0 ¢ o(f — ) we obtain,
using 5.11, thatas n — 0

nK(nz) « [(f — ) = (f = B)] = nK(nz) = (f — a) = nK(nz) « (f - 5)

converges to zero uniformly. But nK(nz) «[(f —a) — (f —B)] =8 —«
identically and consequently 8 = «. Thus the property 0 & o(f — «)
determines « uniquely and we set M(f) = . <

Corollary. If f € AP(R) and F € L'(R), then nF(nx) * f converges
uniformly as n — 0 to F(O)M(f).
12 |2l <1

0 x| > 1
evaluating the convolution at the origin, we obtain:

1

In particular, taking F(z) = writing 7' =n~", and

Corollary. For f € AP(R),

T
(5.5) M(f) = Tli_)moo% /_ fayda.

Using the mean value we can determine the norm spectrum of f
completely. By (5.4) it is clear that £ € o(f) if, and only if, 0 €
o(fe~%7) and consequently

(5.6) gca(f) e M(fe ) #0

By our definition of A/(f) and by corollary 5.9 it is clear that if fis
a measure then f({0}) = M(f) and similarly

(5.6") F(&) = M(fe ")

thus we can recover the discrete part of f. We shall soon see that f has
no continuous part when f € AP(R).
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5.14 The mean value clearly has the basic properties of a translation
invariant integral, namely:

(5.7 M(f +g) = M(f)+ M(g),

(5.8) M(af) = aM(f),

(5.9) M(fy) = M(f) (where f,(x) = f(z — y)).
It is also positive:

Lemma. Assume [ € AP(R), f(z) > 0 on R, and | not identically
zero. Then M(f) > 0.

PROOF: By (5.7) we may assume f(0) > 0 and consequently, if & > 0
is small enough, f(z) > aon —a < z < a. Let A = A(«a/2, f); every
interval of length A contains an «/2-almost-period of f, say 7, and
flz) > /2 in (7 — a, 7 + «). It follows that the integral of f over any
interval of length A is at least o?; hence M (f) > o2/A. <

5.15 We define the inner product of almost-periodic functions by:

(5.10) {(fL9)m =M(fg)

and claim that with the inner product so defined, AP(R) is a preHilbert
space, that is, satisfies all the axioms of a Hilbert space except for
completeness. The bilinearity of (f, g)as is obvious and the fact that
(fyg)p > 0 unless f = 0 has been established in 5.14. In this pre-
Hilbert space, the exponentials {e¢*} ¢er form an orthonormal family,
since

T . _
<€'1',§:L" ei”"”)M — lim i / 6i(£7"])wd35 _ 1 lfé =N
T—00 2T J_1 0 if ¢ #n.

We now introduce the notation®

(.10 FUEY) = (.6 ar = M(fe™ ).

that is, f ({&}) are the Fourier coefficients of f relative to the orthonor-
mal family {¢"*“} _;. Bessel’s inequality now reads

(5.12) D IFUEDE < (f, fHne = MIfP)

¢eRr

SIf f is a measure on R, (5.11) agrees with (5.6”). By abuse of language we shall
sometimes refer to f({£}) for arbitrary f € AP(R), as the mass of the pseudomeasure f
at £.
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and it follows that f({¢}) = 0 except possibly for a countable set of £’s.
Combining this with (5.6) we obtain that for all f € AP(R), o(f) is
countable.

5.16 We now introduce the mean convolution f K of two almost-

periodic functions.
Let f, g € AP(R); then for every 2 € R, f(x — y)g(y), as a function
of y, is almost periodic and M, (f(z — y)g(y)) is well defined. Write:

T
(5.13) (f 10)@) = M(fla =) = Jim [ fla= oty
Lemma. f *9 is almost-periodic. If M(|g|) < 1, then f 9 e W(f).

PROOF: Without loss of generality we assume that M (|g|) < 1. Tt fol-
lows that for all sufficiently large T'

% /J flx —y)gly)dy € W(f)

and, combining the compactness of W ( f) with the fact that the point-
wise limit in (5.13) is well defined, we obtain f kgas the uniform limit

of 3 [T fla —y)g(y)dy. <

The convolution f W has all the properties of convolutions on T

and R; in particular

(f 9 ({€}) = M, (]\]y(f(x _ y)g(y))e—iiw)

(5.14 ~ ) ‘ N
= M, M, (F(z = y)e™ O g(y)e™ W) = f{eDa{e))-

Also,
I xS0 = My(f(z — y)e'’) = My(f(H)e7Y) = f({eh)e'*,
so that if g(z) = 3 §({¢})e®® (finite sum) then

fxa=2 a{enfene.
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5.17 For f ¢ AP(R), write f*(x) = f(—z), and
(5.15) h=fxf =M, (fy) Flz+y).

Since f*({¢}) = f({£}) we have by (5.14),
h{eh) = 1F{EN

If | f||ee < 1, which we assume for convenience, then h € W(f).

Lemma. h, defined by (5.15), is positive definite.

PROOF: Let z; € R and z; are complex numbers, j = 1,..., N, then
> hlw; = wk)zz = lim o / D flay+y) (@ +v) 2 2dy
= lim —/ |Zz]f(xj+y)l dy > 0.

n—oo 27"

<

Since h is continuous, Bochner’s theorem 2.8 says that / is the Fourier
transform of a positive measure or, equivalently, / is a positive measure.

5.18 Proposigion. Iff € AP(R) and f € M(R), then f = 3 f({¢})dc,
1l pry = SIFUEDL and fz) = 3 f({g})ei=.

PROOF: By (5.6”), the discrete part of f is 3 f({€})d;, and we have
>If{ENI < HfHA](R) We claim that the continuous part of f is zero.

Denote the continuous part of f by u; it is the Fourier transform
of the almost-periodic function g = f — > f({£})e%®. By Wiener’s
theorem 2.12, lim(27) ! f_TT|g(x)|2dz = 0 and, by 5.14, 1 = 0. <

5.19 Theorem (Parseval’s identity). Ler f € AP(R), then

(5.16) Y IFEENP = M(fP) .
PROOF: Define h by (5.15). By Proposition 5.18 we have
D IFEEDP =D h{e}) = h(0) = M| /).

<

Corollary (Completeness). {c*} ¢ci is a complete orthonormal ba-
sis for AP(R).

Corollary (Uniqueness). Let f € AP(R), f # 0. Then o(f) # 0.
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5.20 For arbitrary f € AP(R), the series 3 f({£})e%*, to which we
refer as the Fourier series of f, converges to f in the norm induced by
the bilinear form (-, -) 5;. Our next goal is to show that, as in the case of
periodic functions, the Fourier series of any f € AP(R) is summable to
f in the uniform norm.

5.21 Lemma. Given a finite number of points &, ..., Ex € R and an
g > 0, there exists a trigonometric polynomial B having the following
properiies:

(@ B(z)=0
() M(B)=1
© B{EH>1-¢ for j=1,..., N.

PROOF: We notice first that if &, . .., £y happen to be integers and if m
is an integer larger than ¢ ~' max|¢,|, then the Fejér kernel of order m,
namely K,,, = > (1 - %)e”” has all the properties mentioned. In
the general case let Aq, ..., A\, beabasis for&y,...,&n; thatis, Ay, ..., Ay
are linearly independent over the rationals and every &; can be written
in the form ¢; = >°7 A; x A« with integral A; ;. Let &1 > 0 be such
that (1 — ;)7 > 1 — ¢, and let m > &7 " max; 1|4, x|; we contend that
B = []{ K,(Axz) has all the required properties. Property (a) is obvious
since B is a product of nonnegative functions. In order to check (b) and
(c) we rewrite B as

_ |%1| gl \ iCkiay otk A
617 B =3 (1= ) (1) ,
the summation extending over |k;| < m,...,|ky| < m. Because of the
independence of the \;’s there is no regrouping of terms having the
same frequency and we conclude from (5.17) that B(0) = the constant
term in (5.17) = M(B) = 1, which establishes (b), and

B({&)) = B({i Aj,kxk}) — ﬁ(l Ay ) S(l—g)?>1—¢

pie m+1
which establishes (c). <

Theorem. Let f € AP(R). Then f can be approximated uniformly by
trigonometric polynomials P, € W(f).
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PROOF: Since o(f) is countable we can write it as {¢;}72,. For each
n let B,, be the polynomial described in the lemma for &,...,¢, and
e=1/n. Write P,, = f * B,.. By 5.17, P, € W(f) and taking account

of (¢) above, hmP,L({f,}) = f({€}) for every &; € o(f). If € &€ o(f) we
have P, ({¢}) = f({£}) = 0 for all n. It follows that if ¢ is a limit point

of P, in W(f), then §({¢}) = f({¢}) for all ¢ and by the uniqueness
theorem g = f. Thus, f is the only limit point of the sequence P, in the
compact space W( f) and it follows that P,, converge to f (in norm, i.e.,
uniformly.) <

Corollary. Every closed translation invariant subspace of AP(R) is
spanned by exponentials.

5.22 We finish this section with two theorems providing sufficient
conditions for functions to be almost-periodic. Though apparently dif-
ferent they are essentially equivalent and both are derived from the
same principle. We start with some preliminary definitions and lem-
mas.

For h € AP(R), we say, by abuse of language, that / is an almost-
periodic pseudo-measure.

DEFINITION: A pseudo-measure v is almost-periodic at a point
£ € R, if there exists a function ¢ € A(R), ¢(£) = 1 in some neighbor-
hood of &y, such that ¢v is almost-periodic.

It is clear that v is almost-periodic at &y if, and only if, v is almost-
periodic for every ¢ € A(R) whose support is sufficiently close to &
(e.g., within the neighborhood of ¢, on which the function ¢ above is
equal to one). In particular, v is almost-periodic at every £ & X(v).

Lemma. Let v € FL™ and assume that X(v) is compact and that v is
almost-periodic at every point of 3(v). Then v is almost-periodic.

PROOF: By a standard compactness argument we see that there exists
an 1) > 0 such that v is almost-periodic for every ¢ € A(R) which is
supported by an interval of length 1. Let ¢; ¢ A(R) have their sup-
ports contained in intervals of length n, j = 1,2,..., N, and such that
Z{V 1; = 1 on a neighborhood of 3(v). By the assumption concerning
the supports of 1/}, ¥;v is almost-periodic for all j, and consequently

i (i) = (Z vy =v

is almost-periodic. <
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5.23 Theorem. Let h ¢ L(R) and assume that £(h) is compact and
that U is almost-periodic at every £ € R except, possibly, at £ = 0. Then
h e AP(R).

5.24 Theorem (Bohr). Let h € L™(R) and assume that it is differ-
entiable and that I/ € AP(R). Then h € AP(R).

These two theorems are very closely related. We shall first show how
theorem 5.23 follows from 5.24, and then prove 5.24.

PROOF OF 5.23: We begin by showing that if (1) is compact, then
h is differentiable and &’ = i¢h (see exercise 4.6). Let f € S(R) be
such that f(¢) = 1 in a neighborhood of X(h). We have h = fh and
consequently h = fxhor h(z) = [ f(z — y)h(y)dy. Since h is bounded
and f € S(R) we can differentiate under the integral sign and obtain
that h is (infinitely) differentiable and that 2’ = f’ x h. Remembering
that f(¢) = i¢ in a neighborhood of I(A), we obtain b/ = f'h = i¢h.

By theorem 4.11° there exists a sequence {p,} in Ll(@) such that
¢n(€) = 0 in a neighborhood of ¢ = 0, and such that ||, — f' | am) — 0.
This implies (exercise 4.4) that ||, i — I/ |#7= — 0, that is, 1’ is the
uniform limit of ¢,, * h. Now, since ,,, vanishes in a neighborhood of
¢ = 0, it follows from 5.22 that ¢,, *x h € AP(R); by 5.7, ¥ € AP(R),
and by 5.24 h € AP(R).

PROOF OF 5.24: Since h is clearly continuous we only have to show
that for every ¢ > 0 there exists a constant A(g, h) such that every inter-
val of length A(e, h) contains an s-almost period of h. In view of 5.7 we
may consider the real and the imaginary parts of i separately, so that
we may assume that % is real-valued. Denote

(5.18) M =sup, h(z), m = infh(z).
&€

Let ¢ > 0. Let 2y and z; be real numbers such that

(5.19) h(zo) < m + % (1) > M — ;
we pute; = m and claim that if 7 is an &, -almost period of /' then
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h(zo — 7) < m+ /2. In order to see this we write

Wz — 1) — hwoT) = /ml W(z —T1)dz

Zo

(5.20) = /I1 h (z)dx + /zl (R'(z —7) — W (z))d

0
x1

— h(z1) — h(z0) +/ (W (z — ) — W () de,
and, since the last integral is bounded by |z; — x¢|e; = /4 it follows
from (5.19) and (5.20) that

hay —7) — h{zg — 7) >]\/I—mf§
and, since h(z1, — 7) < M, we obtain h(zg — 7) < m + £/2.

We now use the points {z, — 7}, where 7 is an &; /2-almost-period
of i/ as reference points. Let A; = A(e;/2,h') and define €3 by &2 =
min(q/2,e1/2, ¢/A1). We claim that every 5-almost-period of A’ is an
e-almost-period of /. In order to prove it let z € R and let 71 be an e5-
almost-period of h'; we take 7, to be an ¢; /2-almost-period of A’ such
that z < zg — 19 < = + A1, and write

Wz —71) — h(z) = h(z — 1) — h(zo — 70 — 71)
(5.19)  +h(xo — 70 — 1) — h(zo — 70) + h(zo — 70) — h(x)

"TO—T0

=h(zg —170 —11) — h(xg —10) + / (h,'(y) —h(y— T1))dy.

Since 1y and 19 + 71 are both &;-almost-periods we have

m< h(zg—710—711) <m+¢e/2 and m < h(xg — 1) <M +¢/2,
hence |h(zg — 710 — 71) — h(zo — 70)| < £/2. The integral in (5.21) is
bounded by esA; < £/2 and it follows that |h(x — 1) — h(x)| < &. Thus,

every interval of length A(e2, ') contains an e-almost-period of h and
the proof is complete. <

5.25 Theorem. Let h € L°°(R) and assume that 3(h) is compact and
countable. Then h € AP(R).

PROOF: This is a corollary of 5.20. The set of points ¢ such that h is not
almost-periodic at ¢ is a subset of X(h) and, by 5.23, has no isolated
points. Since a countable set contains no nonempty perfect sets, A is
almost-periodic at every ¢ € R and, by 5.22, h € AP(R). <
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EXERCISES FOR SECTION 5

1. Show that f = cos 2wz + cosz is almost-periodic by showing directly
that given ¢ > 0, there exists an integer A such that at least one of any M
consecutive integers lies within ¢ from an integral multiple of 27.

2. Let h € L*°(R). Show that, if i is uniformly continuous, o(h) contains
every isolated point of 3(h).

3. Let f.g € AP(R). Show that f * g = 37 f({€})g({€})e*".

4. Let f € AP(R) and assume that W(f) is minimal in the sense that if
h € W(f)and h # 0 then af € W(h) for sufficiently small a. Show that f is a
constant multiple of an exponential.

5. Let f € AP(R) and assume that f’ is uniformly continuous. Show that
f e AP(R).

6. Show that the assumption that 33() is compact is essential in the state-
ment of theorem 5.25.

Hint: Consider discontinuous periodic functions.

7. Show that in the statement of theorem 5.25, the assumption that Z(fz) is
compact can be replaced by the weaker condition that & be uniformly continu-
ous.

8. Deduce 5.24 from 5.23.

9. Let P be a trigonometric polynomial on R, and let ¢ > 0. Show that
there exists a positive = n(P,¢) such that if @ € L=(R), [|Q| < 1 and
2(Q) C (—n,n), then

range(P + Q) + (—e, ) D range(P) + range(Q).

Hint: The conditions on @ imply that |Q’|| < 7; see exercise 4.6.

10. Let h € FL®, & € R and {n-} a sequence tending to zero. Show that
if K(n'(€ = &))h tends to a limit (in the weak-star topology), then the limit
has the form ade,. Introducing the notation a = h({£}, K, {n.}), show that
STIA({&0}, K, {nm})|? < co where the summation extends over all & € R such
that weak-star-lim, ... K(17;, (€ — &))h exists.

11. Let h € FL™. Show that for all & € R, except possibly countably
many, weak-star-lim, _...K(nx 1 (¢ — &))h exists and is equal to zero.

12. Show that if h € L°°(R), o(h) is countable.

13. Let B be a homogeneous Banach space on R such that AP(R) C B C
L. (see 1.14). Describe the closure in B of AP(R).

6 THE WEAK-STAR SPECTRUM OF BOUNDED FUNCTIONS

6.1 Given a function h € L*(R), we denote by [h] the smallest trans-
lation invariant subspace of L°°(RR) that contains h; that is, the span

of {hy,},er. We denote by [A] the norm closure of [h] in L>(R), and
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by [h]w~, the weak-star closure [h] in L>(R). Our definition 5.9 of the
norm spectrum of % is clearly equivalent to

a(h) = {£: ¢ € [1]}
and we define the weak-star spectrum by
Ow-(h) = {€:e%% € [h],-}.

Let h € L*(R). The problem of weak-star spectral analysis is: find
ow+(h). The problem of weak-star spectral synthesis is: does h belongs
to the weak-star closure of span {¢"*"}¢c,. . (n)?

The corresponding problems for the uniform topology were studied
in section 5. We have obtained some information about ¢(%) for arbi-
trary h and complete information in the case that h was almost-periodic
(see (5.6)); we proved that the norm spectral synthesis is valid for 4 if,
and only if, i € AP(R). The problem of weak-star spectral analysis
admits the following answer:

Theorem. For h € L™(R), o,-(h) = Z(h).

PROOF: The subspace of L!(R) orthogonal to [h] is composed of all the
functions f € L*(R) satisfying

/f(:c)h(x —y)dx=0 forall y eR
which is equivalent to
(6.1) fxh(—z)=0.

We denote this subspace of L!(R) by [h]*.
By the Hahn-Banach theorem, ¢¢% € [h],,~ if, and only if,

[ @i = fe) =0

forall f € [h]*.

We thus have an equivalent definition of o« (h) as the set of all
common zeros of { f: f € [h]*}.

Assume & ¢ S(h); if ¢ > 0 is small enough (& —¢, &g+2)NE(h) = 0
so that if f € L*(R) and the support of f is contained in (¢, — £, & + <)
we have

(f, by = / f(2)h(z)dz = 0.
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We claim that [ is orthogonal not only to A, but also to all the translates
of 1, hence to [h]. This follows from

62) / @R = g)dz = / f(a + y)hlg)dz,

and since the Fourier transform of f(z+y) is % f, hence supported by
(£o—¢, &o+<), both sides of (6.2) must vanish. There are many functions
f in A(R) supported by (& — £, & + ¢) such that f(&) # 0; it follows
that &, is not a common zero of {f: f € [h]*} hence & ¢ o, (h); this
proves o (h) C S[h).

In the course of the proof of the converse inclusion we shall need
the following lemma, due to Wiener. The proof of the lemma will come
in chapter VIII (see VIIL.6.2).

Lemma. Assume f,f; € A(R) and assume that the support of fiis
contained in a bounded interval U on which [ is bounded away from
zero. Then

fi=af forsomegc L'(R).

To prove X[h] C oy+(h), we have to show that if & & o« (h), then
h vanishes in some neighborhood of &. Now, since & & o+ (h), there
exists a function f € L'(R) satisfying (6.1) and such that f(&,) # 0 and
consequently f is bounded away from zero on some neighborhood U of
£0. We contend that & vanishes in U, a contention that will be proved if
we show that if f; € L'(R) and the support of f; is contained in U then
fi * h(—z) = 0. By Wiener’s lemma there exists a function g € L'(R)
such that f; = §f or equivalently fi = g = f. Now

Jrh(=a) = (g% )« h(=2) = g (f » W(—2)) = 0

and the proof is complete. <

6.2 The Hahn-Banach theorem, used as in the foregoing proof, gives
a convenient restatement of the problem of spectral synthesis. We in-
troduce first the following notations: if E is a closed set on R write

(6.3) I(E)={f:f€L'(R), f(§ =0 on E}
and

(64) QE)={g:9€ L®(R) and (f,g) =0 forall fe I(E)}.
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I(E) is clearly the orthogonal complement in L'(R) to the span of
{e'*}ecp and Q(E) is the orthogonal complement in L=(R) of I(E).
By the Hahn-Banach theorem Q(F) is precisely the weak-star closure
of span {e***};c p and the problem of (weak-star) spectral synthesis for
h € L>=(R) can be formulated as: is it true that h € Q(o,~(h))? Equiv-
alently, is it true that for f € A(R)

(6.5) F(€)=0 on oy (h) = (f.h) =07
or: is it true that, (f € A(R))

(6.6) f(&)=0 on = fh=07?

(The equivalence of (6.5) and (6.6) follows from (6.2)).

Theorem. Let f € A(R) and h € FL> and assume that f(£) = 0 on
Y(h). Then X(fh) is a perfect subset of X(f) N bdry(X(h)).

PROOF: By 4.10, £(fh) c B(f) N (k) and since f vanishes on X(h),
no interior point of E(ﬁ) is in 3( f) Let & be an isolated point of
(fh); with no loss of generality we may assume & = 0 and that
(—7,n) contains no other point of 2(f1).

Write K, (£) = K(1¢) = sup(0, 1—|~2¢[). We have (K, fh) = {0}
and consequently (see 4.11) KA,, fh = aé, with @ # 0 a constant, and o
the unit mass concentrated at ¢ = 0. By 4.11° there exists a function
g € L'(R) such that § vanishes in a neighborhood of ¢ = 0, say in
(—m,m), and such that |lg — flliw) < (lal/2)[Ihl|} % (remember
that £(0) = 0). Since ||K,| = 1, we have |[K,(f — 3)h| < |a|/2 and,
multiplying everything by R,n we obtain, (remember that ng = 0),
la| = ||ad||Fz~ < |a|/2 which is a contradiction. Thus X(fh) has no
isolated points and the proof is complete. <

Corollary. If 2(13) has countable boundary then h admits weak-star
spectral synthesis; that is, h € Q(o,,+(h)).

We recall that if 2(7) itself, and not just its boundary, is countable,
and if 4 is uniformly continuous, then h € AP(R) (theorem 5.25), that
is, admits norm spectral synthesis.

Weak-star spectral synthesis is closely related to the structure of
closed ideals in A(R), and we shall discuss it further in chapter VIII. In
particular, we shall show that weak-star spectral synthesis in FL™> is
not always possible.
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7 THE PALEY-WIENER THEOREMS

7.1 Our purpose in this section is to study the relationship between
properties of analyticity and growth of a function on R, and the growth
of its Fourier transform on R. The situation is similar to, though not as
simple as, the case of functions on the circle. We have seen in chapter
I (see exercise [.4.4) that a function f, defined on T, is analytic if, and
only if, f(n) tends to zero exponentially as |n| — co. The simplicity of
this characterization of analytic functions on T is due to the compact-
ness of T. If we consider the canonical identification of T with the unit
circle in the complex plane (i.e. t < ¢**), then a function f is analytic on
T (i.e., is locally the sum of a convergent power series) if, and only if,
f 1s the restriction to T of a function F, holomorphic in some annulus,
concentric and containing the unit circle. This function F' is automati-
cally bounded in an annulus containing the unit circle, and the Fourier
series of f is simply the restriction to T of the Laurent expansion of F'.

Considering R as the real axis in the complex plane, it is clear that
a function f is analytic on R if, and only if; it is the restriction to R of
a function F', holomorphic in some domain containing R; however, this
domain need not contain a whole strip {z: z = x + iy, |y| < a}, nor need
F be bounded in strips around R or on R itself (cf. exercises 1 through
3 at the end of this section). If we assume exponential decrease of f at
infinity we can deduce more than just the analyticity of f on R; in fact,
writing

F(:) = 5= [ F@)es

we see that if f(¢) = O (e=I¢l) for some a > 0, then F is well defined
and holomorphic in the strip {z: |y| < ¢}, and is bounded in every strip
{z:ly| < a1}, a1 < a; by the inversion formula’, F|g = f. Under the
same assumption we obtain also that, since f € L2(R), f € L2(R); and
since for |y| < a, F(x + iy) is the inverse Fourier transforms of ¢~¢v f,
we see that, as a function of z, F(z + iy) € L*(R) for all |y| < a. Even
with all this added information about the analytic function extending
f to a strip, we cannot obtain exponential decrease of f; we can only
obtain that ¢ ¢ f € L2(R) for all |y| < a.

Theorem (Paley-Wiener). For f € L*(R), the following two condi-
tions are equivalent:

TF |]R denotes the restriction of F to R.
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(1) f is the restriction to R of a function F holomorphic in the strip
{z:|y| < a} and satisfying

(7.1 /\F(QL +iy)?|dz < const  |y| < a.

2) ¥l f € LA(R).

PROOF: (2)= (1): write

(72) P =5 [ flOea

then by the inversion formula F'|p = f; the function F is well defined
and holomorphic in {z: |y| < a}, and, by Plancherel’s theorem:

. 1 A P
J1F@ =+ ipis = o [1H©PEvde < e 2, s,

()= (2); write f,(z) = F(z + iy) (thus f = fy), and consider the
Fourier transforms f,. We want to show that f,(§) = f(¢)e ¥ since
by Plancherel’s theorem and (7.1), we would then have [|f(£)[?¢*¢¥dx
uniformly bounded in |y| < a, which clearly implies (2). Notice that if
we assume (2) then, by the first part of the proof, we do have f’y(g) =
J©e e,
For A > 0 and z in the strip {z: |y| < a} we put:

(7.3) Ga(z) =Ky« F = / F(z —u)Ky(u)du,

where K denotes Fejér’s kernel. G is clearly holomorphic in the strip
{z:]y| < a} and we notice that g, ,(z) = Gr(z+1y) = K\ * f, and hence
Gry(&) = }2: fy(g). Now since g ,(£) has a compact support (contained
in [—A, A]) we have g5 (&) = gx.0(e % and consequently if |[¢] < A,
f,(€) = f(€)e~¢¥. Since \ > 0 is arbitrary, the above holds for all ¢ and
the proof is complete. <

We may clearly replace the "symmetric" conditions of 7.1 by non-
symmetric ones. The assumptif)n (7.1) fqr —a; <y <a,witha, a; >0,
is equivalent to: (1€ + =€) f(¢) € L*(R).

7.2 Theorem (Paley-Wiener). For f ¢ L*(R) the following two
conditions are equivalent:
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(1) There exists a function F, holomorphic in the upper half-plane
{z:y > 0}, and satisfying:

(7.4) /|F(m +iy)|Pdz < const , y>0

and

(7.5) lulg}/|F(:c +iy) — f(z)]*dz = 0.
2 f(f)IO for £<0.

PROOF: (2)=(1): Define F(z), for y > 0, by (7.2). F' is clearly holo-
morphic, F(x + iy) is the inverse Fourier transform of e~¢¥ f and, by
Plancherel’s theorem,

[1F(z +iy)

L2(R) = ||f€7£y||L2(ni) < Hf”LZ(JR)
which establishes (7.4), and also

1P +iy) — Flliz = 17 = Dl gz, — 0

asy | 0.
(1)=(2); write fi(x) = F(x+ ). By 7.1:

1fe™% | 2y = |1 F(z + i+ iy)l| 2@ for =1 <y < oo

and, in particular, by (7.4):
(7.6) /|f1(£)|26_2£yd§ < const .

Letting y — oo, (7.6) clearly implies that f(¢) = 0 for £ < 0. By
7.1, the Fourier transform of F(z + i) is f(£)e¢=%); hence, by (7.5),
f(&) = fi(€)et, and f(€) = 0 for & < 0. <

*7.3 The foregoing proofs yield more information than that stated ex-
plicitly. The proof of the implication (2) = (1) also shows that I is
bounded for y > ¢ > 0 since f|f(§)e‘§?”|d£ is then bounded. In the
proof (1) = (2) no mention of f is needed nor is the assumption (7.5);
if we simply assume that F' is holomorphic in the upper half-plane and
satisfies (7.4), we obtain, keeping the notations of the proof above, that
fiet € L*(R) and, denoting by f the function in L2(R) of which f,¢¢
is the Fourier transform, we obtain (7.5) as a consequence (rather than
as an assumption). The Phragmén-Lindel6f theorem allows a further
improvement:
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Lemma. Let F be holomorphic in a neighborhood of the closed upper
half-plane {z:y > 0} and assume that

(7.7) /|F(x)|2dx < 00
and
(7.8) lim 7~ log™|F(re'”)| =0

Jorall 0 <9 < 7. Then (7.4) is valid.

PROOF: Let ¢ be continuous with compact support on R, |¢[/zz < 1.
Write G(z) = ¢ x F = [*_ F(z — u)p(u)du; then G is holomorphic in
{z:y > 0}, satisfies the condition (7.8), and, on R,*

G(@)| < [F[Rlle2llellze < [1F|RI 2

By the Phragmén-Lindel6f theorem we have |G(z)| < || F'|g|| 7> through-
out the upper half-plane, which means | [ F(z+iy)o(—z)dz| < | F|R| 2
for y > 0. Since this is true for every ¢ (continuous and with compact
support) such that |[¢|| ;2 < 1, it follows that

/IF(w+i31)I2dw < /|F’(96)|2d.7c

7.4 Theorem. Let F' be an entire function and a > 0. The following
two conditions on F are equivalent:
(1) F|g € L*(R) and

(7.9) [F(2)] = o(c"*)

(2) There exists a function f € L*(R), f(£) = 0 for |&] > a, such
that

1 /. .
(7.10) F(z)=— [ f(&e**de.
PROOF: (2) = (1); if (7.10) is valid we have

~ R 1 ra %
F() < 1O gy < Iy (57 | 9vae)”

27

iF|]R denotes the restriction of F to R.
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1/, 1, . . e
_ 28y e — _— (p20Y _ 20y <
2r /_a entde Ay (e ¢ )

and consequently

ealvl
FEI < Tl
which is clearly stricter than (7.9). The square summability of F'|p
follows from Plancherel’s theorem.

(1) = (2); assume first that F'|p is bounded. The function G(z) =
¢'** F(z) is entire, satisfies (7.9) in the upper half-plane, and G(iy) — 0
as y — oo. By the Phragmén-Lindeldf theorem, G is bounded in the
upper half-plane and, writing g = G|, it follows from Lemma 7.3 and
Theorem 7.2 that g is carried by (0,00). Writing f = F'|p we clearly
have f(£) = §(¢ + a) which implies f(¢) = 0 for ¢ < —a. Similarly,
considering G1(z) = e ***F(z), we obtain f(¢) = 0 for ¢ > a and,
writing H(z) = 1/27 [ f(£)e**d¢, we obtain, by the inversion theorem,
H|g = F|g so that H = F' and (7.10) is established.

In the general case, that is without assuming that F' is bounded on
R, we consider F,(z) = ¢ * F = [ F(z — u)p(u)du where ¢ is an
arbitrary continuous function with compact support. F, satisfies the
conditions in (1) and is bounded on R. Writing f, = F,|g we have
fo(6) = F(&)@(€) and f,(€) = 0 if |¢| > a. Since ¢ is arbitrary this
implies f(¢) = 0 for |£] > a and the proof is completed as before. <«

EXERCISES FOR SECTION 7

1. Show that F(z) = Y " 27"[(z +n)® + n~']7" is analytic on R and
F|g € L' N L>(R); however, F is not holomorphic in any strip {z:|y| < a},
a > 0.

2. Show that for a proper choice of the constants {a,} and {b,} the function

G = 3 anebnlen?

is entire, G| € L' (R), but G is unbounded on R.

3. Show that H(z) = e is entire, H|g € L' N L*(R); however, H is
unbounded on any line y = const # 0.

4. Let F be holomorphic in a neighborhood of the strip {z:|y| < a} and
assume [|F(x + iy)|*dz < const for |y| < a. Show that for z in the interior of

the strip:
Fz) = % /“<F(u7m) B F(u+m))dw

27 u—ta—z u-+ia—z
JOC
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5. Let ;1 be a measure on R, supported by [—a, a]. Define:
F(z2)= /eii&zdu(f).

Show that F' is entire and satisfies F(z) = O (e“|y|)A Give an example to show
that F' need not satisfy (7.9).
Hint: F(z) =cosaz.

6. Let v be a distribution on R, supported by [—a, a]. Show that the function
F, defined by F(z) = [ e~ "**du, is entire and that there exists an integer N such
that

F(z)=0 (zNealyl) as |z| — oo.

7. Titchmarsh’s convolution theorem:

(a) Let F be an entire function of exponential type (i.e., F(z) = O (e“‘z‘)
for some a > 0) and assume that |F'(z)| < 1 for all real = and that F'(iy) is real
valued. Assuming that F is unbounded in the upper half-plane, show that the
domain D = {z:y > 0,|F(z)| > 2} is symmetric with respect to the imaginary
axis, is connected, and its intersection with the imaginary axis is unbounded.
Hint: Phragmén-Lindelof.

(b) Let Fi and F5 both have the properties of F in part (a) and denote the
corresponding domains by D, D», respectively. Show that D; N Dy # @ and
deduce that F; F» is unbounded in the upper half-plane.

(c) Let f; € L?>(R), j = 1,2, and assume that f; are both real-valued and
carried by [—a,0]. Show that if f1 = f> vanishes in a neighborhood of £ = 0, so
does at least one of the functions f;.

Remark: : Titchmarsh’s theorem is essentially statement (c) above. The as-
sumption that f; are real-valued is introduced to ensure that the corresponding
Fj, defined by an integral analogous to (7.10), is real-valued on the imaginary
axis. This assumption is not essential; in fact, part (c) is an immediate conse-
quence of the Paley-Wiener theorems in the case fi = f> (in which case part
(b) is trivial), and the full part (c) can be obtained from it quite simply (see

[18]).

8 THE FOURIER-CARLEMAN TRANSFORM

We sketch briefly another way to extend the domain of the Fourier
transformation. There is no aim here at maximum generality and we
describe the main ideas using L*°(R) as an example, although only mi-
nor modifications are needed in order to extend the theory to functions
of polynomial growth at infinity or, more generally, to functions whose
growth at infinity is slower than exponential. For more details we refer
the reader to [3].
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8.1 For h € L(R) we write

0
Fi(h,() = / e T h(x)da (=¢&+im, >0
(8.1) e

Fy(h, () =— /0 e~ h(x)dx C=&+1in, n<O.

Fi(h,¢) and Fy(h,() are clearly holomorphic in their respective do-
mains of definition, and it is apparent from (8.1) that if > 0, then
Fy(h, &+ in) — Fy(h, € — in) is the Fourier transform of ¢~"* h. Hence
if h € L*(R) we obtain

(8.2) (Fi(h, & +in) — Fa(h, € — in)) = h(€)

lim
n—0+
uniformly. Since ¢~"*/% tends to h in the weak-star topology for any
h € L>(R), (8.2) is valid for every h € L°(R) provided  is allowed to
be a pseudo-measure and the limit is in the weak-star topology of FL>
as dual of A(R).

Let us consider the case i € L'(R). If I is an interval on R disjoint
from the support of &, and D is the disc of which I is a diameter, and if
we define the function £ in D by

FZ(h,C) TIS():

then it follows from (8.2) that F'(h, () is well defined and continuous in
D and it is holomorphic in D\ I. It is well known that this implies (e.g.,
by Morera’s theorem) that F'(h, () is holomorphic in D. We see that in
the case h € L*NL>®(R), F1(h, () and F»(h, () are analytic continuations
of each other through the complement of (%) on R. On the other hand,
if F1(h, () and F5(h, () are analytic continuations of each other through
an open interval I, i(€) = Fy(h, &) — Fa(h,&) = 0on I, and INX(h) = 0.
Denoting by ¢(h) the set of concordance of (Fy(h, (), Fx(h,()), that is,
the set of points on R in the neighborhood of which F, (h, ¢) and Fy(h, ¢)
are analytic continuations of each other, we can state our result as

(8.3) F(h,¢) = {

Lemma. Assume h € L' N L(R); then $(h) is the complement of
c(h).

8.2 We now show that the same is true without assuming h € L*(RR).

Theorem. For every bounded function h, E(ﬁ) is the complement of
c(h).
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PROOF: Let E be a compact subset of c(h); then, as n — 0+,
Fi(h, & +1in) — Fa(h, & —in) — 0 uniformly for € € E. If f € A(R)
and the support of f is contained in F, then

84  (fh)= lm —

Jim oo | HOF(R &+ in) — Folh, € —injde = 0

which proves (k) N e(h) = 0.
The fact that & ¢ 3(h) implies & € c(h) is obtained from Lemma
8.1 and the following simple lemma about removable singularities:

8.3 Lemma. Let I be an interval on the real line, D the disc in the
¢ plane of which 1 is a diameter, F' a holomorphic function defined in
D\ 1, satisfying the growth condition

(8.5) |F (€ + in)| < const |n|™"™.

Assume that there exist functions ®; which are holomorphic in D,
satisfy (8.5) (with a constant independent of j) and ®;({) — F({) in
D\ 1. Then F can be extended to a function holomorphic in D.

PROOF: Let D; be a concentric disc properly included in D and Ds a
concentric disc properly included in D;. Denote by (1, (> the points of
intersection of the boundary of D! with I.

The functions (¢ — ¢1)™(¢ — ¢2)"®;(¢) are uniformly bounded on
the boundary of Dy, hence in D, and consequently ®; are uniformly
bounded in Dy. The Cauchy integral formula now shows that ¢; con-
verge uniformly in Ds to a holomorphic function which agrees with F
on Dy \ I. Since D? is an arbitrary concentric disc in D, the lemma
follows. <

8.4 Lemma. Let h € L (R), then

|FL (R, O] < [|Aloon™ (=¢&+in, >0
Fa(ho Ol < [Blloclnl ™ C=&+in, n>0.
PROOF:
0 -0
IHWMS/ memswm/ " dz = ||y
. .

and similarly for F. <
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We can now finish the proof of Theorem 8.2. We have to show that
if & & X(h), then & € c(h). Assume & ¢ X(h); by Lemma 4.7, &
has an interval I about it which does not intersect E(h/I—(\)\) provided A
is large enough (K is the Fejér kernel and 2(K,) = [-1/\,1/)])). If D
is the disc for which I is a diameter, it follows from Lemma 8.1 that
the pair (F;(hKy, (), Fo(hKy, ()) defines holomorphic functions @, in
D, which clearly converge, as A — oo to (F1(h, (), Fa(h,()) on D\[. By
Lemma 8.4 we can apply Lemma 8.3 and the theorem follows. <

The Fourier-Carleman transform thus gives an alternative definition
of the weak-star spectrum of a bounded function. As an illustration
we indicate briefly how Theorem 4.11 can be obtained by Carleman’s
method. We assume again h € L®(R) and 2(h) = {0}. The pair
(F1(h, (), Fa(h,()) defines an analytic function whose only singularity
in the finite ¢ plane is at the point { = 0. By Lemma 8.4 and the
Phragmén-Lindel6f theorem, ® tends to zero at infinity and has a simple
pole at { = 0. Hence, for some constant ¢, ®({) = ¢/i¢, which is the
Fourier-Carleman transform of the constant c.

9 KRONECKER’S THEOREM

9.1 Theorem (Kronecker). Let A\, \s, ..., A\, be real numbers, in-
dependent over the rationals. Let o, . . ., «,, be real numbers and ¢ > 0.
Then there exists a real number x such that

9.1) et — et | < g, j=12,...,n
Kronecker’s theorem is equivalent to

9.2 Theorem. )i, \s,...,\, be real numbers, independent over the
rationals, Ay = 0, and let ay, a1, ..., a, be any complex numbers. Then

n
Z aje't/\_;x
7=0

We first establish the equivalence of Theorems 9.1 and 9.2 and then
obtain 9.2 as a limit theorem.

n

= layl.

3=0

(9.2) sup,,

PROOF THAT 9.1 = 9.2: Write a; = r;¢', r; > 0. By 9.1, there exist
values of z for which |¢?*% — ¢{@0=)| is small, j = 1,...,n. For these
values of x, Y7 a;e™ " is close to €' Y. 7. <
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PROOF THAT 9.2 = 9.1: Consider the polynomial 1+3_] e~ %% and
notice that its absolute value can be close to n + 1 only if all the sum-
mands are close to 1, that is, only if (9.1) is satisfied. <

Remark: 1f A1,..., \,, 7 are linearly independent over the rationals,
we can add the condition [e?™** — 1| < z which essentially means that
we can pick z in (9.1) to be an integer.

Theorem 9.2 is a limiting case of Theorem 9.3 5 below. The idea in the
proof is that used in the proof of Lemma V.1.3, that is, the application
of Riesz products and of the inequality

9.3) M(fg) < || fllooM(lgl)

which is clearly valid for f,g € AP(R) (see (5.5)). Actually, we use
(9.3) for polynomials only, in which case the existence of the limit (5.5)
and the fact that it equals the constant term are obvious, and this section
is essentially independent of section 5.

For the sake of clarity we state 9.3 5 first for N = 1, as

9.3 Theorem. Let \i,...,\, be real numbers having the following
properties:

@) Y ed=0 e=-1,01, = =0 forallj.
1

(b) D eihi=M g=-1,01 = =0 forj#k
1
Then, for any complex numbers ay, . .., ay,

> e = 5 3 .

PROOF: Write a; = r;e'*, r; > 0 and

(9.4) sup,

n

g(z) = H(l + cos(\jz + aj))

1
fla)=>ae™".

g 1s a nonnegative trigonometric polynomial whose frequencies all have
the form > z,);,¢; = —1,0, 1. By (a), the constant term in g is 1, hence



198 AN INTRODUCTION TO HARMONIC ANALYSIS

M(g) = M(|g|) = 1. By (b), the constant term (which is the same as the
mean value) of fg is § "7 r; and, by (9.3),

1 k3
2 2. < swlfl «

9.3y Theorem. Let Ay, ..., \, be real numbers having the following
properiies:

(a) Zaj)\j =0 ¢, integers, |e;| <N = ;=0 forallj.
1

(b) Zaj)\j =X, ¢g; integers, |g;|< N = ;=0 forj#k
1

Then, for any complex numbers a1, ..., a,

. 1
> oaEeT| > (1 - N—+1) > layl.

PROOF: Virtually identical to that of 9.3; we only have to replace g as
defined there by

(9.4y) sup,,

g(x) = [[Kn(Njz + o)

where Ky () = YN (1 - %eii I) We leave the details to the reader,
<

It is clear that if A1, ..., A, are linearly independent, the conditions
of 9.3 are satisfied for all N and consequently we obtain (9.4) for
all N, hence (9.2). This completes the proof of theorem 9.2 and hence
of Kronecker’s theorem. <

For a different approach see VIL.3.

9.4 The extension of theorem 9.1 to infinite, linearly independent sets
presents a certain number of problems, not all of which are solved. We
restrict our attention to compact linearly independent sets £ and ask
under what conditions is it possible to approximate uniformly on £ ev-
ery function of modulus 1, by an exponential. The obvious answer is
that this is possible if, and only if, E is finite; this follows from Kro-
necker’s theorem ("if"") and the fact that uniform limits of exponentials
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must be continuous on £, and if ¥ is infinite (and compact) not all func-
tions of modulus 1 are continuous ("only if""). We therefore modify our
questions and ask under what condition is it possible to approximate
uniformly on E every continuous function of modulus 1 by an expo-
nential. We do not have a satisfactory answer to this question; for some
sets £ the approximation is possible, for others it is not, and we intro-
duce the following:

DEFINITION: A compact set E C R is a Kronecker set if every contin-
uous function of modulus 1 on E can be approximated on F uniformly
be exponentials.

The existence of an infinite perfect Kronecker set is not hard to es-
tablish by a direct construction. We choose, however, to prove it by a
less direct method which also may be used to obtain finer results (see

[14]).

Theorem. Let E be a perfect totally disconnected set on R. Denote
by Cr(FE) the space of continuous, real-valued functions on E. Then
there exists a set G of the first category' in Cr(F) such that every ¢ €
Cr(E)\ G maps E homeomorphically onto a Kronecker set.

PROOF: A function ¢ € Cr(E) maps F homeomorphically onto a Kro-
necker set if, and only if, for every continuous function A of modulus 1
on E and for every ¢ > 0, there exists a real number A such that

(9.5) SupzeE‘ei/\‘P(””) —h(z)| <

We show first that if we fix h and ¢, the set of functions ¢ for which
(9.5) holds for an appropriate )\ is everywhere dense in Cr(F). For this,
let v» € Cr(E) and let n > 0. We take A\ = 10n~! and write F as a
union of disjoint closed subsets E;, j = 1,..., N, the E;’s being small
enough so that the variation of either 4 or ¢"*¥ on E; does not exceed
/3. Let ' be a value assumed by h on E; and e'”7 a value assumed
by ¢*¥ on E;; we may clearly assume |o;| < 7 and |3;| < 7 for all j.
We now define

(9.6) o(z) =(z) + %T_ﬁ] forz € E;.

We have ¢ € Cr(F) and ||¢ — | < 27/A < n; also, checking on each
E;, it is clear that (9.5) holds.

tCr(E), with the metric given by the norm [|¢|lec = sup,cx|@(z)|, is a complete
metric space.
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It follows that the set G(h, ¢) of all ¢ € Cgr(F) for which (9.5) holds
for no A € R, a set which is clearly closed, is nondense. Taking a se-
quence of continuous functions of modulus 1, say {A,,}, which is dense
in the set of all such functions, and taking a sequence of positive num-
bers {e,,} such that £,,, — 0, it is clear that G = U,, ,,,G(h,, e.,) 1s of the
first category. Also, if ¢ ¢ G, then every h,, can be approximated uni-
formly on E by ¢**¥ with appropriate A’s hence so can every continuous

function of modulus 1 and the theorem follows. <
EXERCISES FOR SECTION 9
1. Let A1, ..., A, be linearly independent over the rationals and let fi, ..., f,

be continuous and periodic on R, having periods )\j’l respectively. Show that
the closure of the range of f = f1+- -+ f» is precisely range (fo) + - - - +range
(fr). Deduce that if 0 € range (f;) for all 7, then

I3 il 2 5 Sl

Hint: Show thatif¢; ..., ¢, are complex numbers, one can find ¢4, .. ., &5, the
£;’s being zero or one, such that [}~ e;¢;| > £ Y el

2. Let f € AP(R) and assume that o(f) is independent over the rationals.
Show that f is a measure and that || f||co = ||f’||M(R).

3. Let f € AP(R) and assume that o(f) C {377};2,. Show that fisa
measure and that Hf”M(j@ < 2| fllec-

4. Let A1,..., A, be real numbers. Set Ao = 0 and assume that for any
choice of complex numbers aq, . .., an, (9.2) is valid. Show that \1,..., A\, are
linearly independent over the rationals.

5. Construct a sequence {\;} of linearly independent numbers such that
Aj — 0, and such that {);} U {0} is not a Kronecker set.

6. Show that every convergent sequence of linearly independent numbers
contains an (infinite) subsequence which is a Kronecker set.



Chapter VII

Fourier Analysis on Locally Compact
Abelian Groups

We have been dealing so far with spaces of functions defined on
the circle group T, the group of integers Z, or the real line R (or R).
Most of the theory can be carried, without too much effort, to spaces of
functions defined on any locally compact abelian group. The interest
in such a generalization lies not only in the fact that we have a more
general theory, but also in the light it sheds on the "classical" situations.
We give only a brief sketch of the theory: proofs, many more facts, and
other references can be found in [5], [9], [15] and [24].

1 LOCALLY COMPACT ABELIAN GROUPS

A locally compact abelian (LCA) group is an abelian group, say G,
which is at the same time a locally compact Hausdorff space and such
that the group operations are continuous. To be precise: if we write
the group operation as addition, the continuity requirement is that both
mappings z — —z of G onto G and (z,y) — = + y of GzG onto G are
continuous. For a fixed z € G, the mappings y +— z + y is a homeomor-
phism of G onto itself which takes 0 into x. Thus the topological nature
of G at any x € G is the same as it is at 0.

Examples.

(a) Any abelian group G is trivially an LCA group with the discrete
topology.

(b) The circle group T and the real line R with the usual topology.

(c) Let G be an LCA group and H a closed subgroup, then H with
the induced structure is an LCA group. The same is true for the
quotient group G/ H if we put on it the canonical quotient topology

201



202 AN INTRODUCTION TO HARMONIC ANALYSIS

that is, if we agree that a set U in G/H is open if, and only if, its
preimage in G is open.

(d) The direct sum of a finite number of LCA groups is defined as the
algebraic direct sum endowed with the product topologys; it is again
an LCA group.

(e) The complete direct sum of a family {G,}, « € I, of abelian
groups is the group of all "vectors" {z,}ucr, Zo € Gu, Where the
addition is performed coordinatewise: {z,}+{ya} = {za +ya}- If
foralla € I, G, is a compact abelian group, the product topology
on the complete direct sums make it a compact abelian group. This
follows easily from Tychonoff’s theorem.

If for every positive integer n, G,, is the group of order two, then
the complete direct sum of {G,} is the group of all sequences {z,},
£, = 0,1 with coordinatewise addition modulo 2, and with the topology
that makes the mapping {e,} — 2> ¢,3™™ a homeomorphism of the
group onto the classical cantor set on the line. We denote this particular
group by D.

2 THE HAAR MEASURE

Let G be a locally compact abelian group. A Haar measure on G is
a positive regular Borel measure ;. having the following two properties:

(1) u(E) < o if E is compact;
(2) (E + x) = p(E) for all measurableE C G and all z € G.

One proves that a Haar measure always exists and that it is unique up
to multiplication by a positive constant; by abuse of language one may
therefore talk about #he Haar measure. The Haar measure of G is finite
if, and only if, G is compact and it is then usually’ normalized to have
total mass one. If G = T or G = T™ the Haar measure is simply the
normalized Lebesgue measure. If G = R the Haar measure is again a
multiple of the Lebesgue measure. If G is discrete, the Haar measure is
usually’ normalized to have mass one at each point. If G is the direct
sum af G; and G», the Haar measure of G is the product measure of
the Haar measures of G; and Gs. The Haar measure on the complete

TExcept when G is finite; it is as usual to introduce the "compact” normalization as it
is the "discrete."



VII. FOURIER ANALYSIS ON LOCALLY COMPACT ABELIAN GROUPS 203

direct sum of a family of compact groups is the product of the corre-
sponding normalized Haar measures. In particular, the Haar measure
on the group D defined above corresponds to the well-known Lebesgue
measure on the Cantor set, the homeomorphism defined above being
also measure preserving.

Let G be an LCA group; we denote the Haar measure on G by dx,
and the integral of f with respect to the Haar measure by [ f(z)dx or
simply [ f(z)dz. For 1 < p < oo we denote by L?(G) the LP space
on G corresponding to the Haar measure. One defines convolution on
G by (f *g)(y) = [, f(y — x)g(x)dx and proves that if f,g € L'(G)
then f+ g ¢ L'(G) and ||f * gl o) < | fllzrllgllzica) so that LY(G)
is a Banach algebra under convolution. We may define homogeneous
Banach spaces on any LCA group G as we did for T or R, that is, as
Banach spaces B of locally integrable functions, norm invariant under
translation and such that the mappings y — f,, are continuous from G
to B for all f € B. Remembering that for 1 < p < oc the continuous
functions with compact support are norm dense in L?(G), it is clear that
LP(G) is a homogeneous Banach space on G.

Let B be a homogeneous Banach space on an LCA group G. Using
vector-valued integration we can extend the definition of convolution
so that f x g is defined and belongs to B for all f € L'(G) and g € B
and show that || + glls < || £ll2:(c) 95

DEFINITION: A summability kernel on the LCA group G is a di-
rected family {k,} in L'(G) satisfying the following conditions:

(@ |kallLr@) < const;
(b) [ko(z)dz =1,
(¢) if V is an neighborhood of 0 in G, lim,, ]é\v|k<k($)|d$ =0.

If {k,} is a summability kernel on G and if B is a homogeneous
Banach space on G, then lim,, ||k, x g — g||p = 0 for all g € B.

3 CHARACTERS AND THE DUAL GROUP

A character on an LCA group G is a continuous homomorphism of
G into the multiplicative group of complex numbers of modulus 1, that
is, a continuous complex-valued function £(z) on G satisfying:

€(z) =1 and &z +y) =E(@)E(y).
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The trivial character is £(z) = 1 identically. If G is non-trivial there are
non-trivial characters on it.

The set G of all the characters on G is clearly a commutative multi-
plicative group (under pointwise multiplication). We change the nota-
tion and write the group operation of G as addition and replace £(x) by
(z, &) or sometimes by €'*®.

We introduce a topology to G by stipulating that convergence in
G is equivalent to uniform convergence on compact subsets of G (the
elements of G being functions on ). Thus, a basis of neighborhoods
of 0 in ( is given by sets of the form {¢: |(z,&) —1| <& forallz € K}
where K is a compact subset of G and ¢ > 0. Neighborhoods of other
points in & are translates of neighborhhods of 0. It is not hard to see
that with this topology G is an LCA group; we call it the dual group of
G.

For each z € G, the mapping ¢ +— (x,¢) defines a character on G.
The Pontryagin duality theorem states that every character on & has this
form and that the topology of uniform convergence on compact subsets
of @ coincides with the original topology on G. In other words, if G is
the dual group of G, then G is the dual of G.

Examples: (a) For G = T with the usual topology every character
has the form ¢ +— e~ for some integer n, the topology of uniform
convergence on T is clearly the discrete topology and T = Z. Similarly,
we check Z = T; this illustrates the Pontryagin duality theorem.

The example G = T hints the following general theorem: The dual
group of any compact group is discrete (see exercise 5 at the end of this
section). Also: The dual group of every discrete group is compact.

(b) Characters on R all have the form z — ¢%® for some real ¢.
The dual group topology is the usual topology of the reals and R is
isomorphic to R.

(c) If H is a closed subgroup of an LCA group G, the annihilator
of H, denoted H=, is the set of all characters of G which are equal to
1 on H. H' is clearly a closed subgroup of G . If ¢ € H*, ¢ defines
canonically a character on G/H; on the other hand, every character
on GG/H defines canonically (by composition with the mapping G +—
G/H) a character on G. This establishes an algebraic isomorphism
between the dual group of G/H and H+. One checks that this is also a
homeomorphism and the dual of G/H can be identified with H*.

If H is a proper closed subgroup, then H+ is non-trivial.

(d) By (c) above and the Pontryagin duality theorem: & JH* is the
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dual group of H. o
(e) If G1 and G are LCA groups, then G; @ G2 can be identified
with G; & G, through

< (x1,22), (&1, &) >=< 21,& >< 12,& > .

In particular, the dual group of T"™ is Z", the characters have the
form (t,...,tn) > €' 22%"% with a; € L.

(f) If G, is a compact abelian group for every « belonging to some
index set I, and if G is the complete direct sum of {G,,}, then G can be
identified with the direct sum of {G,, } (with the discrete topology). The
direct sum of a family {G,} of groups is the subgroup of the complete
direct sum consisting of those vectors {{,}acr, u € G, such that
&, =01n Ga for all but a finite number of indices.

The dual group of the group of order two is again the group of order
two. Consequently, the dual group of the group D introduced above is
the direct sum of a sequence of groups of order two. If we identify the
elements of D as sequences {e, }, £, =0, 1, then D is the discrete group
of sequences {(,}, ¢, = 0,1 with only a finite number of ones, and

< A{eah {Ca} >= (1) 2=,

Remark: A natural way to look at Kronecker’s theorem V1.9.3 is:
Assume that A\q,...,\,’s are rationally independent mod 27 and
consider A = (A1...)\,) € T™. Theset A = {jA:j € Z} is a subgroup,
and Kronecker’s theorem states that it is dense in T™. If it weren’t,
its closure A would be a closed proper subgroup and there would be a
non-trivial (a1, ..., a,) € Z"™ which is trivial on A, i.e. 3" a;\; € 27Z.

4 FOURIER TRANSFORMS

Let G be an LCA group; the Fourier transform of f € L'(G) is
defined by

HGE /G< 2,6 >f(r)yde, £€G.

We denote by A(G) the space of all Fourier transforms of functions in
LY(G). Since we have (f +g) = f + § and fvg=fo, A(G) is an al-
gebra of functions on G under the pointwise operations. The functions
in A(G) are continuous on G; in fact, an equivalent way to define the
topology on G is as the weak topology determined by A(G), that is, as
the weakest topology for which all the functions in A(G) are continu-
ous.
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With the Haar measures on G and G properly normalized one proves
inversion formulas stating essentially that f(—z) is the Fourier trans-
form of f in some appropriate sense, and literally if f is continuous
and f ¢ L'(G). One deduces the uniqueness theorem stating that if
f e LY(G)and f =0 then f = 0.

From the inversion formulas one can also prove Plancherel’s the-
orem. This states that the Fourier transformation is an isometry of
L' N L*(G) onto a dense subspace of L2(G) and can therefore be ex-
tended to an isometry of L?(G) onto L?(G). One can now define the
Fourier transform of functions in LP(G), 1 < p < 2, by interpolation,
and obtain inequalities generalizing the Hausdorff-Young theorem (as
we did in VI.3 for the case G = R).

We denote by M(G) the space of (finite) regular Borel measures
on G. M(G) is a Banach space canonically identified with the dual of
CY(@). The fact that the underlying space G is a group permits the def-
inition of convolution in M (G) (analogous to that which we introduced
in 1.7 for the case G = T). With the convolution as multiplication,
M (G) is a Banach algebra. We keep the notation u * v for the convolu-
tion of the measures p and v. L'(G) is identified as a closed subalgebra
of M(G) through the correspondence f — fdz.

The Fourier (Fourier-Stieltjes) transform of € M(G) is defined by

(&) = /< x,€ >du(z), €eG.

For all u € M(G), i(€) is uniformly continuous on G. If yu = fdz with
f € LY@), then ju(¢) = f(¢£). The mapping p — [ is clearly linear
and we have /i ¥ = ¥ so that the family B(G) = {ji:p € M(G)} of
all Fourier-Stieltjes transforms is an algebra of uniformly continuous
functions on G under pointwise addition and multiplication.

A function ¢ defined on G is called positive definite if, for every
choice of &,...,&n € G and complex numbers zj,...,zy we have
Eiv we1 P& — &) zjZ > 0. Weil’s generalization of Herglotz-Bochner’s
theorem states that a function (&) on G is the Fourier transform of a
positive measure on G if, and only if, it is continuous and positive def-
inite.

5 ALMOST-PERIODIC FUNCTIONS AND THE BOHR
COMPACTIFICATION

Let G be an LCA group. A function f € L*®(G) is, by definition,
almost-periodic if the set of all translates of f, {f,},ec Is precom-
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pact in the norm topology of L*°(G) (compare with VI.5.5). We de-
note the space of all almost-periodic functions on G by AP(G). One
proves that almost-periodic functions are uniformly continuous and are
uniform limits of trigonometric polynomials on & (i.e., of finite lin-
ear combinations of characters). Since trigonometric polynomials are
clearly almost-periodic, one obtains that AP(G) is precisely the closure
in L (@) of the space of trigonometric polynomials.

If G is compact we have AP(G) = C(G). In the general case we
consider the groups (G) 4, the dual group of G with its topology replaced
by the discrete topology, and G, the dual group of (G)4. G is the group
of all homomorphisms of  into T, and it therefore contains & (which
is identified with the group of all continuous homomorphisms of G into
T). One proves that the natural imbedding of G into G is a continuous
isomorphism and that G is dense in G. Being the dual of a discrete
group, G is compact; we call it the Bohr compactification of G. The
Bohr compactification of the real line is the dual group of the discrete
real line and is usually called the Bohr group.

Assume f € AP(G); let {P;} be a sequence of trigonometric poly-
nomials which converges to f uniformly. Then, since G is dense in
G, {P;} converges uniformly on G (every character on G extends by
continuity to a character on G. It follows that f is the restriction to &
oflim P; = F € C(G). Conversely, since every continuous function F
on G can be approximated uniformly by trigonometric polynomials, it
follows that AP(G) is simply the restriction to G of C(G).

EXERCISES

1. Let G be an LCA group and p the Haar measure on G. Show that if U is
a nonempty open set in G then p(U) > 0.

Hint: Every compact set £ C G can be covered by a finite number of translates
of U.

2. Let G be an LCA group and y the Haar measure on G. Let H be a
compact subgroup. Describe the Haar measure on G/ H.

3. Let G;1 and G2 be compact abelian groups and let G = G1 & G2. Denote
by w, p1, p2 the normalized Haar measures on G, G1, G, respectively. Con-
sidering u;, j = 1, 2, as measures on G (carried by the closed subgroups Gj),
prove that

W=k i

4. Let GG be a compact group and { H,} an increasing sequence of compact
subgroups such that UT° H,, is dense in G. Denote by pu, pn, respectively, the
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normalized Haar measure of G, H,, respectively. Considering the u,’s as
measures on G, show that i, — 1 in the weakstar topology of measures.
5. Let G be a group and let & and & be distinct characters on G. Show that

SUp,cql< z,& > — <z,& > > V3.

Deduce that if G is a compact abelian group, then G is discrete.
6. Let GG be a compact abelian group with normalized Haar measure and let

56@. Show that
1 ife=
/<:c,§>dx: ife=0
Jo 0 ife£o0.

7. Let G be a compact abelian group. Show that the characters on GG form a
complete orthonormal family in L*(G).



Chapter VIII

Commutative Banach Algebras

Many of the spaces we have been dealing with are algebras. We
used this fact, implicitly or semi-explicitly, but only on the most ele-
mentary level. Our purpose in this chapter is to introduce the reader
to the theory of commutative Banach algebras and to show, by means
of examples, how natural and useful the Banach algebra setting can be
in harmonic analysis. There is no claim, of course, that every prob-
lem in harmonic analysis has to be considered in this setting; however,
if a space under study happens to be either a Banach algebra, or the
dual space of one, keeping this fact in mind usually pays dividends.
The introduction that we offer here is by no means unbiased. The top-
ics discussed are those that seem to be the most pertinent to harmonic
analysis and some very important aspects of the theory of commutative
Banach algebras (as well as the entire realm of the noncommutative
case) are omitted. As further reading on the theory of Banach algebras
we mention [5], [15], [19] and [21].

1 DEFINITION, EXAMPLES, AND ELEMENTARY PROPERTIES

1.1 DEFINITION: A complex Banach algebra is an algebra B over the
field C of complex numbers, endowed with a norm || || under which it
is a Banach space and such that

(LD lzyll < llz[l[y

for any z,y € B.
Examples: (1) The field C of complex numbers, with the absolute
value as norm.

(2) Let X be a compact Hausdorff space and C(X) the algebra of
all continuous complex-valued functions on X with pointwise addition
and multiplication. C(X) is a Banach algebra under the supremum

209
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norm (also referred to as the sup-norm)
(1.2) [ flloo = sup,¢ x|f(x)].

(3) Similarly, if X is a locally compact Hausdorff space, we denote
by Cy(X) the sup-normed algebra (with pointwise addition and multi-
plication) of all continuous functions on X which vanish at infinity (i.e.,
the functions f for which {z:|f(z)| > ¢} is compact for all £ > 0).

(4 )C™(T)—the algebra of all n-times continuously differentiable func-
tions on T with pointwise addition and multiplication and with the norm

n

1 .
Ifllem = ﬁngXIf(”(t)l-

0

(5) HC(D)—the algebra of all functions holomorphic in D (the unit
disc {z:|z| < 1}) and continuous in D, with pointwise addition and
multiplication and with the sup-norm. (6) L (T)-with pointwise addi-
tion and the convolution (1.1.8) as multiplication, and with the norm
|| []z:. Condition (1.1) is proved in Theorem 1.1.7. Similarly—L!(R).

(7) M(T)-the space of (Borel) measures on T with convolution as
multiplication and with the norm || || 37y (see 1.1.7). Similarly—M (R).

(8) The algebra of linear operators on a Banach space with the stan-
dard multiplication and the operator norm.

(9) Let B be a Banach space; we introduce to B the trivial multipli-
cation zy = 0 for all z,y € B. With this multiplication B is a Banach
algebra. All the foregoing examples, except (8), have the additional
property that the multiplication is commutative. In all that follows we
shall deal mainly with commutative Banach algebras.

1.2 In all the examples except for (3), (6), and (9), the algebras have
a unit element for the multiplication: the number 1 in (1); the function
f(z) = 1in (2), (4), and (5); the unit mass at the origin in (7); and the
identity operator in (8). It is clear from 1.1.7 that if f € L!(T) were a
unit element, we would have f (n) = 1 for all n which, by the Riemann-
Lebesgue lemma, is impossible; thus L' (T) does not have a unit.

Let B be a Banach algebra. We consider the direct sum B; = B&C,
that is, the set of pairs (z,)\), = € B, X € C; and define addition,
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multiplication, scalar multiplication and norm in B; by:

(21, A1) + (22, A2) = (21 + T2, A1 + A2)
(z1, M )(x2, A2) = (Z172 + M122 + dax1, A1 \2)
Mz, A1) = Az, A\)

(=, MlB, = ll=l[5 + [Al-

It is clear, by direct verification, that B! is a Banach algebra with a unit
element (namely (0, 1)). We now identify B with the set of pairs of the
form (x,0), which is clearly an ideal of codimension 1 in B;. We say
that B; is obtained from B by a formal adjoining of a unit element;
this simple operation allows the reduction of many problems concern-
ing Banach algebras without a unit to the corresponding problems for
Banach algebras with unit. If B is an algebra with a unit element we
often denote the unit by 1 and identify its scalar multiples with the cor-
responding complex numbers. Thus we write "1 € B" instead of "B
has a unit element," and so on. This notation will be used when con-
venient and may be dropped when the unit element has been identified
differently.

1.3 Every normed algebra, that is, complex algebra with a norm satis-
fying (1.1) but under which it is not necessarily complete, can be com-
pleted into a Banach algebra. This is done in the same way a normed
space is completed into a Banach space. If By is a normed algebra, we
denote by B the space of equivalence classes of Cauchy sequences in
By, determined by the equivalence relation:

{zn} ~{yn} if,and only if, lim|z, —y,| =0.

One checks immediately, and we leave it to the reader, that if {z,} ~
{l} and {yu} ~ {4} then {@, + yu} ~ {a + 9} Phan} ~ {Aal),
{znyn} ~ {ay,,} and lim,,_ o ||z, || = lim,— ||z}, ||; hence we can de-
fine addition, scalar multiplication, multiplication, and norm in B as
follows: for z,y € B, let {z,,} (resp. {y,}) be a Cauchy sequence in
the equivalence class z (resp. y), then x + y (resp. Az, zy) will be the
equivalence class containing {z,, + v, } (resp. {\z,.}, {zny.}) and ||z|
is, by definition, lim,,_, ||z, ||. With these definitions, B is a Banach
algebra and the mapping which associates with an element a € By the
equivalence class of the "constant” sequence {z,}, =, = a for all n, is
an isometric embedding of By in B as a dense subalgebra.



212 AN INTRODUCTION TO HARMONIC ANALYSIS

1.4 The condition (1.1) on the norm in a Banach algebra implies the
continuity of the multiplication in both factors simultaneously. Con-
versely:

Theorem. Let B be an algebra with unit and with a norm || || under
which it is a Banach space. Assume that the multiplication is continu-
ous in each factor separately. Then there exists a norm || ||' equivalent
to || ||, for which (1.1)is valid.

PROOF: By the continuity assumption, every z € B defines a contin-
uous linear operator A, : y — zy on B. If z # 0, A,(1) = =z, and
consequently A, # 0; also A,,.,(y) = z120y = Ay, (22y) = Ay, Asy
hence the mapping x — A, is an isomorphism of the algebra B into the
algebra of all continuous linear operators on B. Let || ||’ be the induced
norm, that is,

(1.3) 2]|” = lAz]l = supy, <, llzyl|

then || ||' is clearly a norm on B and it clearly satisfies (1.1). We also
remark that

(1.4) el > (L1~ [l

(take y = ||1]|~* in (1.3)) and, consequently, if z,,, is a Cauchy sequence
in || ||, it is also a Cauchy sequence in || ||, and so converges to some
xzo € B. We contend now that lim||z,, — 20|’ = 0 which is the same

as lim||4,, — A,,|| = 0. This follows from: (a) {A;,} is a Cauchy
sequence in the algebra of linear operators on B hence converges in
norm to some operator Agy; (b) A,y = zny — 2oy = Ay y forally € B
(here we use the continuity of zy in z). It follows that Ay = A,, and
the contention is proved. We have proved that B is complete under the

norm || ||’, and since the two norms, || || and || ||" are comparable, (1.4),
they are in fact equivalent (closed graph theorem). <
Remark: The norm || || has the additional property that ||1]]' = 1;

hence there is no loss of generality in assuming as we shall henceforth
do implicitly, that whenever 1 € B, ||1|| = 1.

1.5 Theorem. Let B be a commutative Banach algebra and let 1
be a closed ideal in B. The quotient algebra B/I endowed with the
canonical quotient norm is a Banach algebra.
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PROOF: The only thing to verify is the validity of (1.1). Let e > 0,
let z, g € B/I and let z, y € B be representatives of the cosets Z,
respectively, such that ||z|| < ||Z|| + =, [ly|| < [|7]| + . We have zy € &y
and consequently

1250 < eyl < =yl < |23l + 2l + 17]) + €

and since € > 0 is arbitrary, [|Z7] < ||Z]|/|7]]- <

EXERCISES FOR SECTION 1

1. Verify condition (1.1) in the case of C™(T) (example 4 above).

2. Let B be a homogeneous Banach space on T, define multiplication in B
as convolution (inherited from L'(T)). Show that with this multiplication B is
a Banach algebra.

3. Let X be a locally compact, noncompact, Hausdorff space and denote by
X its one-point compactification. Show that C(X..) is isomorphic (though
not isometric) to the algebra obtained by formally adjoining a unit to Co(X).

4. Let B be an algebra with two consistent norms (see IV.1.1, || ||o and
| 1. Assume that both these norms are multiplicative (i.e., satisfy condition
(1.1)). Show that all the interpolating norms || ||, 0 < o < 1 (see IV.1.2), are
multiplicative.

Hint: B is a normed algebra and B, are ideals in B.

2 MAXIMAL IDEALS AND MULTIPLICATIVE
LINEAR FUNCTIONALS

2.1 Let B be a commutative Banach algebra with a unit 1. An element
x € B is invertible if there exists an element ! € B such that z2~! =
1.

Lemma. Consider a Banach algebra B with a unit 1. Let x € B and
assume ||z — 1| < 1. Then x is invertible and

o

2.1 rTh =) (1-a)

=0

PROOF: By (1.1), [[(1—z)7|| < |(1 - z)|’; hence the series on the right
of (2.1) converges in B. Writing z = 1 — (1 — z) and multiplying term
be term we obtain z Y72 (1 — )7 =1 <
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2.2 Lemma. Let x € B be invertible and y € B satisfying ||y — z|| <
|zt =Y. Then y is invertible and

(2.2) yTh=amt ) (-2
=0

PROOF: |1 —z 'y < |l !||lz — y|. Apply Lemma 2.1to z~'y. <

Corollary. The set U of invertible elements in B is open and the func-
tion x +— x~1 is continuous on U.

PROOF: We only need to check the continuity, Let z € U, y — z; by
(22)ywehavey ' —z ' =213 %7 (1 -2 'y)’; hence

o<
ly™ =27 < Dl e - gl < 202z -yl
j=1

provided ||z — y|| < 5[zt «

2.3 DEFINITION: The resolvent set R(x) = Rp(x) of an element z in a
Banach algebra B with a unit is the set of complex numbers A such that
x — A is invertible.

Lemma. Forz € B, R(x) is open and F()\) = (z — \)~L is a holomor-
phic B-valued function on R(z).

PROOF: This is again an immediate consequence of Lemma 2.2. If
Xo € R(z) and X is close to X, it follows from (2.2) that

(=N =(@=2) 'Y (I=(z = Xo) Mz — Ao+ Ao — N
==Y (=) 7 (Ao - N,

(2.3) is the expansion of (z —\) ! to a convergent power series in A — g
with coefficients in B. <

2.3)

2.4 Lemma. R(z) can never be the entire complex plane.

PROOF: Assume R(z) = C. The function (x — \)~! is an entire B-
valued function and as |[A| — oo

=27 = (E 1)~ A o,

It follows from Liouville’s theorem (see appendix A) that (x—\)~! =0,
which is impossible. <
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Theorem (Gelfand—Mazur). A complex commutative Banach alge-
bra which is a field is isomorphic to C.

PROOF: Let z € B, A a complex number A € R(z); then = — X\ is not
invertible and, since the only noninvertible element in a field is zero,
x = A. Thus, having identified the unit of B with the number 1, B is
canonically identified with C.

2.5 We now turn to establish some basic facts about ideals in a Banach
algebra.

Lemma. Let I be an ideal in an algebra B with a unit. Then I is
contained in a maximal ideal.

PROOF: Consider the family Z of all the ideals in B which contain .
7 is partially ordered by inclusion and, by Zorn’s lemma, contains a
maximal linearly ordered subfamily Zy. The union of all the ideals in
7y is a proper ideal, since it does not contain the unit element of B, and
it is clearly maximal by the maximality of Z;. <

Remark: The condition 1 € B in the statement of the lemma can be
relaxed somewhat. For instance, if ] C B is an ideal and if v € B 1s
such that (u, I)—the ideal generated by u and I—is the whole algebra,
then u belongs to no proper ideal containing 7/, and the union of all the
ideals in Zy (in the proof above) is again a proper ideal since it does not
contain u.

2.6 DEFINITION: The ideal I C B is regular if B has a unit mod I;
that is, if there exists an element v € B such thatz — uxz € I for all
x € B. If B has a unit element, every I C B is regular. If I is regular in
B and u is a unit mod [ then, since for every x € B, z = uz + (z — ux),
we see that (u, /) = B. Using Remark 2.5 we obtain:

Lemma. Let I be aregular ideal in an algebra B. Then I is contained
in a (regular) maximal ideal.

2.7 Lemmas 2.5 and 2.6 did not depend on the topological structure
of B. If B is a Banach algebra with a unit it follows from Lemma
2.1 that the distance of 1 to any proper ideal is one, and consequently
the closure of any proper ideal is again a proper ideal; in particular,
maximal ideals in B are closed. Our next lemma shows that the same
is true even if B does not have a unit element provided we restrict our
attention to regular maximal ideals.
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Lemma. Let I be a regular ideal in a Banach algebra B. Let u be a
unit mod I. Then dist(()u,I) > 1.

PROOF: We show that if v € B and ||u — v|| < 1, then (I, v) = B; hence
v ¢ 1. For x € B we have

oo

(2.4 xr= (Z(u—v)jx—uz:(u—v)j> +vZ(u—v)j$.
0 0

0

The difference (3> 5" (v — v)7z — u Y g (u — v)?) belongs to I since u is
a unit mod I, and the third term is a multiple of v; hence (I,v) = B and
the lemma is proved. <

Corollary. Regular maximal ideals in a Banach algebra are closed.

2.8 DEFINITION: A multiplicative linear functional on a Banach alge-
bra B is a nontrivial® linear functional w(z) satisfying

(2.5) w(zy) = w(z)w(y), z,y € B.
Equivalently, it is a homomorphism of B onto the complex numbers.

We do not require in the definition that w be continuous—we can
prove the continuity:

Lemma. Multiplicative linear functionals are continuous and have
norms bounded by 1.

PROOF: Let w be a multiplicative linear functional; denote its kernel
by M. M is clearly a regular maximal ideal and is consequently closed.
The mapping = — w(x) identifies canonically the quotient algebra B/M
with C, and if we denote by || ||’ the norm induced on C by B/M, we

clearly have ||A|" = ||1)/'|A\| for all A € C. By (1.1), ||1]|' > 1 and
hence |A\| < ||A|| for all A € C; it follows that for any = € B, |w(z)| <
lw(@)]l” < |lz]|. «

Theorem. The mapping w — ker(w) defines a one-one correspon-
dence between the multiplicative linear functionals on B and its regular
maximal ideals.

TA linear functional which is not identically zero.
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PROOF: A multiplicative linear functional w is completely determined
by its kernel M: if 2 € M then w(z) = 0: if 2 ¢ M, w(x) is the unique
complex number for which 2? — w(z)z € M. On the other hand, if
M 1is a regular maximal ideal in a commutative Banach algebra B, the
quotient algebra B/M is a field. Since M is closed B/M is itself a
complex Banach algebra (Theorem 1.5), and by Theorem 2.4, B/M is
canonically identified with C. It follows that the mapping B — B/M is
a multiplicative linear functional on B. <

Corollary. Let B be a commutative Banach algebra with a unit ele-
ment. An element x© € B is invertible if, and only if w(z) # 0 for every
multiplicative linear functional w on B.

PROOF: If z is invertible w(x)w(z~') = 1 for every multiplicative lin-
ear functional w, hence w(z) # 0. If z is not invertible then zB is a
proper ideal which by Lemma 2.5, is contained in a maximal ideal M.
Since z = z-1 € xB C M it follows that w(z) = 0 where w is the
multiplicative linear functional whose kernel is M. <

2.9 At this point we can already give one of the nicest applications of
the theory of Banach algebras to harmonic analysis.

Theorem (Wiener). Let | € A(T) and assume that f vanishes nowhere
onT, then f~1 € A(T).

PROOF: We have seen in 1.6.1 that A(T) is an algebra under pointwise
multiplication and that the norm

Ifllac) = Z|JE(“)|

is multiplicative. Since A(T) is clearly a Banach space (isometric to
/Y), it follows that it is a Banach algebra.

Let w be a multiplicative linear functional on A(T); denote A\ =
w(e') (the value of w at the function e’* € A(T)). Since €] 41y = 1
it follows from Lemma 2.8 that A < 1; similarly we obtain that A~! =
w((et) 1) = w(e ) satisfies |\~!| < 1, and consequently |\| = I, that
is A = ¢t for some ty. By the multiplicativity of w, w(c™) = ¢¥** for
all n; by the linearity, w(P) = P(ty) for every trigonometric polynomial
P; and by the continuity, w(f) = f(to) for all f € A(T). It follows that
every multiplicative linear functional on A(T) is an evaluation at some
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to tg € T; every to ty € T clearly gives rise to such a functional and
we have thus identified all multiplicative linear functionals on A(T).
Let f € A(T) such that f(¢) # 0 for all ¢t € T. By Corollary 2.8, f is
invertible in A(T), that is, there exists a function g € A(T) such that
g(t) f(t) = 1 or equivalently f~% € A(T). <

2.10 The algebra A(T) is closely related to A(R) and Theorem 2.9 can
be used in determining the maximal ideals of A(R) (or, equivalently,
L*(R)); this can also be done directly and our proof below has the ad-
vantage of applying for many convolution algebras (see also exercise 4
at the end of this section).

Theorem. Every multiplicative linear functional on L*(R) has the
Jorm f — f(&) for some & € R.

PROOF: Let w be a multiplicative linear functional on L'(R). As any
linear functional on L'(R) w has the form w(f) = [ f(z)h(z)dz for
some h € L (R). We have

w(f *g) = / / f(z — y)g(y) @) dy da = // (@) 9 )@+ y)dz dy
w(fyulg) = / J(@)h(@)de / o(y)g)dy = //f(r)g(y)h(x)h(y)dx dy

By the multiplicativity of w and the fact that the linear combinations of
the form > f;(2)g;(y), fj, 9; € L'(R) are dense in L'(RzR), it follows
that h(z +1y) = h(z)h(y) almost everywhere in RzR. Thus (see exercise
VIL.4.7) h(z) = ¢“0® for some & € R, and w(f) = f(&). <

2.11 We shall use the term “function algebra” for algebras of contin-
uous functions on a compact or locally compact Hausdorff space with
pointwise addition and multiplication. It is clear that if B is a function
algebra on a space X and if x € X, then f — f(x) is either a multiplica-
tive linear functional on B, or zero, and consequently (Lemma 2.8) if
B is a Banach algebra under a norm || ||, we have |f(z)| < | f|| for all
z € Xand f € B.

2.12 Let B be a function algebra on a locally compact Hausdorff space
X and assume that for all z € X there exists a function f € B such that
f(z) # 0. Denote by w, the multiplicative linear functional f — f(z).
Recall that B is separating on X if for any 1, 25 € X, 21 # a9, there
exists an fB such that f(x1) # f(z2); this amounts to saying that if
21 # xzo then w,, # w,,. Thus, if B is separating on X and not all the
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functions in B vanish at any x € X, the mapping = — w, identifies X
as a set of multiplicative linear functionals on B. In general we obtain
only part of the set of multiplicative linear functionals as w,, z € X
(see exercise 6 at the end of this section); however, in some important
cases, every multiplicative linear functional on B has the form w, for
some z € X. We give one typical illustration.

DEFINITION: A function algebra B on a space X is self~adjoint on X
if whenever f € B then also f € B (where f(z) = f(z)).

DEFINITION: A function algebra B on a space X is inverse closed if
1 € B and whenever f € B and f(z) # 0 forall z € X, then f~! € B.
Thus we can restate Theorem 2.9 as: "A(T) is inverse closed."”

Theorem. Let B be a separating, self-adjoint, inverse-closed function
algebra on a compact Hausdorff space X. Then every multiplicative
linear functional on B has the form w, (i.e., { +— [(x)) for some x € X.

PROOF: If we denote M, = {f:f(z) = 0}, or equivalently M, =
ker(w.), then, by theorem 2.8, the assertion that we want to prove is
equivalent to the assertion that every maximal ideal in B has the form
M, for some x € X. We prove this by showing that every proper ideal
is contained in at least one M,. Let I be an ideal in B and assume
I ¢ M, for all zX. This means that for every z € X there exists a
function f € I such that f(z) # 0. Since f is continuous, f(y) # 0
for all y in some neighborhood O, of z. By the compactness of X we
can find a finite number of points z1,. .., z, with corresponding f; € [
and neighborhoods O;, 7 =1, ..., n, such that X = UTO; and such that
fi(y) # 0fory € O;. The function p = >~ f;f; belongs to I, is positive
on X, and since B is assumed to be inverse closed, ¢ is invertible and
1€ 1,thatis, I = B. <

Corollary. Let X be a compact Hausdorff space. Then every multi-
plicative linear functional on C(X) has the form w, (i.e., f — f(x)) for
some x € X.

EXERCISES FOR SECTION 2

1. Use the method of the proof of 2.9 to determine all the multiplicative
linear functionals on C(T).

2. The same for C™(T).
Hint: "™ cn = O (m™).
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3. Check the results of exercises 1 and 2 using 2.12.

4. Let G be an LCA group, and let B denote the convolution algebra L'(G).
Show that every multiplicative linear functional on B has the form f — f (v)
for some v € G. Hint: Repeat the proof of 2.10.

5. Determine the multiplicative linear functionals on HC(D) (see section
1, example 5).

6. Let B be the sup-norm algebra of all the continuous functions f on T
such that f(n) = 0 for all negative integers n. Show that B is a separating
function algebra on T; however, not every multiplicative linear functional on B
has the form w; for some ¢ € T. Hint: What is the relationship between B and
HC(D)?

7. Show that a commutative Banach algebra B may have no multiplicative
linear functionals (hint: example 9 of section 1); however, if 1 € B, B has at
least one such functional.

8. Determine the multiplicative linear functionals on Cy(X), X being a
locally compact Hausdorff space.

3 THE MAXIMAL-IDEAL SPACE AND THE
GELFAND REPRESENTATION

3.1 Consider a commutative Banach algebra B and denote by 9t the
set of all of its regular maximal ideals. By Theorem 2.8 we have canon-
ical identification of every M € 9% with a multiplicative linear func-
tional, and hence, by Lemma 2.8, we can identify 91 with a subset of
the unit ball U* of B*—the dual space of B. This identification induces
on M whatever topological structure we have on U*, and two impor-
tant topologies come immediately to mind: the norm topology and the
weak-star topology. We limit our discussion of the metric induced on
N by the norm in B* to exercises 1-3 at the end of this section and refer
to [6] for a more complete discussion. The topology induced on 93t by
the weak-star topology on B* is more closely related to the algebraic
properties of B; we shall refer to it as the weak-star topology on 9.

Lemma. U {0} is closed in U* in the weak-star topology. If 1 € B
then M is closed.

PROOF: In order to prove the first statement we have to show that if
ug € M, then uo(zy) = uo(x)ug(y) for all 2,y € B. From this it would
follow that either ug € 9 or ug = 0. Lete > 0, z,y € B and consider
the neighborhood of wy in U* defined by

G- {u:fu(z) —uo(z)| <&, [u(y) —uo(y)| <&, [ulzy) —uo(au)| <e};
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Since up € M there exists a w € M in (3.1), and remembering that
w(zy) = w(z)w(y) we obtain

|uo(zy) — uo(x)uo(y)] < e(1+ [zl + y[)-

Since ¢ > 0 is arbitrary, ug(zy) = uo(z)uo(y).

In order to prove the second statement we have to show thatif 1 € B,
then 0 ¢ 9. Since w(l) = 1 for all w € M, it follows that {u: |u(1)]| <
1} is a neighborhood of 0 disjoint from 90 and the proof is complete.

<

Since U* with the weak-star topology is a compact Hausdorff space,
it follows that the same is true for M U {0} or, if 1 € B, for M. This is
sufficiently important to be stated as:

Corollary. I, with the weak-star topology, is a locally compact Haus-
dorff space. If 1 € B then I is compact.

We shall see later (see Theorem 3.5) that in some cases the com-
pactness of 9t implies 1 € B. However, considering example (9) of
section 1, we realize that 91 may be compact (as a matter of fact empty
1) for algebras without unit. The reader who feels unconvinced by an
example consisting of the empty set should refer to exercise 4 at the
end of this section.

3.2 Forz € B and M € 9 we now write (M) = = mod M (i.e.,
the image of = under the multiplicative linear functional corresponding
to M). By its definition, the weak-star topology on 9t is the weakest
topology such that all the functions {Z(A): x € B} are continuous.

Lemma. If'1 € B, the mapping x — & is a homomorphism of norm
one of B into C(IMN).

PROOF: The algebraic properties of the mapping are obvious. For
every M € M and z € B, |z(M)| < [z|| (Lemma 2.8) and hence
sup,;|#(M)| < |lz||. On the other hand 1(M) = 1 and the norm of
not smaller than one. <

If we do not assume 1 € B, the set {M : |z(M)| > ¢} is compact in I
for every x € B and £ > 0; consequently z + & is a homomorphism
of norm at most one, of B into Cy(9M). The subalgebra B of C(M)
(resp. Cp(9M)) obtained as the image of B under the homomorphism
x — I is called the Gelfand representation of B. The function 2(M) is
sometimes referred to as the Fourier-Gelfand transform of z.
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3.3 In many cases we can identify the weak-star topology on con-
cretely in virtue of the following simple fact (cf. [15], p.6): let 1, 1
be Hausdorff topologies on a space 9t and assume that 9t is compact
in both topologies and that the two topologies are comparable; then
7 = 71. In our case this means that if 1 € B and if 7 is a Hausdorff
topology on 9 in which 9 is compact, and such that all the func-
tions #(M) in B are T-continuous, then, since the weak-star topology is
weaker than or equal to 7, the two are equal. By a formal adjoining of
a unit we obtain, similarly, that if I ¢ B and 7 is a Hausdorff topology
on 9 such that M1 is locally compact and B C Cy(9, 7) then 7 is the
weak-star topology on 9.

3.4 DEFINITION: The radical, Rad (B), of a commutative Banach
algebra B is the intersection of all the regular maximal ideals in B.

Rad (B) is clearly a closed ideal in B and is the kernel of the ho-
momorphism z — & of B onto B. The radical of B may coincide with
B (example 9 of section 1) in which case we say that B is a radical
algebra; it may be a nontrivial proper ideal, or it may be reduced to
Zero.

3.5 DEFINITION: A commutative Banach algebra B is semisimple if
Rad (B) = 0. Equivalently: B is semisimple if the mapping = — & is an
isomorphism.

3.6 DEFINITION: The spectral norm' of an element z ¢ B, denoted
|z|lsp > 18 SUp eon|Z(M)|.  The spectral norm can be computed from
the B norm by:

Lemma. %] sp = limp, oo |27 |2/

PROOF: The claim is that the limit on the right exists and is equal to
[|z||sp. This follows from the two inequalities:

(@) ||zl < liminf|a™|*/;
(b) ”lnop > limSllpHrnHl/”.

TThe origin of the term is in the fact that the set of complex numbers A for which
x — A is not invertible (assuming 1 € B) is commonly called "the spectrum of =" and the
spectral norm of x is defined as sup|A| for A in the spectrum of z. By Corollary 2.8, the
spectrum of z coincides with the range of (M), which justifies our definition; we prefer
to avoid using the much abused word "spectrum” in any sense other than that of chapter
VI
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We notice first that for every n, ||z[[3, = [2"[sp < [lz"[, that is,
|x|lsp < |l2™||*/", which proves (a). In the proof of (b) we assume first

that 1 € B, and consider (z — X\)~! as a function of \. By Lemma 2.3,
(z — A)~! is holomorphic for |A| > ||z|s,. If |A| > ||z|| we have

(=Nt =AT1—z/N) T =AY 2t
and if F' is any linear functional on B,
(= N"LF)=-A> @ F)A™"

is holomorphic, hence convergent for |A| > ||z||s,. Pick any A > ||z,
then (A\~"z™, F') is bounded (in fact, it tends to zero) for all F' € B*,
and it follows from the Uniform Boundedness Principle that A~"||z"]| is
bounded, hence limsup||z™| '/ < . Since ) is any number of modulus
greater than ||z ||, (b) follows. If 1 ¢ B we may adjoin a unit formally.
Both the norm and the spectral norm of an element z € B are the same
in the extended algebra and since (b) is valid in that algebra, the proof
is complete. <

Corollary. z € Rad(B) <= lim|jz"||'/" =0
PROOF: z € Rad (B) <= ||z|sp =0. P

3.7 Lemma 3.6 allows a simple characterization of the Banach alge-
bras for which the spectral norm is equivalent to the original norm.
Such an algebra is clearly semisimple, and the Gelfand representation
identifies it with a (uniformly) closed subalgebra of the algebra of all
continuous functions on its maximal ideal space.

Theorem. A4 necessary and sufficient condition for the equivalence of
| ||sp and the original norm || || of a Banach algebra B is the existence
of a constant K such that ||z||*> < K| 22| for all z € B.

PROOF: If || | < Ki| [[sp, then ||z << K7|z[?, < K7;llz[; this
establishes the necessity. On the other hand, if the condition above is
satisfied,

HIH << K1/2||x2||1/2 §K1/2+1/4HZC4”1/4 <

<. < K1/2+1/4+427" HJ:Q" HQ*"’

and, by Lemma 3.6, ||z|| < K|z||sp. <
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3.8 DEFINITION: A commutative Banach algebra B is self~adjoint if
B is self-adjoint on the maximal ideal space 9.

Remark: Notice the specific reference to the maximal ideal space. The
algebra of functions defined on the segment 7 = [0, 1] which are restric-
tions to I of functions holomorphic on the unit disc and continuous on
the boundary (i.e., of functions in HC(D)), is self-adjoint as a function
algebra on /. As a Banach algebra it is isomorphic to HC(D) which is
not self-adjoint. (See also exercise 11 at the end of this section).

Theorem. Let B be self-adjoint with unit and assume that there exists
a constant K such that ||z||* < K||2?| for all x € B. Then B = C(9M).

PROOF: By the Stone-Weierstrass theorem 13 is dense in C(91), and by
3.7 it is uniformly closed. <

3.9 Let F(z) =3 a,z" be a holomorphic function in the disc |z| < R
and z an element in a Banach algebra B such that ||z||s, < R. It follows
from Lemma 3.6 that the series ) a,2™ converges in B (if 1 ¢ B, we
assume ay = 0) and we denote its sum by F(z). If M is a maximal ideal
in B, we clearly have F(z)(M) = F(#(M)).

Instead of power series expansion, we can use the Cauchy integral
formula:

Theorem. Assume 1 € B. Let F' be a complex-valued function, holo-
morphic in a regiont G in the complex plane. Let x € B be such that
the range of i is contained in G. Let y be a closed rectifiable curvet in
G, enclosing the range of &, and whose index with respect to any (M),
M € M, is one, and is zero with respect to any point outside G. Then
the integral

_ L[ FE
(3.2) F(z)= 5l A P rdl
is a well-defined element in B and
(3:3) F(a)(M) = F(a(M))

Jorall M € 9.

PROOF: The integrand is a continuous B-valued function of z, hence
(3.2) is well defined and (3.3) is valid. <

TNot necessarily connected!
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Remarks: : (a) The element F(z) defined by (3.2) does not depend
on the particular choice of 4. Also, it can be shown, using the Cauchy
integral (3.2), that for a given x € B, the mapping F' — F'(x) is a homo-
morphism of the algebra of functions holomorphic in a neighborhood
of the range of £ into B (cf. [5], §6).

(b) Though the integral (3.2) clearly depends upon the assumption

1 € B, we can "save" the theorem in the case 1 ¢ B by formally adjoin-
ing a unit. Denoting by B’ the algebra obtained by adjoining a unit to
B, we notice that for z € B the range of 7 over 9’ (the maximal ideal
space of B') is the union of {0} with the range of Z on 9. If we require
0 € G, then (3.2) can be taken as a B'-valued integral, and if F(0) = 0

—

then F(z) vanishes whenever & does, and in particular F(z) € B.

3.10 Theorem 3.9 states essentially that B is stable under the oper-
ation of analytic functions. For the algebra A(T) this is Paul Levy’s
extension of Wiener’s theorem 2.9:

Theorem (Wiener-Levy). Let f(t) = S f(5)e" with 32| f(5)] < oo.
Let F' be holomorphic in a neighborhood of the range of f. Then g(t) =
F(f(t)) has an absolutely convergent Fourier series.

3.11 As another simple application we mention that if there exists an
element 2 € B such that 7:(A) is bounded away from zero on 91 then,
denoting by F(z) the function which is identically 1 for |z| > ¢ and
identically zero for |z| < £/2 (where ¢ = £ inf|2(M)|), we see that
F/(E) =1 on M. If we assume that B is semisimple it follows that F'(z)
is a unit element in B.

The assumption that & is bounded away from zero for some zeB
implies directly that 9t is compact (see the proof of 3.1); if we assume,
on the other hand, that 9% is compact, then 0 is not a limit point of
M in U* and consequently there exists a neighborhood of zero in U*,
disjoint from 9. By the definition of the weak-star topology this is
equivalent to the existence of a finite number of elements z;,..., 2z, in
B such that |#1|+- - -+|Z,| is bounded away from zero on 9t. Operating
with functions of several complex variables one can prove again that
1 € B. We refer the reader to ([5], §13) for a discussion of operation by
functions of several complex variables on elements in B and state the
following theorem without proof:

Theorem. If B is semisimple and I is weak-star compact, then 1 €
B.
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3.12 Another very important theorem which is proved by application
of holomorphic functions of several complex variables, deals with the
existence of idempotents:

Theorem. Assume that M is disconnected and let U C I be both
open and compact in the weak-star topology. Then there exists an ele-
ment u. € B such that

(a) u?>=mu

0 M¢U

(b) M) = {1 MeU
Remarks: (1) If B is semisimple then (a) is a consequence of (b).

(i1) The idempotent v allows a decomposition of B into a direct sum
ofideals. Write ), =uB={x € B:z =uz}and b = {r € B:ux =0};
it is clear that /7 and I, are disjoint closed ideals and for any x € B,
r=ux+(x—ux);thus B=1 & .

We refer to ([5], §14) for a proof; here we only point out that if
we know that B is uniformly dense in C(9) (resp. Co(9)), and in
particular if B3 is self-adjoint on 90, theorem 3.12 follows from 3.9. In
fact, there exists an element € B such that [£(M) —1| <  for M € U
and |2(M)| < 1 for M € M\ U. Defining F(z) as 1 for |z — 1| <  and
0 for |z| < I, we obtain u as F(x).

EXERCISES FOR SECTION 3

1. Show that the distance between any two points of T, considered as the
maximal ideal space of C(T), in the metric induced by the dual (in this case
M(T)) is equal to 2; hence the norm topology is discrete.

2. We have seen that the maximal ideal space of HC(D) is D = DUT =
{z:|z] < 1}. Show that the norm topology on D (i.e., the topology induced
by the metric of the dual space on the set of multiplicative linear functionals)
coincides with the topology of the complex plane on D and with the discrete
topology on T.

Hint: Schwarz’ lemma.

3. Show that the relation ||w; — w?|| < 2 is an equivalence relation in the
space of maximal ideals (multiplicative linear functionals) of a sup-normed Ba-
nach algebra B. The corresponding equivalence classes are called the "Gleason
parts" of the maximal ideal space.

4. Let B be an arbitrary Banach algebra and let B; be a Banach algebra
with trivial multiplication (example 9 of section 1). Denote by B the orthogonal
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direct sum of B and Bi, that is, the set of all pairs (z,y) withz € B,y € B;
with the following operations:

(Z"U) + (l’l,?jl) - ($ + 21,y +yl)
Az, y) = (Az, Ay)  for complex A
(z,y)(z1,91) = (x21.0)

and the norm ||(z.y)|| = ||zl|z + ||ly||z,- Show that B is a Banach algebra
without unit and with the same maximal ideal space as B.

5. Let X be a compact (locally compact) Hausdorff space. Show that the
maximal ideal space of C(X) (resp. Co(X)), with the weak-star topology, co-
incides with X as a topological space.

6. We recall that a set {x1,...,2,} C B is a set of generators in B if it is
contained in no proper closed subalgebra of B, or, equivalently, if the algebra
of polynomials in x1, ..., x, is dense in B. Show thatif {z1,...,z,} isaset of
generators in B, then the mapping M — (21(M), ..., Zn(M)) identifies 21, as
a topological space, with a bounded subset of C™.

7. Let I be a closed ideal in B. Denote by h(I)—the hull of I-the set of all
regular maximal ideals containing I. Show that the maximal ideal space of B/I
can be canonically identified with A(I).

8. Let I, I» be (nontrivial) closed ideals in an algebra B such that 1 € B.
Assume that B = I & I>. Show that 9 is disconnected.

9. Show that not every multiplicative linear functional on M(T) has the
form p — fi(n) for some integer n.

10. Show that for any LCA group G, L*(G) and M (G) are semisimple.

11. Let B be a Banach algebra with a unit, realized as a self-adjoint function
algebra on a space X.

(a) Prove that B is self-adjoint if, and only if, f is real valued on 9 for every
f € B which is real valued on X.

(b) Prove that B is self-adjoint if, and only if, 1 + | f|? is invertible in B for all
f€B.

12. Let {wn }nez be a sequence of positive numbers satisfying 1 < wp4m <
Wy W, for all n,m € Z. Denote’ by A{w,} the subspace of A(T) consisting of
the functions f for which

1wy = D _IF(m)wn < 0.

(a) Show that with the norm so defined, A{w»} is a Banach algebra.
(b) Assume that for some k > 0, w, = O (|n|}‘) Show that the maximal
ideal space of A{w,} can be identified with T.

§Compare with exercise V.2.7.
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(¢) Under the assumption of (b), show that A{w,} is self-adjoint if, and

only if,
waw_ s = O0(1) as|n| — co.

13. Let B be a Banach algebra with norm || ||o and maximal ideal space
M. Let By C B be a dense subalgebra which is itself a Banach algebra under
anorm || ||1. Assume that its maximal ideal space is again 91 (this means that
every multiplicative linear functional on B; is continuous there with respect to
Il llo). Assume that || ||o and || ||:1 are consistent on B; and denote by || [,
0 < a < 1, the interpolating norms (see [V.I.2 and exercise 1.4) and by B,, the
completion of B; with respect to the norm || ||o. Show that the maximal ideal
space of B, is again 1.

Remark: 1If B is semisimple the norm || ||o is majorized by || |1, (see section
4) and hence by || || forall0 < o < 1.

14. Let B1 C B’ C B be Banach algebras with norms || |1, || ||" and
| || respectively. Assume that B; is dense in B and in B’ in their respective
norms and that B and B; have the same maximal ideal space 9t. Show that the
maximal ideal space of B’ is again 9.

Remark: The assumption that By is dense in B’ is essential; see exercise 11 of
Section 9.

4 HOMOMORPHISMS OF BANACH ALGEBRAS

4.1 We have seen (Lemma 2.8) that homomorphisms of any Banach
algebra into the field C are always continuous. The Gelfand represen-
tation enables us to extend this result:

Theorem. Let B be a semisimple Banach algebra, let B, be any Ba-
nach algebra and let ¢ be a homomorphism of By into B. Then ¢ is
continuous.

PROOF: We use the closed graph theorem and prove the continuity of
¢ by showing that its graph is closed. Let x; € B; and assume that
xz; — xp in By and pz; — yo in B. Let M be any maximal ideal in
B; the map = — @z (M) is a multiplicative linear functional on B;, and
by Lemma 2.8 it is continuous. It follows that @z;(M) converges to
@xo(M); on the other hand, since pz; — yo in B, @z;(M) — yo(M),
so that pzo(M) = §o(M). Hence @z — yo € M for all maximal ideals
M in B and, by the assumption that B is semisimple, pzy = y9. Thus
the graph of ¢ is closed and ¢ is continuous. <

Corollary. There exists at most one norm, up to equivalence, with
which a semisimple algebra can be a Banach algebra.
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4.2 Let B and B; be Banach algebras with maximal ideal spaces 9
and 2, respectively. Let ¢ be a homomorphism of B; into B. As we
have seen in the course of the preceding proof, every M € 9 defines
a multiplicative linear functional w(z) = @z(M) on B;. We denote the
corresponding maximal ideal by M. It may happen, of course, that
w 1s identically zero and the "corresponding maximal ideal" is then the
entire By; thus ¢ is a map from 9 into 9, U {B; }. In terms of linear
functionals, ¢ is clearly the restriction to 9t of the adjoint of .

Theorem. ¢ : 9 — 9y U {B} is continuous when both spaces are
endowed with the weak-star topology. If w(I31) is dense in B in the
spectral norm, then ¢ is a homeomorphism of MM onto a closed subset
Ofg:nl

PROOF: A sub-basis for the weak-star topology on 90t; U {B} is the
collection of sets of the form U; = {M : Z: (M) € O}, O an open set in
C and z; € B'. The ¢ pre-image in M of Uy is U = {M : pz1(M) € O}
which is clearly open. If @ is uniformly dense in B, the functions
@zr1(M), 1 € B, determine the weak-star topology on 9t and it is
obvious that ¢ is one-to-one into Mi; and that it is a homeomorphism.
What remains to show! is that if g@ is uniformly dense in B then
©(IM) is closed in M. We start with two remarks:

(a) For My € 9, the map ¢z — 71 (M) is well defined on ¢(B;)
if, and only if, for all 1 € By, pz1 = 0 implies Z1(M;) = 0.

(b) When the above-mentioned map is defined, it is clearly multi-
plicative and (assuming 4@ uniformly dense in B3) it can be extended
to a multiplicative linear functional on B if, and only if, for all z; € By:

22 (M) < [[pzalsp -

Assume now that M; € 9 is in the weak-star closure of p(91). For
any x1 € B; and ¢ > 0 there exists an M € 91 such that

|21 (M) — Z1(pM)| = [Z1(M1) — @z (M)] < e.

Since £ > 0 is arbitrary and since |@z1(M)| < |[z1]|sp, it follows that
|Z1(M1)| < |lpz1]sp, and by our remark (b) there exists an My € I
such that @z (My) = Z1(M;y) for all z; € By; thatis, oMy = M; and
My € (). <

TNotice that if 1 € B then 91 is compact and () is therefore compact, so that in
this case the rest of the proof is supertluous.
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4.3 From 4.2 it follows in particular that if ¢ is an automorphism of
B, then ¢ is a homeomorphism of 9, and if B is semisimple (so that
we can identify it with its Gelfand representation), then ¢ is given by
Fo(M) = #(pM).

In other words: Every automorphism, of a semisimple Banach alge-
bra is given by a (homeomorphic) "change of variable" on the maximal
ideal space.

Of course not every homeomorphism of 9t defines an automor-
phism of B (or B), and the question which homeomorphisms do, is
equivalent to the characterization of all the automorphisms of B and
can be quite difficult.

*x4.4 The following lemma is sometimes helpful in determining the au-
tomorphisms of Banach algebras of functions on the line.

Lemma. Let ¢ be a continuous function defined on an interval [a, b]
and having the following property: If ro,r1,...,rN are real numbers
such that all the 2V points

N
(4.1) nazrg—i—ZEjrj, g;=0,1
1

lie in [a,b], then the numbers {¢(n;)} are linearly dependent over the
rationals. Then the set of points in a neighborhood of which ¢ is a
polynomial of degree smaller than N is everywhere dense in [a, b)].

PROOF: Let I be any interval contained in [a, b]; we show that there ex-
ists an interval I’ C I such that ¢ coincides on I’ with some polynomial
of degree smaller than N. Without loss of generality we may assume
that I © [0, N+1] sothatif0 <r; <1, j=0,1,..., N, all the points 7,
defined by (4.1) are contained in I. By the assumption of the lemma,

to each choice of (ry, ..., ry) such that 0 < r; < 1, corresponds at least
one vector (A;,..., Ay~ ) with integral entries not all of which vanish,
such that

2N
(4.2) > Aap(a) = 0.

a=1

Denote by E(Ay, ..., Ayn) the set of points (rg,...,r"N) in the N + 1-
dimensional cube 0 < r; < 1, for which (4.2) is valid. Since ¢ is con-
tinuous it follows that E( Ay, ....As~) is closed for every (41, ..., Asn)
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and since |J E(A, ..., Asn) is the entire cube 0 < r; < 1, it follows
from Baire’s category theorem that some E(Ai,..., Asn) contains a
box of the form {r9 <r; <7}},j=0,...,N.

Let ¢ > 0 be smaller than (r§ — 7§) and let ¢, be infinitely differ-
entiable function carried by (—z,<) such that [1,(£)dé = 1. We put
we = @ * 1. and notice that

2N 2N
D Awpe(na) = 0D Aatp(na))
a=1 a=1

and consequently

2N
(4.3) > Aape(na) =0
a=1
for
4.4 ra+e<ry<rh—c, rggrjg?“;, j=1,...,N.

Now, ¢, is infinitely differentiable and we can differentiate (4.3) with
respect to various r;’s, j > 1. Assume that A,, # 0 and that the coef-
ficient of r;, in 7, is equal to one. Differentiating (4.3) with respect to
75, We obtain

(4.5) D Aapl(na) =0

where the summation extends now only over those values of « such
that the coefficient of r;, in 7, is equal to one. Also, (4.5) is nontrivial
since it contains the term A, ¢.(n.,). Repeating this argument with
other r;’s we finally obtain a nontrivial relation Aawim(na) = 0, that
is ng)(na) = 0, with M < N, and it follows that on the range of 7,
corresponding to (4.4), say I, p. is a polynomial of degree smaller
than M — 1 < N. As= — 0, ¢ — @ and ¢ is a polynomial of degree
smaller than N on I’ <

Corollary. If o, as above, is N-times continuously differentiable on
[a,b], then it is a polynomial of degree smaller than N on [a, b].

*4.5 Theorem (Beurling-Helson). Lef ¢ be an automorphism of
A(R) and let ¢ be the corresponding change of variable on R (see 4.3).
Then ¢o(€) = aé + b with a,b € R and a # 0.
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PROOF: The proof is done in two steps. First we show that ¢ is linear
on some interval on R, and then that the fact that ¢ is linear on some
interval implies that it is linear on R.

First step: By 4.1, ¢ is a continuous linear operator on A(R). Let
N be an even integer such that 2V > |||4; we claim that ¢ satisfies the
condition of Lemma 4.4 for this value of V. If we show this, it follows
from 4.4 that ¢ is a polynomial on some interval I’ € R. ¢ maps I’
onto some interval I and, since ¢ is an automorphism we can repeat
the same argument for ¢~ ! and obtain that the inverse function of ¢
is a polynomial on some interval I, C Iy. Since a polynomial whose
inverse function (on some interval) is again a polynomial must be linear
it follows that ¢ is linear on I’.

The adjoint ¢* of o maps the unit measure concentrated at £ to the

unit measure concentrated at ©(£). Since |¢*|| = ||| we obtain that
for every choice of a; € Cand §; € R
(4.6) ||Za'j5<p(£j)||fLoo < II‘PHHZ%J{J‘H}'LOO

We remember also that by Kronecker’s theorem (V1.9.2) if {¢(¢;)} are
linearly independent over the rationals, then (|3 a;0,,) | 7r= = >_la;l.
We show now that for every choice of rg,7r1,...,7ny € R, if the 2V
points 7, given by (4.1) are all distinct, there exists a measure v carried

by {1} such that [[v]| ;5 = 1 and [|[v]|Fp~ < 27N/
Put
1, . - . )
4.7 pi = Z(OO F0ras s T 0ray = Oy ytrayy) T =1,...,N/2.

The total mass of y; is clearly 1 and

(4.8)
ﬁ;(l‘) =;1(1 4 efr2im1T | girzge ei(1'21~_1+r2j):u) —

i'r'zj_lz/2 —i(f'z_;_1+7‘2j/2)z

h )
=5¢ cos1aj_1%/2 + %e sinro,_1x/2
so that

. 1 . 1
4.9) |a(z)] < §(|cosr2j,1x/2| + [sinroj_12/2|) <2 2.

We now take v = §,, % i1 * - - % fiy /2. v is clearly carried by {n;} and if
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the 7’s are all distinct the total mass of v is 1. On the other hand
N/2
IvllFr= < [Jllusllrre <272
1
If {n; } are linearly independent over the rationals it follows first that the
n’s are all distinct, and by (4.6) applied to v, and Kronecker’s theorem
1 < |le||2= /% which contradicts the assumption 2V > ||¢||*.
Second step: For all nand A, [[e™*V x| 4y < 3; hence

[ OV () 4y < 3l

As A — oo, \//\A(ga(ﬁ)) becomes 1 on larger and larger intervals on R,
which eventually cover any finite interval on R. By VI.2.4 (or by taking
weak limits), ¢**#(€) is a Fourier-Stieltjes transform of a measure of
total mass at most 3||||. If we denote by p1 the measure on R such that
p1(€) = (&) it follows that e"#(¢) is the Fourier-Stieltjes transform
of

*7

Wit =1 x---xpy (ntimes)

and we have

(4.10) 1™ @) < 3llell-

By the first step we know that ¢(&) = a£ + b on some interval I on
R. We now consider the measure 1 obtained from g, by multiplying it
by ¢~% and translating it by a. We have ji(¢) = ¢~H#F0 7 (¢), that is
(&) =1on I (and |1(€)| = 1 everywhere). It follows from (4.10) that

4.11) I |y < 3l

Consider the measures v, = 27"(§ + p)*", (6 = dy being the unit mass

at £ = 0). We have
n n )
1/71 — 2—71 ) [/*}
2 ()

0

and consequently [[v, | < 3l also, 7(¢) = (“5€ )" which is equal

to 1if 4(€) = 1 and tends to zero if i(€) # 1. Taking a weak limit of v,
as n — oo we obtain a measure v such that 7 is equal almost everywhere
to the indicator function of the set {¢: 4(¢) = 1} which clearly implies
v(€) = 1 identically on IR, hence (&) = 1 almost everywhere on R and
since /i is continuous, /i(£) = 1 everywhere. It follows that ¢#(€)) =
¢'(@¢+b) everywhere on R, and (&) = af + b. <
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Remarks: (a) The first step of the proof applies to a large class of
algebras. For instance, if B is an algebra whose maximal ideal space is
R, B > A(R) and for each constant K there exists an integer N such that
every set {7, } defined by (4.1) (such that the »’s are all distinct) carries
a measure v such that ||[v]|z- < K~'||v| ), step 1 goes verbatim for
B.

(b) If we assume that ¢ is continuously differentiable, step 2 is su-
perfluous. In fact, step 1 shows that the set of points near which ¢ is
linear is everywhere dense and if ¢’ exists and is continuous, the slope
must be always the same and ¢ must be linear. This proves that for
the algebras discussed in remark (a), the continuously differentiable
changes of variable induced by an automorphism must be linear.

(c) We have used the fact that ¢ was an automorphism of A(R)
rather than an endomorphism once, when deducing in the first step that
¢ was linear in some interval from the fact that it is a polynomial (on
an interval) whose inverse function is also a polynomial. This part
of the argument can be replaced (see exercise 12 at the end of this
section), and we thereby obtain that every nontrivial endomorphism of
A(R) is given by a linear change of variable (and consequently is an
automorphism).

EXERCISES FOR SECTION 4

1. Let B be a semisimple Banach algebra with norm || || and B1 C B a
subalgebra of B which is a Banach algebra with a norm || ||;. Show that there
exists a constant C' such that ||z|| < C||z||1 for all z € Bi.

2. Let B be a Banach algebra of infinitely differentiable functions on [0, 1],
having [0, 1] as its space of maximal ideals. Show that there exists a sequence
{ M}, such that sup| f™ (z)| < M, f|| for every f € B.

3. Show that the space of all infinitely differentiable functions on [0, 1]
cannot be normed so as to become a Banach algebra. 4. Let B be a semisimple
Banach algebra with maximal ideal space 9. Prove that a homeomorphism
of M is induced by an endomorphism of B if, and only if f € B= fo1 € B,
where (f o ¥)(M) = f(¢(M)).

5. What condition on ¢ above is equivalent to its being induced by an
automorphism?

6. Construct examples of semisimple Banach algebras B and B; and a
homomorphism ¢ : B1 — B (such that QZE is not dense in B) and such that
the corresponding mapping ¢ (a) is not one-to-one; (b) is one-to-one but not a
homeomorphism; (c) maps 21 onto a dense proper subset of 9.

7. Show that a homeomorphism ¢ of T onto itself is induced by an auto-
morphism of A(T) if, and only if, ¢*¢ € A(T) for all n and [|¢""? || 4¢ry = O (1).
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8. (Van der Corput’s lemma): (a) Let ¢ be real-valued on an interval [a, 8],
and assume that it has there a monotone derivative satisfying '(£) > p > 0 on
[a, b]. Show that Uab e @dg| < 2/p.

(b) Instead of assuming ¢'(£) > p > 0 on [a,}], assume that ¢ is twice
differentiable and that ¢ > x > 0 on [a, b]. Show that

b
|/ O de| < 6

Hint: For (a) write [ d¢ = —i [ d®(£)/¢' (), where ®(€) = ¥, and
apply the so-called "second mean-value theorem.” For (b), if ¢’ (c) = 0, write

1

z

b c—K c+r b
/ :/ —|—/ —|—/
1 1
Ja a c—r 2 ct+r 2
1
5.

the middle integral is clearly bounded by 2x ™~ 2 ; evaluate the other two integrals
by (a).

9. Let ¢ be twice differentiable, real-valued function on [0, 1] and assume
that ¢”" > k > 0 there. Show that

1
| / e O dg| < 12x72
0

Hint: Integrate by parts and use exercise 8.

10. Let ¢ be twice differentiable, real-valued function on [—1, 1] and as-
sume that ¢” > 1 > 0 there. Put ®,(&) = (1 — [¢])e™*® for [¢] < 1 and
®,,(€) =0 for |¢] > 1 Show that for all z € R,

=

1 ! £ _1 1
- n /'l.l, <
‘27{/71‘1) (&e d£|_472 ER

Hint: ®,(£)e* = (1—[¢])e'*#=¢) The second derivative of the exponent
1S > nn; use exercise 9.

11. Show that for some ¢ > 0, |
introduced in exercise 10.
Hint:  Use exercise 10, Plancherel’s theorem, and the fact that || @5 || 2z, is
independent of n.

12. Prove that every nontrivial endomorphism of A(R) is given by a linear
change of variable.
Hint: See remark (c) of 4.5. If ¢ is the change of variable induced by an

q)"”A(R) > cyv/n; @, being the function

endomorphism ¢, ¢ is a polynomial on some interval and if it is not linear,
0" (€) > n (or ¢'(¢) < —n) for some n > 0 on some interval 1. A linear change
of variable allows the assumption [—1, 1] C /. As in the second step of the proof
of 4.5, €™ OVL(9(6))l| oy < 3lleoll, hence [@n(EVA(2() iy < 3llell-
For X sufficiently large @n(f)\//:(cp(f)) = @, (&) and by exercise 11, [|Pall 5z
tends to infinity with n, which gives the desired contradiction.
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5 REGULAR ALGEBRAS

5.1 DEFINITION: A function algebra B on a compact Hausdorff space
X is regular if, given a point p € X and a compact set X' C X such
that p ¢ K, there exists a function f € B such that f(p) = 1 and f
vanishes on K. The algebra B is normal if, given two disjoint compact
sets K1, K5 in X, there exists f € Bsuchthat f =0on K; and f =1
on Ks.

Examples: (a) Let X be a compact Hausdorff space. Then C(X) is
normal. This is essentially the contents of Urysohn’s lemma (see [15],
p- 6).

(b) HC(D), the algebra of functions holomorphic inside the unit
disc and continuous on the boundary, is not regular.

Theorem (partition of unity). Let X be a compact Hausdorff space
and B a normal function algebra on X, containing the identity. Let
{U;}}=1, be an open covering of X. Then there exist functions p;, j =
1,...,n, in B satisfying

support of ¢; C U;

dopi=1

(5.1)

PROOF: We use induction on n. Assume n = 2. Let V1, V5 be open sets
satisfying V; C U; and V; UV, = X. There exists a function f € B such
that f = 0 on the complement of V; and f = 1 on the complement of
Vo.Putypr = f,pa=1—f.

Assume now that the statement of the theorem is valid for coverings

by fewer than n open sets and let Uy,...,U, be an open covering of
X. Put U’ = U,_y1 UU, and apply the induction hypothesis to the
covering Uy, ..., U,_»,U’ thereby obtaining functions ¢1,...,pn 2, ¢

in B, satisfying (5.1). Denote the support of ¢’ by S and let V,,_1,V},
be open sets such that V; ¢ U; (j =n —1,n)and V,,_; UV,, O S. Let
feBsuchthat f=00nS\V,_;and f=1onS\V,. Puty,_1 =¢'f
and ¢, = ¢'(1 — f). The functions 1, . . ., ¢, satisfy (5.1). <

Remark: The family {¢;} satisfying (5.1) is called a partition of unity
in B, subordinate to {U;}. Partitions of unity are the main tool in tran-
sition from "local" properties to "global" ones. A typical and very im-
portant illustration is Theorem 5.2 below.
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5.2 Let F be a family of functions on a topological space X. A func-
tion f is said to belong to F locally at a point p € X, if there exists a
neighborhood U of p and a function g € F such that f = g in U. If f
belongs to F locally at every p € X, we say that f is locally in F.

Theorem. Let X be a compact Hausdorff space and F a normal al-
gebra of functions on X. If a function | belongs to F locally, then
fer

PROOF: Forevery p € X let U be an open neighborhood of pand g € F
such that ¢ = f in U. Since X is compact, we can pick a finite cover of
X, {U;}}_,, among the above mentioned neighborhoods. Denote the
corresponding elements of F by g;; thatis, g; = f in U;. Let {¢,} be a
partition of unity in F subordinate to {U;}. Then

(52) F=Y0if=Y wig cF. <

Remark: Itis clear from (5.2) thatif J C F is an ideal, and if f belongs
to J locally (i.e., g; € J), then f € J.

5.3 We consider a semisimple Banach algebra B with a unit, and de-
note its maximal ideal space by I

DEFINITION:  The hull, h(I), of an ideal I in B, is the set of all M € 9
such that I ¢ M. Equivalently: h([) is the set of all common zeros of
#(M) for x € I. Since the set of common zeros of any family of
continuous functions is closed, h(I) is always closed in 911

DEFINITION: The kernel, k(E), of a set E C 9, is the ideal Ny;epM.
Equivalently: k(F) is the set of all z € B such that 2(M) = 0 on E.
k(FE) is always a closed ideal in B.

5.4 If £ C 9, then h(k(E)) is a closed set in 9t that clearly contains
E. One can show (see [15], p. 60) that the hull-kernel operation is a
proper closure operation defining a topology on 9. Since h(k(E)) is
closed in 91, the hull-kernel topology is not finer than the weak-star
topology. The two coincide if for every closed set £ C 9 we have
E = h(k(E)) which means that if M, ¢ E there exists an element
z € k(F) such that £(My) # 0. Remembering that € k(F) means
#(M) = 0 on E, we see that the hull-kernel topology coincides with the
weak-star topology on 91 if, and only if B is a regular function algebra.
In this case we say that B is regular.
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DEFINITION: A semisimple Banach algebra B is regular (resp. nor-
mal) if B is regular (resp. normal) on 9.

5.5 Theorem. Let B be a regular Banach algebra and E a closed
subset of M. Then the maximal ideal space of B/k(FE) can be identified
with E.

PROOF: The maximal ideals in B/k(FE) are the canonical images of
maximal ideals in B which contain k(F), that is, which belong to
h(k(E)) = E. This identifies 9M(B/k(E)) and E as sets and we claim
that they can be identified as topological spaces. We notice that the
Gelfand representation of B/k(E) is simply the restriction of B to E. A
typical open set in a sub-base for the topology of M(B/k(E)) has the
form
U={M:M ¢ E, Tp(M) € O},

O an open set in the complex plane, z € B, and 2 = zmod k(E).
A typical open set in a sub-base for the topology of 9t has the form
U'={M:77(M) € O'} with O’ openin C and z; € B. If O = O’ and
x = x1 then U = E N U’ and the topology on 9M(B/k(E)) is precisely
the topology induced by 91t. <

5.6 Theorem. Let B be a regular Banach algebra, I an ideal in B, E
a closed set in M such that E Nh(I) = (. Then there exists an element
x € I suchthat z(M)=1onE.

PROOF: The ideal generated by I and k(F) is contained in no maximal
ideal since M D (I,k(E)) implies M D I and M > k(FE), that is,
M € Enh(I). It follows that the image of I in B/k(FE) is the entire
algebra and consequently there exists an element 2 € I such that z = 1
mod k(FE), which is the same as saying (M) =1 on E. <

Corollary. A regular Banach algebra is normal.

PROOF: If E; and E» are disjoint closed sets in 9, apply the theorem
to I =k(Ey),and E = E». <

5.7 We turn now to some general facts about the relationship between
ideals in regular Banach algebras and their hulls.

Theorem. Let I be an ideal in a regular Banach algebra B and x € B.
Then & belongs to I locally at every interior point of h(x) and at every
point M & h(I).
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PROOF: We write h(z) for h((x)), that is, the set of zeros of & in 9. If
M is an interior point of h(z), & = 0 in a neighborhood of M and 0 € I.
If M ¢ h(I), M has a compact neighborhood E disjoint from h(l). By
Theorem 5.6 there exists an element y € I such that y(M) = 1 on F.
Now & =29 on F and zy € [. <

Corollary. Let I be an ideal in a regular semisimple Banach algebra
B and x € B. If the support of & is disjoint from h(I), then x € I.

PrROOF: By Theorem 5.7, % belongs to I locally at every point, and
by Corollary 5.6 and the remark following Theorem 5.2 it follows that
ielhencex el. <

5.8 Let E be a closed subset of 9. The set Iy(E) of all z € B such
that (A7) vanishes on a neighborhood of F is clearly an ideal and if
B is regular, h(Iy(E)) = E. It follows from Corollary 5.7 that Iy(E) is
contained in every ideal I such that h(I) = E. In other words: Iy(E) is
the smallest ideal satisfying h(I) = E, and Iy(F) is the smallest closed
ideal satisfying h(I) = E. On the other hand, k(E) is clearly the largest
ideal satisfying h(I) = E.
DEFINITION: A primary ideal in a commutative Banach algebra is an
ideal contained in only one maximal ideal.

In other words, an ideal is primary if its hull consists of a single
point.

If B is a semisimple regular Banach algebra, every maximal ideal
M C B contains a smallest primary ideal, namely I,({M}). We sim-
plify the notation and write Iy(M) instead of Io({M}). The closure,
Iy(M), is clearly the smallest closed primary ideal contained in M. In
some cases Iy(M) = M and we say then that M contains no nontrivial
closed primary ideals. Such is the case if B = C(T) (trivial) and also if
B = A(T) (Theorem VI.4.11°). On the other hand, if B = C"(T) with
n > 1, the maximal ideal {f: f(to) = 0} contains the nontrivial closed

primary ideal {f: f(to) = f'(to) = 0}.

5.9 DEFINITION: A semisimple Banach algebra B satisfies condition
(D) at M € 9 if, for any « € M there exists a sequence {x,,} C Io(M)
such that zz,, — 2 in B. We say that B satisfies the condition (D) if B
satisfies (D) at every M € 9.

If B satisfies condition (D) at M € 9, M contains no nontrivial
closed primary ideal since Iy(M) is dense in M. It is not known if
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the condition that A contains no nontrivial closed primary ideals is
sufficient to imply (D) or not; however, if we know that there exists a
constant K such that for every neighborhood U of M there exists y € B
such that ||y|| < K, y has its support in U and § = 1 in some (smaller)
neighborhood of M, then we can deduce (D) from Iy(M) = M. For
x € M let z, € Iy(M) such that z,, — z. Let U, be a neighborhood of
M such that z,, = 0 on U, and let y,, € B such that ||y,|| < K, y, =0
outside U, and y,, = 1 near M. Put z,, = 1 — y,,. We have z,, € Iy(M),
T — ZTp = TYn, = (T — 2n)yn (SINCE 2y, = 0), and

[z = zn)yn| < Kz — 20| — 0. «

5.10 Lemma. Lef B be a regular semisimple Banach algebra satisfy-
ing condition (D) at My € 9. Let I be a closed ideal in B and x € M.
Assume that there exists a neighborhood U of My such that x € | locally
at every M € U\ {My}. Then z € 1 locally at M.

PROOF: Let y € B be such that the support of g is included in U and
y = 1 in some neighborhood V' of My. yx belongs to I locally at every
M # My and yxz, belongs locally to I everywhere ({x,} being the
sequence given by (D); remember that 25, = 0 near Mj); hence yxx, € I
and since zz,, — z and T is closed, yz € I. But yz = & in V and the
lemma follows. <

Theorem (Ditkin-Shilov). Let B be a semisimple regular Banach
algebra satisfying (D). Let I be a closed ideal in B and x € k(h(I))
such that the intersection of the boundary of h(x) with h(I) contains no
nontrivial perfect sets. Then x € I.

PROOF: Denote by 9 the set of M € 9 such that 2 does not belong
to I locally at M. By Theorem 5.7, 9% C (bdry(h)(z)) N h(I) and
by the lemma, N has no isolated points; hence N is perfect and since
(bdry(h)(z))nh(I) contains no nontrivial perfects sets, 1 = § and z € I.

<

Corollary. Under the same assumptions on B; if E C I is compact
and its boundary contains no nontrivial perfect subsets, then Iy(E) =
k(E).
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5.11 We have been dealing so far with algebras with a unit element.
The definitions and most of the results can be extended to algebras
without a unit element simply by identifying the algebra B as a maxi-
mal ideal in B ¢ C. Instead of 9t we consider its one point compact-
ification 9 and we say that B is regular on 9 if B & C is regular on
9. This is equivalent to adding to the regularity condition the follow-
ing regularity at infinity: given M < 90, there exists & € B such that
Z(M) = 1 and & has compact support. Similarly, we have to require in
defining "x belongs locally to 7" not only x € I locally at every M € 91,
but also = € I at infinity, that is, the existence of some y € [ such that
& = g outside of some compact set. The condition (D) at infinity is: for
every x € B there exists a sequence x,, € B such that %,, are compactly
supported and zx,, — x.

EXERCISES FOR SECTION 5
1. Let B be a semisimple Banach algebra, let z1,...,2. € B be generators
for B, and assume that
* log]le™ | .
([xwdy<oo, j=1....,n

Show that B is regular.
2. Describe the closed primary ideals of C"(T), n a positive integer.

6 WIENER’S GENERAL TAUBERIAN THEOREM

In this section we prove Wiener’s lemma stated in the course of
the proof of theorem VI1.6.1, and Wiener’s general Tauberian theorem.
These results are obtained as more or less immediate consequences of
some of the material in the preceding section; it should be kept in mind
that Wiener’s work preceded, and to some extent motivated, the study
of general Banach algebras.

6.1 We start with the analog of Wiener’s lemma for A(T).

Lemma. Let f, fi € A(T) and assume that f is bounded away from
zero on the support of fi. Then f1f~1 € A(T).

PROOF: A(T) is a regular Banach algebra. Denote by I the principal
ideal generated by f; then h(I) = {t: f(t) = 0} is disjoint from the
support of f1. By corollary 5.7, fi € I, which means f; = gf for some
g € A(T). Thus f1f~! € A(T) locally and we apply Theorem 5.2. <
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6.2 We obtain Wiener’s lemma by showing that A(R) is locally the
same as A(T).

Lemma. Let ¢ > 0 and let 1) be a continuously differentiable function
supported by (—mw + ¢, m — ¢). There exists a constant K depending on
¢ such that for all -1 < a <1, ||| 401 < K.

PROOF: We clearly have [|e***1)||c1(r) bounded, and the A(T) norm is
majorized by the C*(T) norm. <

Theorem. Let [ be a continuous function carried by (—w + &, 7 — £).
Then

[t <o = St < e

PROOF: Let ¢ € C! be carried by (-7 + £/2,7 — £/2), and ¢(t) = 1
on (—m + =, — ). Assume that 37| f(n)| < oo; then f ¢ A(T); hence
fet*ty € A(T) and | fe** ¢ ary < K| f|laer for =1 < o < 1. Now
feityp = fei™t and its A(T) norm is (1/27) 32| f(n—a)|. Integrating the
inequality

Dolftn— ) <K |f )|

on 0 < o < 1, we obtain

/ F()lde < K S 1F ().

Conversely, if we assume that [|f(¢)|dé = Zfol\f(n — a)lda < oo
it follows from Fubini’s theorem that for almost all o, 0 < o < 1,
S| f(n—a)| < oo, which means ¢! f € A(T). As in the first part of the
proof this implies e*** fe~ >y = f € A(T) and 3| f(n)|. <

Corollary. Identifying T with (—=, 7|, a function f defined in a neigh-
borhood of ty € T belongs to A(T) locally at ty if, and only if, it belongs
to A(R) at t;.

6.3 Lemma (Wiener’s lemma). Let | and f1 € A(R) be such that
the support of fi is compact and | is bounded away from zero on it.
Then f1 = gf with g € A(R).

PROOF: Without loss of generality we assume that the support of f; is
included in (—2,2). Replacing f by f¢, where ¢ € A(R), ¢ = 1 on
(=2,2) and ¢ = 0 outside of (-3, 3), it follows from Lemma 6.1 that
g= fif ' € A(T); hence, by Theorem 6.2, g € A(R). <
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6.4 Theorem (Wiener’s general Tauberian theorem). Let [ ¢
A(R) and assume f(£) # 0 for all £ € R. Then f is contained in no
proper closed ideal of A(R).

PROOF: By Lemma 6.2 it follows that if f; ¢ A(R) has compact sup-
port, then f,/f € A(R), that is, f; belongs to (f) (the principal ideal
generated by f). By theorem VI.1.12, (f) is dense in A(R) and the
proof is complete. <

Instead of considering principal ideals, one may consider any closed
ideal I. If for every ¢ € R, there exists f € I such that f(£) # 0, then
I = A(R). As a corollary we obtain again that all maximal ideals in
A(R) have the form {f: f(&) = 0} for some & € R. We leave the
details to the reader.

6.5 The Tauberian character of Theorem 6.4 may not be obvious at
first glance. A Tauberian theorem is a theorem that indicates condi-
tions under which some form of summability implies convergence or,
more generally, another form of summability. The first such theorem
was proved by Tauber and stated that if lim, .1 Y., a,2" = A and
an = o(1/n), then > a, = A. Hardy and Littlewood, who introduced
the term "Tauberian theorem," improved Tauber’s result by showing
that Tauber’s condition «,, = o(1/n) can be replaced by the weaker
an = O(1/n), an improvement that is a great deal deeper and harder
than Tauber’s rather elementary result. Wiener’s original statement of
Theorem 6.4 was much more clearly Tauberian:

Theorem (Wiener’s general Tauberian theorem). Let K, € L'(R)
and | € L=(R). Assume K(&) # 0 for all £ € R and

6.1 Jim [ K- 9wy =4 [ K@,
Then
62) Jim [ Koo - )y = A [ Ko(a)da.

for all Ky € L*(R).

Remark: If f(x) tends to a limit when = — oo then (6.1) is clearly
satisfied with A = lim, . f(2). (6.1) states that f(x) tends to the limit
A in the mean with respect to the kernel K; the theorem states that
the existence of the limit with respect to the mean K; implies that of
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the limit with respect to any mean Ko, provided K, never vanishes.
We refer to [27], chapter 3, for examples of derivations of "concrete"
Tauberian theorems from theorem 6.5.

PROOF OF THEOREM 6.5: Denote by I the subset of L'(R) of functions
K, satisfying (6.2). I is clearly a linear subspace, invariant under trans-
lation and closed in the L!(R) norm, that is, a closed ideal in L'(R).
Since K; € 1, it follows from Theorem 6.4 that I = L'(R) and the
proof is complete. <

7 SPECTRAL SYNTHESIS IN REGULAR ALGEBRAS

Let B be a semisimple regular Banach algebra with a unit’. Denote
by 91 its maximal ideal space and by B* its dual.

7.1 DEFINITION: A functional v € B* vanishes on an open set O if
(x,v) = 0 for every = € B such that the support of % is contained in O.

Lemma. Ifv € B* vanishes on the open sets O1 and Os then v van-
ishes on O1 U Os.

PROOF: Let z € B and assume that the support of % is contained in
01 UQOs. Denote by O3 the complement in 9t of the support of & and let
$¥j, j=1,2,3 be a partition of unity in B subordinate to 0;, 1=1,2,3.
Then 2 = z¢1 + zps and (x,v) = {(xp1,v) + (xp2,v) = 0, since xpz = 0
and z; has its support in O;. <

From the lemma it follows immediately that if » € B* vanishes on
every set in some finite collection of open sets it vanishes also on their
union; and since M is compact the same holds for arbitrary unions. The
union of all the open sets on which v vanishes is the largest set having
this property and we define the support, 3(v), of v as the complement
of this set (compare with V1.4).

7.2 For M € 9 we denote by d,; the multiplicative linear functional
associated with M, (x,dy) = Z(M); thus d), is naturally identifiable
with the measure of mass 1 concentrated at M.

DEFINITION: A functional v € B* admits spectral synthesis if v be-
longs to the weak-star closure of the span in B* of {dm},,. (1)

TThe standing assumption 1 € B is introduced for convenience only. Tt is not essential
and the reader is urged to extend the notions and results to the case 1 ¢ B.
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Since the subspace of B orthogonal to the span of {dar}, re S(v) is

precisely the set of all x € B such that (M) = 0 for all M € X(v), that
is, the ideal k(X(v)), we see, using the Hahn-Banach theorem as we did
in V1.6, that v admits spectral synthesis if, and only if; it is orthogonal
to k(X(v)).

7.3 It seems natural to define a set of spectral synthesis as a set
having the property that every v € B* such that 3(v) = F admits
spectral synthesis. If 9% is very large, however, there may be sets F
which are the support of no » € B* and we prefer to introduce the
following.

DEFINITION: A closed set E C 9 is a set of spectral synthesis if
every v € B* such that ¥(v) C F is orthogonal to k(F).

This condition implies in particular that if 3(v) = E then v admits
spectral synthesis.

It is clear that the condition 3(v) C E is equivalent to the condition
that v be orthogonal to Iy(E). The condition that E is of spectral syn-
thesis is therefore equivalent to requiring that every v € B* which is
orthogonal to Iy(E) be also orthogonal to k(F). By the Hahn-Banach
theorem this means Iy(F) = k(E). Thus: F is of spectral synthesis if
and only if Iy(F) is dense in k(E). We restate Corollary 5.10 as:

Theorem. Assume that B satisfies (D) and let E C I be closed and
its boundary contain no perfect subsets. Then E is of spectral synthesis.

7.4 In some cases every closed £ C 9 is of spectral synthesis and
we say that spectral synthesis is possible in B. Spectral synthesis is
possible if B = C(X), X a compact Hausdorff space. Another class of
examples is given by Theorem 7.3: B satisfying (D) with 9t contain-
ing no perfect subsets. In particular, if G is a discrete abelian group and
B = A(G) (to which we formally add a unit if we want to remain within
our standing assumptions), then (D) is satisfied and 9t contains no per-
fect subsets. It follows that for discrete G spectral synthesis holds in
A(G). We devote the rest of this section to prove:

Theorem (Malliavin). If G is a nondiscrete LCA group then spectral
synthesis fails for A(G).

The construction is somewhat simpler technically in the case G = D
than in the general case and we do it there. For a nondiscrete LCA
group G, a Cantor set F/ on G is a compact set for which there exists
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a sequence {r;} C G such that the finite sums > 7 £;7;, ¢, = 0,1, are
all distinct and form a dense subset of E. The construction we give
below can be adapted to show that every Cantor set of G contains a
subset which is not of spectral synthesis for A(G). Notice that every
nondiscrete LCA group has Cantor subsets. We mention, finally, that
for G = R™ with n > 3, any sphere is an example of a set which is
not of spectral synthesis; this was shown by L. Schwartz (some eleven
years before the general case was settled).

7.5 We state the principle on which our construction depends in the
general setting of this section, that is, for a semisimple regular Banach
algebra with a unit. For typographical simplicity we identify B and B
and use the letters f, g and so on, for elements of B. We remind the
reader that the dual B* is canonically a B module.

Theorem. Lef f € B and n € B*, u # 0, and denote
(7.1) C(u) = [[e" ] -

Assume that for an integer N > 1

(7.2) / C(u)|uNdu < oc.
Then there exists a real value ay such that fy = ag + [ has the property
that the closed ideals generated by fi, n=1,...,N + 1 are all distinct.

PROOF: We begin with two remarks.
First: There is no loss of generality assuming that (1, ) # 0. In fact
for some h € B (h, u) = (1, hu) # 0 and since

e hull 5= < |IBll5le™ ullp-,

(7.2) remains valid if we replace p by hp.

Second: Write ®(u) = (1,e™/pu); then |®(u)| < C(u) € L'(R),
®(u) is continuous and ®(0) = (1,u) # 0. Tt follows that &(¢) is well
defined and is not identically zero so that there exists a real number ag
for which &(—ag) # 0. This is the ay we are looking for (as we shall
see) and again we may simplify the typography by assuming ay = 0;
we simply replace f by ag + f and notice that ¢(¢o+/) = ginaogivf go
that [|¢"(@0+9) y g« = ||¢"/ | p~. Thus we assume

(7.3) [m a,e™f pydu # 0
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For p < N the B*-valued integral

(7.4) Bt = [ (e
is well defined since the integrand is continuous and, by (7.2), norm
integrable.

Let ¢ > 0 be an integer, g1 € B and consider

(75) Ly = (01 /% Ap(fon)) = / (9179, ¢ ()P du.

Integrating (7.5) by parts we obtain

Ig=—plh_141 ifp>0, ¢ >0,

1

(7.6) .
pg =0 ifp=0, ¢>0.

It follows that if ¢ > p we have I, , = 0 no matter whatis ¢; € B. In
other words, A,(f, 11) is orthogonal to the ideal generated by fPT!.
Now, using (7.6) with p = ¢, g1 = 1, we obtain

AN AL = 1 [ e a0

by (7.3). Thus f? does not belong to the closed ideal generated by f7+!
and the proof is complete. <

Corollary. The sets f~1(0) and (1) N f~1(0) are not sets of spectral
synthesis.

PROOF: The hull of the ideal generated by f? is f~1(0). Since we found
distinct closed ideals having f~1(0) as hull, f=1(0) is not of spectral
synthesis. The fact that A, (f, 1) is orthogonal to the ideal generated by
/P! implies (see Corollary 5.7) that (A, (f, 1)) < f71(0).

For g € B we have

oS o

T8 (oA = [ (g nwrdu= [ (ge! i

— — o0

so that if the support of ¢ is disjoint from 3(x) then (g, A,(f, 1)) = 0.
This means that (A, (f, 1)) C E(u); hence

(7.9) E(Ap(f, 1) € B(p) N F7H0). <
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7.6 In the case B = A(ID) we show that p and f can be chosen so that
C(u), defined by (7.1), goes to zero faster than any (negative) power
of |u|. We can take as p simply the Haar measure of D and we shall
have f quite explicitly too, but before describing it we make a few
observations.

We identify the elements of D as sequences {z,}, €, = 0,1, the
group operation being addition mod 2. Functions on D are functions
of the infinitely many variables £,, n = 1,2,.... Denote by z,, the
element in I all of whose coordinates except the mth are zero. De-
note by FE,, the subgroup of D generated by zo,, 1 and zs,,, that is,
{0, Zaym—1, T2, Tam—1 + T2am }. Denote by p,, the measure having the
mass 1/4 at each of the points of F,,. u., is the Haar measure on F,,
and one checks easily that the convolutions u * - - - * u,, converge in the
weak-star topology of measures to the Haar measure p of D. We write
this formally as g = [[{° #fm.

Lemma. Let By = {x1,..., 2t} and Fs = {y1, ...,y } be finite sets on
agroup G. Let E=E1+Es ={x,+vy,, p=1,....k, g=1,..., 1} and
assume that E has kl points. Let hy and hs be functions on E such that
hi(zp+yq) = 91(xp) and ha(xp+yq) = g2(yq). Then, if 1, is a measure
carried by E,,,m = 1,2,

(7.10) hiha(py = po) = (grp) * (gape2).

PROOF: Both sides of equation (7.10) are carried by £ and have the
mass g1(zp) 92 (yq) i ({2p Hia({yq}) at 2, + yq. «

The lemma can be generalized either by induction or by direct ver-
ification to sums of N sets F,,. The flaw in notation of denoting by
E,, first specific sets and then, in the lemma, variable sets (and simi-
larly for p) is forgivable in view of the fact that we use the lemma pre-
cisely for the sets F,,, and the measures y,,, introduced above. Thus,
if hy, m = 1,2,... are functions on D and if h,, depends only on the
variables £9,,_1 and ¢»,,,, we have

N
(7.11) (TT ) g %5 e = (hagi) 5+ % (i),
1

We shall have [ = Y a0 With ¢, € A(D), ¢,,, depending only on the
variables ¢3,,_1 and &,,, and the series convergent in the A(D) norm.
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Using (7.11) and taking weak-star limits, we obtain the convenient for-
mula:

oo

(7.12) el =T+ e pim).

1

We recall that the norm of a measure in A(D)* is the supremum of its
Fourier transform, and that the Fourier transform of a convolution is the
product of the transforms of the factors; thus we obtain

(7.13) le™ ulla@y < T Tle™ o il aqoy-
1

The functions ¢, are defined by:
(7.14) o(x) = gamm—_182m for x = {g;}.

If we denote by &, the character on D defined by

(7.15) <z, >=(=1) for z = {¢;},
then
(716) POm = }I(l + 527n—1£2'm - 62‘!!1—1 - 52777,)

so that ¢, € A(D), and ||on, || am) = 1.

The Fourier transform of the measure ¢ ,,, can be computed
explicitly: if ¢ = {(;} € D then
/ <z{> eiiwm(m)dﬂm(x) =

— %(1 + (_1)C2m—1 4 (_1)C2m + efia<_1)42m—1+é’2m)7

(7.17)

which assumes only the three values: 3£~ I‘ZM, f‘il‘l. It follows
that if | — 7| < 7/3 mod 27, then

(7.18) €% gt | apy < §-

Theorem. Denote the Haar measure on D by u. There exists a real-
valued function f € A(D) such that, as |u| — oo, C(u) = || p|| o)~
vanishes faster than any power of |ul.
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PROOF: Let {N;} be a sequence of integers such that . N;27% < oc.
Write a,, = 7/3-2%71 for Z’ffl N; <m < Zlf N;. We clearly have
SNa, = (27/3) 3. Ni27% < oo, so that writing f = > a,,¢., as in
(7.14), we have f ¢ A(D). For 2% < u < 28! we have 27/3 < ua,, <
47 /3 for the N}, values of m such that a,,, = 7/3-2~1. For these values
it follows from (7.18) that

UamPm

lle Mmllam)- < %

and consequently, using (7.13),
(7.19) Clu) < H”eiw’"‘pmltm”A(D)* < ()M
1

since all the factors in (7.19) are bounded by 1 and at least Ny, of them
by 2. If we take N, = 2°k~2 we obtain C(u) < (3)*!°2" ¥ for u — oo,
and since for real-valued f, C(—u) = C(u), the proof is complete. <«

Corollary. There exists a real-valued [ € A(D) such that the closed
ideals generated by ", n=1,2,..., are all distinct.

EXERCISES FOR SECTION 7

1. Prove that for every function a(u) such that w'a(u) is monotonic and
3> 27%a(2F) < oo , there exists a real-valued function f € A(D) for which
Clu)=0 (e*“("‘b).

2. Denote by B, 0 < a < 1, the algebras obtained from A(D) and C(D)
by the interpolation procedure described in IV.1. Show that spectral synthesis
fails in B,.

8 FUNCTIONS THAT OPERATE IN REGULAR
BANACH ALGEBRAS

8.1 We again consider regular semisimple Banach algebras with unit.

DEFINITION: A function F, defined in a set 2 in the complex plane,
operates in B if F(&) € B for every # € B whose range is included in
2. The study of functions that operate in B is also called the symbolic
calculus in B. Theorem 3.9 can be stated as: a function F' defined
and analytic in an open set 2 operates in (any) B. Saying that B is
self-adjoint is equivalent to saying that F(z) = Z operates in B. If B
is self-adjoint and regular, we can prove Theorem 3.9 and a great deal
more without the use of Cauchy’s integral formula. We first prove:
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Lemma. Let B be a regular, self-adjoint Banach algebra with maxi-
mal ideal space M. Let My € M and let U be a neighborhood of My.
Then there exists an element e € B such that é has its support within U,
é =1 on some neighborhood V of My and 0 < é <1 on M.

PROOF: By the regularity of B there exists an x € B such that & has
its support in U and & = 1 in some neighborhood V of M. Take é =
sin® 72z /2. (Notice that sin® 722 /2 is well defined by means of power
series.) <

Theorem. Let x € B and let f be a continuous function on M such
that in a neighborhood of each My € 9, [ can be written as F(&),
where F(¢) = F(& + in) is real-analytic in & and n in a neighborhood
of #(My). Then f € B.

Remark: The two points in which this result is more general than The-
orem 3.9 are:

(a) We allow real-analytic functions.

(b) We allow many-valued functions (provided F(z(M)) can be de-
fined as a continuous function.)

PROOF: We show that (A1) € B locally at every point. Let M, < 9,
x € B, and F such that f = F(Z) in a neighborhood Uy of Mj. Re-
placing x by z — (M) and F(¢) by F({ — 2(myg)), we may assume
that Z(My) = 0, and that near zero, say for [¢] < 1, |n| < 1, we have
F(e+in) = X tn ™™,

Let U C Uy be a neighborhood of My such that |#(M)| < 5 in U, let
¢ € B have the properties listed in the lemma and write 77 = R(éi) =
5(éx + ez) and 73 = $(éz). By Lemma 3.6 the series Y. an a2y
converges in B and we denote y = Y a,, ,xfxd; then (M) = F(&(M))
V. <

8.2 It is not hard to see that operation by analytic (or real-analytic)
functions, even in the setup of Theorem 8.1 which allows many valued
functions, is continuous. This follows from the (local) power series
expansion. There is no reason to assume, however, that whenever a
function F operates in a regular semisimple algebra B, the operation is
continuous (see exercise 2 at end of this section). Still, the regularity
of B makes it easy to "condense singularities" which allows us to show
that the "bad" behavior of the operation is localized on 9t to the neigh-
borhood of a finite set. The notions, arguments, and results that follow
are typical of regular algebras.
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8.3 We assume that B is self-adjoint, regular, and with a unit, and we
assume for simplicity that F' is a continuous function, defined on the
real line, and operates in B.

DEFINITION:  F' operates boundedly if there exist constants £ > 0 and
K > 0 such that if (M) is real valued and ||z < &, then® || F(2)| < K.
F operates boundedly at M € 9, if there exists a neighborhood U,y
of M and constants &€ > 0 and K > 0 such that if the support of & is
contained in Uy and ||z|| < &, then ||F(z)|| < K.

Lemma. F operates boundedly if, and only if. it operates boundedly
at every M € .

PROOF: Replacing F by F — F(0) we may assume F(0) = 0. It is clear
that if F' operates boundedly, it does so locally at each M. Assume that
the operation is bounded locally, and pick My, Mo, . .., M,, such that the
corresponding neighborhoods Uy, , ..., Uns, cover 9. Let Vi,...,V,,
be open sets such that 71 C Uy, and such that {V;} cover 9. Let
¥; € B be real valued with support inside U a; and ¢; = 1 on Vj,
and let {¢;} be a partition of the unity in B relative to {V;}. Let ¢;
and K; be the constants corresponding to Uy, and now take £ > 0 so
that ||e¢,|| < e; for all j, and K = 3" K,|j¢,||. Assume that & € B
is real valued and ||z|| < ¢; then |Z¢;] < [|2]||¥;] < &; and &; is
supported by Uyy,, hence ||F(iv;)|| < K;. But F(&) = > ¢, F(21;) so
that |[F(2)]| < 32 | | K; = K. <

8.4 Lemma. Let B be a regular, self-adjoint Banach algebra and F'
a function defined on the real line and operating in B. Then there exists
at most a finite number of points of I at which F does not operate
boundedly.

PROOF: Again we assume, with no loss of generality, that £'(0) = 0.
Assume that F' operates unboundedly at infinitely many points in 9t and
pick a sequence of such points {;} having pairwise disjoint neighbor-
hoods V;. We now pick a neighborhood W; of M; such that W; C V;.
Saying that F' does not operate boundedly at M; means that, given any
neighborhood W; of M; and any constants £; > 0 and K; > 0, there
exists a real-valued f; € B carried by W; such that | f;|| < &;, and
|F(f;)]l > K;. We take ¢; = 277 and K; = 27|/, where ¢; € B is
carried by V; and ¢; = 1 on W;. We now consider f = 5 f; and F(f).

TWe denote by F(z) the element in B whose Gelfand transform is F().
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By the choice of ¢; the series defining f converges and consequently
f € Band F(f) € B. Now

1

F(f))|| > 27 forall j,

1
IECHI > ml\wF(f)ll =

which gives the desired contradiction. <

8.5 For some Banach algebras, Lemma 8.4 takes us as far as we can
go; for others it can be improved. Consider, for instance, an automor-
phism o of B inducing the change of variables o on 9. If f € B, then
F(of)y = F(f(cM)) = a(F(f)), which means that the operations by
F (on the function) and by o (on the variables) commute. Since o is
a bounded, invertible operator, it follows that F' operates boundedly at
a point M € 9 if and only if it operates boundedly at M. From this
remark and Lemma 8.4 it follows that if F' does not operate boundedly
at M € 9, the set of images of M under all the automorphisms of B
is finite. In particular, if for every M € 901 the set {oc M}, o ranging
over all the automorphisms of B, is infinite, then every function that
operates in B does so boundedly at every M € 9, and consequently,
operates boundedly. In particular:

Theorem. Let G be a compact abelian group and F a continuous
Sfunction defined on the real line. If F operates in A(G), it does so
boundedly.

PROOF: The maximal ideal space of A(G) is G. For every y € G the
mapping f — f,* is an automorphism of A(G) which carries the max-
imal ideal corresponding to y to that corresponding to 0 € G. If G is
infinite the statement of the theorem follows from the discussion above.
If G is finite the operation by F' is clearly continuous. <

Remark: Since the operation of a function on a Banach algebra is
not linear, we cannot usually deduce continuity from boundedness, nor
boundedness in one ball in B from boundedness in another (see exer-
cise 3 at the end of this section).

8.6 For some algebras Theorem 8.1 is far from being sharp. For in-
stance, if B = C(9M) every continuous function operates in B; if B =
C™(T) every n-times continuously differentiable function operates. For

Hy(@) = fl@ —y).
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group algebras of infinite LCA groups Theorem 8.1 is sharp. We shall
prove now that for the algebra B = A(T), only analytic functions oper-
ate. This is a special case of the following:

Theorem. Let G be a nondiscrete LCA group and let F be a function
defined on an interval 1 of the real line. Assume that F operates in
A(G). Then F is analytic on I.

Remark: If G is not compact, one of our standing assumptions, namely
1 € B, is not satisfied. Since in this case all the functions in A(G) tend
to zero at infinity, we have to add to the statement of the theorem the
assumption 0 € I since otherwise every function defined on I operates
trivially (the condition of operation being void). The theorem can be
extended to infinite discrete groups: we have to assume 0 € I (since
discrete and compact implies finite) and the conclusion is that F is an-
alytic at zero (see exercise 1 at the end of this section). As mentioned
above we prove the theorem for G = T; the proof of the general case
runs along the same lines (see [24], chapter 6).

PROOF OF THE THEOREM (G = T): Let b be an interior point of J and
consider the function Fi(z) = F(xz + b). F is defined on I — b and
clearly operates in A(T). If we prove that F'(z) is analytic at z = 0 it
would follow that F'(x) is analytic at b, so that, in order to prove that
F is analytic at every interior point of I we may assume 0 € int(I)
and prove the analyticity of ' at 0. Once we know that functions that
operate are necessarily analytic at the interior points of [ we obtain
the analyticity at the endpoints as follows (we assume, for simplicity,
that 7 = [0,1] and we prove that F(x) is analytic at z = 0): consider
Fi(z) = F(z?). Fy is defined on [—1, 1] and clearly operates in A(T) so
that near x = 0, Fi(z) = > b;27. Now, since Fi(z) = F(2?) is even,
baj—1 = 0 for all j, so that Fy(z) = Y by;2* and F(z) = " byja7. The
proof will therefore be complete if, assuming 0 € int([), we prove that
F is analytic at 0.

By Theorem 8.5, F' operates boundedly which means that there exist
constants ¢ > 0 and K > 0 such that if f € A(T) is real valued and
If]l < e, then ||[F(f)|| < K. Pick @ > 0 so small that (i) [—a,a] C I,
and (ii) ac® < ¢, and consider Fi(z) = F(asinz). By (i), F1 is well
defined and it clearly is 27-periodic and operates in A(T). Now if f €
A(T) is real valued and || f|| < 5, then a:sin f is real-valued, and by (ii),
|leesin f|| < £ so that | Fi(f)| < K.
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In particular, if p € A(T), |l¢|| < 1,7 € R, |7] < 7, then
(8.1) e+ 7l < K
Now asinz € A(T); hence F; € A(T) and we can write
(8.2) Fi(z) =Y Ane™;

in particular, Fy is continuous. For real-valued f € A(T), Fi(f) € A(T)
and therefore can be written as

(8.3) F(f(1) = an(He™, Y lan(f)] < oo
Since F; is uniformly continuous on R it follows that
. 1 Zin
alf) = 5 [ BilF@)e
w

depends continuously on f and therefore, for each N, the mapping
N .

(8.4) fe=)an(flem
-N

is continuous from the real functions in A(T) into A(T). We conclude
from (8.3) that Fi(f) is a pointwise limit of continuous functions on
A(T), that is, is a Baire function on A(T), and in particular: Fy (¢ + 7)
considered as a function of 7 on [—7, 7] is a measurable vector-valued
function which is bounded by K if ||¢| < 1. It follows that

1 f )
(85) H¥/ F1(§9+7—)€_”LTdTH S K -
2
however,
1 7/ ) )
(86) % / Fl ((,9"‘7')6_““-(17‘ — Anezn,p’

as can be checked by evaluating both sides of (8.6) for every ¢t € T, and
we rewrite (8.5) as

(8.5) | Ane™? || < K.
Let us write

(8.7) N (1) = SUP prear, | pp<ulle™ Lacoy;
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then it follows from (8.5°) that
(8.8) A < K(N(m) ™

and if we show that NV (u) grows exponentially with «, it would follow
that (8.2) converges not only on the real axis, but in a strip around it, so
that 7 is analytic on R and, finally, F is analytic at 0. All that we need
in order to complete the proof is:

Lemma. Let N(u) be defined by (8.7). Then
(8.9) N(u) =e*.

PROOF: It is clear from the power series expansion of ¢*/ that for any
Banach algebra
N(u) <e*.

The proof that, for A(T), A(u) > e* is based on the following two
remarks:
(a) Let f, g € A(T), then

(8.10) £ B gA) [ — 7] lgll - as A — oo

(X being integer). We prove (8.10) by noticing that if f is a trigono-
metric polynomial and A is greater than twice the degree of f then
lF &) g(At)] = |Ifllllgll. For arbitrary f € A(T) and ¢ > 0 we write
f = fi+ f2 where f; is a trigonometric polynomial and | f2| < | f]|- If
/2 is greater than the degree of f; we have

1F @B g = | A gA)] = [[f2(6)g(Ae) || = (1 = 2¢) [ f[] [lg]l-

(b) If « is positive, then €?* <% = 1 + jacost + ... so that
(8.11) [ || gy = 1+ a+ O (a?) .

Let v > 0; we pick a large N and write f = ) (u/N) cos A\;t where the
A;’s increase fast enough to ensure

N
>(1-) H

j=1
/ is clearly real valued, || f|| = u, and, by (8.11) and (8.12),

1> (1= =) (1+ 2 < 0(45)) " > 1 - ager

if N is large enough. <

el(u/N) cost

N
(8.12) H [ it/ eosnse
j=1
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This completes the proof of the theorem (for G = T).

The lemma is not accidental: the exponential growth of A'(u) is the
real reason for the validity of the theorem. The function as defined
by (8.7) can be considered for any Banach algebra B and if, for some
B, N(u)} does not have exponential growth at infinity, then there exist
nonanalytic functions which operate in B. As an example we can take
any F(z) = Y A,e"® such that A,, does not vanish exponentially as
|u| — oo but such that for all & > 0, > A, N (k|n|) < oo; F operates
in B since for any real-valued f € B, F(f) = . A,e™/ and the series
converges in norm.

8.7 We finish this section with some remarks concerning the so-called
“individual symbolic calculus™ in regular semisimple Banach algebras.
Inasmuch as "symbolic calculus” is the study of functions that operate
in an algebra and of their mode of operation, individual symbolic cal-
culus is the study of the functions that operate on a fixed element in
the algebra. Let us be more precise. We consider a regular, semisimple
Banach algebra (identify it with its Gelfand transform) and say that a
function F operates on an element f € B if the domain of F contains
the range of f and F(f) € B. It is clear that a function F' operates in
B if it operates on every f € B with range contained in the domain
of F. It is also clear that for cach fixed f € B, the set of functions
that operate on f is a function algebra on the range of f; we denote
this algebra by [f]. For F' ¢ [f] we write ||F|;; = |F(f)lls and with
this norm [f] is a normed algebra. If we denote by [[f]] the subalge-
bra of B consisting of the elements F(f), F € [f], it is clear that the
correspondence F' — F(f) is an isometry of [f] onto [[f]]. Since [[f]]
consists of all g € B which respect the level lines of f (i.e., such that
f(My) = f(Ms)= g(M; = g(Ms)), [f]] and [f] are Banach algebras.
We say that [[f]] is the subalgebra generated formally by f; it clearly
contains the subalgebra generated by f (which corresponds to the clo-
sure of the polynomials in [f]).

It should be noted that the "concrete" algebra [ f] depends on f more
than [[f]]. The latter depends only on the level lines of f and is the
same, for example, if we replace a real-valued f by f. Even if the
ranges of f and f? are the same we usually have [f] # [f?].

If f is real valued, [f] always contains non-analytic functions. In
fact, since ||’/ |5, = 1, it follows from Lemma 3.6 that

lim [/ |1/ =1

n—od
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so that there exists a sequence {A,,} that does not vanish exponentially
such that >" A,e¢™/ converges in norm; hence F(z) = Y A, be-
longs to [f]. The fact that {4,,} does not vanish exponentially implies
that F'(z) is not analytic on the entire real line but it can still be analytic
on portions thereof which may contain the range of f. So we impose
the additional condition that A,, = O unlessn =m!,m =1,2,..., which
implies that 3~ A,,e™* is analytic nowhere on R.

8.8 Individual symbolic calculus is related to the problem of spectral
synthesis in B. Assume for instance that the range of f is [-1,1] and
that [f] € C™([-1,1]), m > 1. Since in C™, F(z) = z does not belong
to the ideal generated by 22, and since (Theorem 4.1) the imbedding of
[f] in C™ is continuous, f does not belong to the ideal generated by f2
in [[f]]. This does not mean a-priori that the same is true in B. We do
have a linear functional v on [[f]] which is orthogonal to (f?) and such
that (f,v) # 0 and we can extend it by the Hahn-Banach theorem to a
functional on B; there is no reason, however, to expect that the support
of the extended functional should always be contained in f~'(0). If v
can be extended to B with 2(v) c f=1(0), spectral synthesis fails in B.

Going back to C™ one identifies immediately a functional orthog-
onal to the ideal generated by z? but not to z; for instance, ¢, the
derivative (in the sense of the theory of distributions) of the point mass
at zero, which assigns to every F' € C" the value of its derivative at
the origin. In [[f]] the corresponding functional can be denoted by
§'(f) and remembering that the Fourier transform of ¢’ is 8'(u) = —iu
one may try to extend &'(f) to B using the Fourier inversion formula
8 (f) = 5= [(iu)e™Fdu. Strictly speaking this is meaningless, but it
provided the motivation for Theorem 7.5.

EXERCISES FOR SECTION 8

1. Let B be a semisimple Banach algebra without unit and with discrete
maximal ideal space. Show that every function F analytic near zero and satis-
fying F'(0) = 0, operates in B.

2. As in chapter I, Lip, (T) denotes the subalgebra of C'(T) consisting of the

functions [ satisfying sup,, ., | %| < oo.

(a) Find the functions that operate in Lip, (T).

(b) Show that every function which operates in Lip, (T) is bounded in every
ball.

(¢) Show that F(x) = |z| does not operate continuously at f = sin ¢.
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3. Assume that F' is defined on R and operates in A(T). Assume that for
every r > 0 there exists K = K(r) such that if f is real-valued and || f|| < 7,
then || F(f)|| < K(r). Show that F is the restriction to R of an entire function.

4. Let B be a regular, semisimple, self-adjoint Banach algebra with a unit.
Assume that F'(z) = \/m operates boundedly in B. Prove that B = C(9).
Hint: Use Theorem 3.8.

5. Use the construction of section 7 to show that for the algebra B = A(D),
N (u) has exponential growth at infinity; hence prove Theorem 8.6 for the case
G =D.

6. Let a(u) be a positive function, 0 < u < oo, such that a(u) < % and

2
a(u) — 0 as u — co. Show that there exists a real-valued f € A(T) such that

||6iuf ” > eua(u)-

7. (a) Show that if (¢, 7) € A(T?), then for every 7 € T, ¥-(t) = (¢, 7),
considered as a function of ¢ alone, belongs to A(T) and ||¢~||acry < ll@llacz).-
Furthermore: - (¢) is a continuous A(T)-valued function of 7.

(b) Prove: for every function a(u) as in exercise 6. above, there exists a
real-valued g € A(T?) whose range contains [, 7] and such that if F(z) =
S Ane™ € [g], then Ay, = O (e=171nD) |
Hint: Take g(t,7) = f(¢)+5sin 7, where f is a function constructed in exercise
6 above. Apply part (a) and the argument of 8.6.

(¢) Deduce theorem 8.6 for the case G = T? from part (b).

9 THE ALGEBRA M(T) AND FUNCTIONS THAT OPERATE ON
FOURIER-STIELTJES COEFFICIENTS

In this section we study the Banach algebra of measures on a non-
discrete LCA group. We shall actually be more specific and consider
M (T); this in order to avoid some (minor) technical difficulties while
presenting all the basic phenomena of the general case.

9.1 We have little information so far about the Banach algebra M (T).
We know that for every n € Z, the mapping p — fi(n) is a multiplicative
linear functional on M (T); this identifies Z as part of the maximal ideal
space 9t of M(T). How big a part of 9 is Z? We have one negative
indication: since 9 is compact the range of every fi on 90t is compact
and therefore contains the closure of the sequence {/i(n)}nez, Which
may well be uncountable (e.g., if ji(n) = cosn, n € Z). Thus M is
uncountable and is therefore much bigger than Z. But we also have a
positive indication: a measure y is determined by its Fourier-Stieltjes
coefficients, that is, if 1 = 0 on Z then p = 0 and therefore i = 0 on 9.
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This proves that M(T) is semisimple and may suggest the following
question:

(a) Is Z dense in M?
Other natural questions are:

(b) Is M(T) regular?

(¢) Is M(T) self-adjoint?

Theorem. There exists a measure 1M(T) such that ji is real valued
on Z but is not real valued on .

Corollary. The answer to all three questions above is "no."”

PROOF: It is clear that the theorem implies that Z is not dense in 9. If
M € 9t is not in the closure of Z, there is no y € M(T) such that =0
on Z while (M) # 0 (since 1 = 0 on Z implies ¢ = 0); so M(T) is
not regular. Finally: if i is a measure with real-valued Fourier-Stieltjes
coefficients and if for some v € M(T), & = f1 on 9, we have ¥ = i on
Z,hence v = pand i = jr on M which means that j is real valued on 9t.
Thus, if 4 has the properties described in the theorem, then i ¢ M(T).

<

9.2 In the proof of Theorem 9.1 we shall need

Lemma. Let Gy and Gs be disjoint' subgroups of T and let E; C
Gj, j =1,2, be compact. Let u; be carried by E;, j = 1,2. Then

.1 k1 * g2l arery = [l llaeemy |2l arery -
PROOF: Let e > 0 and let ©; be continuous on E;, satisfying ;| < 1
and [ @;du; > ||p,|| — . The function ¥(t + 7) = @1(t)pa(7) is well

defined and continuous on E; + E, (this is where we use the fact that
E; are contained in disjoint subgroups) and

/wd(m * f12) =//w(t+7)dmduz = /’wldm/wzduz

which implies [[my + pafl 2 (|pall =€) (|2l — €). «

TThat is: G1 N Gz = {0}.
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9.3 PROOF OF 9.1: We construct a measure p € M(T) with real Fourier-
Stieltjes coefficients and such that

9.2) et

M(T) = e¢" forn > 0.

By Lemma 3.6 it follows that the spectral norm of e is equal to e
which means that (/1) = —1 somewhere on 9.

Let E be a perfect independent set on T (see VI.9.4). Let v be a
continuous measure carried by F and v# the symmetric image of v,
defined by v#(F) = v(—F) for all measurable sets F. v# is clearly
carried by —E and if we write = v+ v# we have i(n) = 2R(2(n)) for
all n € Z. We claim that for such p

927 e[| = ellel.

Let N be a large integer and write £ as a union of /V disjoint closed
subsets £; such that the norm of the portion of y carried by E; U —E;,
call it 115, is precisely ||| N~! (Here we use the fact that y is continu-
ous.) Now e* = § + iy ;+[a measure whose norm is O (N—2)] where §
is the identity in M (T), that is, the unit mass concentrated at the origin.
We have ||6 + iyl =1+ ||u[|N~! and

N N

et = H ket = H #(0 +ipg) + p

1 1

where p is a measure whose norm is O (N ~1). Since E is independent
the subsets F; generate disjoint subgroups of T and, by Lemma 9.2,
|| = (1 + [[pIN"H)N + O (N71); as N — oo, (9.2°) follows. It is
now clear that if we normalize i to have norm 1 and apply (9.2”) to ny
we have (9.2). <

Remark: Since the measure u, described above, has norm 1, its spec-
trum lies in the disc |z| < 1. The only point in the unit disc whose
imaginary part is -1 is z = —i. It follows that -1 is in the spectrum of y
which means that § + 2 is not invertible. The Fourier-Stieltjes coeffi-
cients of § 4+ p2 are 1 + (u(n))? > 1 (since fi(n) is real-valued) and yet
(1+ (jx(n))?)~* are not the Fourier-Stieltjes coefficients of any measure
on T. This phenomenon was discovered by Wiener and Pitt.

9.4 DEFINITION: A function F, defined in some subset of C, oper-
ates on Fourier-Stieltjes coefficients if {F(ji(n))},ez is a sequence of
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Fourier-Stieltjes coefficients for every u € M(T) such that {ji(n)},cz is
contained in the domain of definition of F'.

Since Z is not the entire maximal ideal space of M(T) there is no
reason to expect that if F' is holomorphic on its domain, it operates
on Fourier-Stieltjes coefficients; and by the remark above, the function
defined on R by F(z) = (1+2%)~! does not operate on Fourier-Stieltjes
coefficients. This is a special case of

Theorem. Let F be defined in an interval I C R and assume that it
operates on Fourier-Stieltjes coefficients. Then F is the restriction to 1
of an entire function.

The theorem can be proved along the same lines as 8.6. The main
difference is that one shows that if F' operates on Fourier-Stieltjes co-
efficients, the operation is bounded in every ball of M(T) (rather than
some ball, as in the case of A(G)), that is, for all » > 0 there exists a
K = K(r) such that if ||| < 7 and ji(n) € I for all n € Z, then F(ji(n))
are the Fourier-Stieltjes coefficients of a measure of norm < K. We
refer to [24], chapter 6 and to exercises 6 through 9 at the end of this
section for further details.

9.5 The individual symbolic calculus on M(T) is also more restrictive
than an individual symbolic calculus can be in a Banach algebra consid-
ered as function algebra on the entire maximal ideal space. There exist
measures p in M (T) with real-valued Fourier-Stieltjes coefficients such
that every continuous function which operates on p must be the restric-
tion to R of some function analytic in a disc (see exercise 10 at the end
of this section). This suggests that portions of the maximal ideal space
of M(T) may carry analytic structure.

EXERCISES FOR SECTION 9

1. Let 4 € M(T) be such that [|e**|| = el*/l#l for all & € C. Show that
{u"}, n=0,1,2... are mutually singular.

2. Let E be a linearly independent compact set on T and let 1 be a contin-
uous measure carried by £ U —E. Show that {u"}, n =0,1,2... are mutually
singular.

3. Show that if ;€ M(T), fi(n) is real for all n € Z and p" are mutually
singular for n = 1,2, ... then y is continuous.

4. Deduce Theorem 9.1 from Theorem 9.4,

5. Letr;,j = 1,2,... be positive numbers such that r;/r;_1 < % and
rj/rj-1 — 0 as j — oco. Show that ¢(n) = [["cosrn, n € Z are the
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Fourier-Stieltjes coefficients of a measure y, and that " are mutually singular,
n=12....
Hint: Show that if r;_; /r; > M for all j, then {1"}}, are mutually singular.

6. Let F’ be continuous on [—1,1] and F'(0) = 0. Show that the following
two conditions are equivalent:

@) If p € M(T), |||l < rand —1 < fi(n) < 1 for all n, then {F(2(n))}
are the Fourier-Stieltjes coefficients of some measure (1) € M(T) such that
IE()Iarery < K.

(ii)If -1 < a, < 1and P = )" a,e'™" apolynomial satisfying 1Pl ey <7,
then ||>° Fan)e™ || p1y < K.

Also show that in (ii) we may add the assumption that the a,, are rational
numbers without affecting the equivalence of (i) and (ii).

7. (For the purpose of this exercise) we say that a measure p contains a
polynomial P if for appropriate m and M, P(n) = ji(m + nM) for all integers
n which are bounded in absolute value by twice the degree d of P. Notice that
if u contains P then

P(M¢t) = Vg(Mt) = (e p)

and consequently ||P||z1(ry < 2[|p/lary. Show that there exists a measure
with real Fourier-Stieltjes coefficients, ||u|| < 2, and p contains every polyno-
mial P with rational coefficients such that || P||p1 ¢, < 1.

Hint: Show that for every sequence of integers { N, } there exists a sequence of
integers {\;} such that, writing A; = {k/\j}gi ; and A = U; A, every function
f € Ca (see chapter V for the notation Cy) can be written f = ) f;, with
fi € Cay,and Y [ fjllo < 2||fll. Deduce, using the Hahn-Banach theorem,
that if the numbers a;,; are such that for each j, 22\21 ajxe**|| < 1, then
there exists a measure u € M(T) such that ||u||a¢ry < 2 and fi(kX;) = aj.x for
appropriate \; and 1 < k < Nj. If the numbers a;,,» above are real, one can
replace 1 by §(p+ pu™).

8. Let F be defined and continuous on R and assume that it operates on
Fourier-Stieltjes coefficients. Prove that the operation is bounded on every ball
of M(T).

Hint: Use exercises 6 and 7 above; show that if ||v|| a7¢ry < 7 then || F(v)||azery <
2| F(rp) v -

9. Prove Theorem 9.4.

10. Show that if F is defined and continuous on R and if F(j(n)) are
Fourier-Stieltjes coefficients, .« being the measure introduced in exercise 7, then
F is analytic at the origin. If F(kj(n)) are Fourier Stieltjes coefficients for all
k, then F is entire.

11. Let 4 € M(T) be carried by a compact independent set and assume that
ji(n) — 0 as |n| — oco. (Such measures exist: see [25].) Let B be the closed
subalgebra of M (T) generated by L' (T) and .
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(a) Check that Theorems 9.1 and 9.4 are valid if we replace in their state-
ment M (T) by B.

(b) Notice that the restriction of B to Z is a function algebra on Z, interme-
diate between A(Z) and cq both of which have Z as maximal ideal space, and
yet its maximal ideal space is larger than Z.

10 THE USE OF TENSOR PRODUCTS

In this final section we prove a theorem concerning the symbolic
calculus and the failing of spectral synthesis in some quotient algebras
of A(R). The theorem and its proof are due to Varopoulos and serve
here as an illustration of a general method which he introduced. We
refer to [26] for a systematic account of the use of tensor algebras in
harmonic analysis.

10.1 Let F C R be compact. We denote by A(F) the algebra of func-
tions on E which are restrictions to E of elements of A(R). A(E)
is canonically identified with the quotient algebra A(R)/k(F) (where
k(E)={f:f € A(R) and f = 0 on E}) and is therefore a Banach alge-
bra with E as the space of maximal ideals (see 5.5). The main theorem
of this section is:

Theorem. Let 1, Es be nonempty disjoint perfect subsets of R, such
that Ey U E is a Kronecker set. Put E = E, + Est. Then:

(a) Every function F, defined on R, which operates in A(E) is analytic.
(b) Spectral synthesis fails in A(E).

Remarks: (1) We place E on R for the sake of technical simplicity
and in accordance with the general trend of this book. Only minor
modifications are needed in order to place £ in an arbitrary nondiscrete
LCA group, obtaining thereby a proof of Malliavin’s theorem 7.4 in its
full generality.

(i) We shall actually prove more, namely: A(F) is isomorphic to a
fixed Banach algebra (subsections 10.2, 10.3, and 10.4) for which (a)
and (b) are valid (subsection 10.5).

10.2 Let X and Y be compact Hausdorff spaces, X x Y their cartesian
product. We denote by V = V(X,Y) the projective tensor product of
C(X) and C(Y); that is, the space of all continuous functions ¢ on
X x Y that admit a representation of the form

TE1+Ey={z:x =21 +22 with z; € E;}.
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(10.1) p(z,y) =Y fi(x)g(y)

with f; € C(X),g; € C(Y), and

(10.2) Y 1 fillcllgilloe < oo.

We introduce the norm

(10.3) lelly = inf > )1 filloollgs ]l

where the infimum is taken with respect to all possible representations
of ¢ in the form (10.1). It is immediate to check that the norm || ||v is
multiplicative and that V' is complete; thus V' is a Banach algebra.

Lemma. The maximal ideal space of V can be identified canonically
with X xY.

PROOF: Denote by Vi (resp. V) the subalgebra of V' consisting of
the functions ¢(z,y) which depend only on z (resp. only on y). It
is clear that V; and V, are canonically isomorphic to C(X) and C(Y)
respectively. A multiplicative linear functional w on V induces, by
restriction, multiplicative linear functionals w; on V4 and ws on Va. By
Corollary, 2.12, w; has the form f — f(zy) for some x5 € X; wo has
the form g — g(yy) for some yy € Y, and it follows that if

oz, y) = fi(x)g;(v),

then

w(p) =Y fi(0)g;(y0) = w0, y0)- <

Corollary. V is semisimple, self-adjoint, and regular.

10.3 We assume now that X is homeomorphic to a compact abelian
group G (more precisely, to the underlying topological space of G} and
that Y is homeomorphic to a compact abelian group H. We denote both
homeomorphisms X — G and Y — H by o. ¢ induces canonically a
homeomorphism of X x Y onto G & H, and hence an isomorphism of
C(G o H) onto C(X xY).

Lemma. The canonical isomorphism of C(G & H) onto C(X x Y)
maps A(G @ H) into V.
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PROOF: Let x be a character on G & H and let x be its image under the
canonical isomorphism, namely

(10.4) x(z,y) = x(ox,0y).
Since x(oz, oy) = x(ox,0)x(0, oy) we have
(10.5) x(z,y) = x(x,0)x(0,y)

sothat x € Vand |x|lv = 1. If ¢ € A(G & H) then ¢ = > a,x
the summation extending over G & H and ||¢[|4 = > |ay|. The image
of ¢ under the canonical isomorphism is ¢ = Y a,x and therefore

lpllv < >lax| = llella- <

If p € A(G & H) depends only on the first variable, that is, if p(z,y) =
¥(x), then ¢ € A(G). Assuming G to be infinite we have A(G) # C(G)
and it follows that the image of A(G @ H) in V does not contain V; and
is therefore a proper part of V.

The connection between A(G @ H) and V is only that of (canonical)
inclusion, which is too loose for obtaining information for one algebra
from the other. A closer look reveals, however, that the structure needed
for the lemma is not the group structure on G or on H but only the
cartesian structure of G @ H, while in order to show that the image of
A(G @ H) is not the entire V' we use the group structure of G. The idea
now is to keep the useful structure and obliterate the hampering one;
this is the reason for the appeal to Kronecker sets.

10.4 Theorem. Let I, Es, and E be as in the statement of Theorem
10.1. Let X andY be homeomorphic to the (classical) Cantor set. Then
A(FE) is isomorphic to V(X,Y).

PROOF: We begin by noticing that F; and E,, being portions of a
Kronecker set, are clearly totally disconnected and, being perfect and
nonempty, are homeomorphic to the Cantor set. Thus, X, Y, F and Fy
are all homeomorphic and we simplify the typography by identifying
X with E; and Y with F,. Since E; U E5 is a Kronecker set, hence
independent, the mapping (z,y) — x+y is a homeomorphism of X x Y’
on E. We now show that the induced mapping of C'(E) onto C'(X x Y)
maps A(E) onto V. The fact that A(E) is mapped into V (and that the
map is of norm 1) is a verbatim repetition of 10.3. We therefore have
only to prove that the mapping is surjective that is, maps A(F) onto V.
We shall need:
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Lemma. Let E be a Kronecker set. Then every [ € C(E) can be
written as f(z) = 3 ane™* with 3 |an| < 3||fll o). In particular:

A(E) = O(E) and ||f|| s < 311 loo-

PROOF OF THE LEMMA: It is enough to show that if f € C(E) is real
valued, f(z) = Y a,e*® with Y |a,| < 3/2||f|lee. Let f real valued
and assume, for simplicity, that || f||o = 1; define g(z) = /1 — (f(2))?,
then ¢ is continuous and ® = f + ig has modulus 1 on E. Let >\1 be
such that [® — ¢7| < 1= on E; this implies | f — cos A z| < 75 on E.If
|| flloo 1s not 1 consider Hj||OO f and obtain A; such that

|f = [ flloc cos Ayz| < 10||f||oo on E.

We now proceed by induction. Define a1 = | f|c, A1 as above, and
f1 = f—aicosAiz; once we have ay ...,a,, A\ ..., \,, and f,, define
an+1 = |[fnlloos Ans1 by the condition |f,, — cos Apr12| < ay,+1/10, and
Frs1 = fo — i1 cos Apprz = f— S0 aj cos \;z.

We clearly have a,+1 < a,/10 < ||f|loc10™™ and it follows that
£(z) = X ane™® with Y| = San < [|flle 25107 < 3/2] fllc-
Writing cos A,z = 3(e** + ¢="*%) we obtain f as a series of expo-
nentials. <

Remark: A(E) is actually isometric to C(FE); see exercise 2 at the end
of this section.

PROOF OF THE THEOREM, COMPLETED: We identify X xY with F, and
V with the subalgebra of C(E) consisting of the functions ¢ which
admit a representation

(10.6)  pla+y) =D fi(2)g;(v), 2€Er, ycB

where f; € C(E1), g; € C(E») such that (10.2) is valid. All that we
need to show is that if ¢ € V then ¢ € A(E).
Let ¢ € V and consider a representation of the form (10.6) such that

(10.7) Y filleollgslloo < 2l

Using the lemma we write each f; as an exponential series (£, being
a portion of a Kronecker set, is itself one) and similarly for the g;.
Denoting the frequencies appearing in the f’s by A, and those appearing
in the ¢’s by v, and taking account of (10.6) and (10.7), we obtain

(10.8) r+y)= ZaA eV r e By, y€ By
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where

(10.9) > lanu| < 18]y

We now use the fact that £y U Es is a Kronecker set: let (A, v) be a pair
which appears in (10.8) and define

AT E
h(I)I {e x € i,

et x € BEo;

h is clearly continuous and of modulus 1 on E; U Es and it follows that
there exists a real number £ such that

(10.10) €™ — h(x)| < 1/200 on By U Bs.
We have (for = € Fy, y € E»),
oY) _ gidegivy _ (gife _ o—Anyoiy | gide(giby _ givy)
which means that (with the canonical identifications)
[e6+y) — girzeivy || < 1/100.
We can now write ¢ = 9 + @1 where
Dz +y) = ar,e T

and
901(37 + y) — Za)\ty(eikceiz/y o eif(w+?/))
and notice that ©}; € A(F) and, by (10.9),

191lace) < Y _larwl < 18[lellv;
also 18
< —
~ 100
Repeating, we obtain inductively

1
lerllv < g5 llellv < glelv-

on = Unt1 + ©n+1
where
1
Uny1 € A(E), ||'l9n+1”A(E) < Bllgnllv, and  [lentillv < llenlv.
It follows that ¢ = >~ 4,, € A(F) and

lellace) < o 5 ) lellv < 25[¢lv. <
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10.5 We now show that statements (a) and (b) of Theorem 10.1 are
valid for V = V(X,Y) (X and Y being both homeomorphic images
of the Cantor set). This is obtained as a consequence of the fact that
(a) and (b) are valid for the algebra A(ID)) (see exercise 8.5 for (a) and
Theorem 7.4 for (b)).

Since X and Y are homeomorphic to D we may consider V as a
function algebra on D x D. Using the group structure and the Haar
measure on 1) we now define two linear operators M and P as follows:

(10.11) for f € C(D), write M f(z,y) = f(z+y);

(10.12)  fory € C(D x D), write Py(z) = / oz —y,y)dy.
D

M maps C(D) into C(D x D), P maps C(D x D) into C(D), and, since
for f € C(D);

PM/(x) =_/D M/ (x — y,y)dy = /D f(z)dy = £(2),

it follows that PM is the identity map of C'(ID).

Lemma. M maps A(D) into V and its norm as such is 1. P maps V
into A(D) and its norm as such is 1.

PROOF: If f = 3 ayx with Y |ay| = || f] ) < oc then
Mf=3 ax(@)x(y) €V and [Mfllv < layl = [flawm)
If p(z,y) = f(z)g(y) then
Py = /.f(x —y)g(y)dy = f*g

hence

1/2

[Pelam = 317003001 <(XIF00P) " (Slacor)

= £l llgll2 <[l flloo llgllo

By (10.13) and the definition (10.3) of the norm in V it follows that for
arbitrary p € V, |Py|am) < [l¢llv. <

(10.13)
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Corollary. Let p € C(D x D) and assume that for some ¢ € C(D) we
have p(z,y) = v(x+vy). Then p € V if, and only if, v € A(D), and then
lellv = ll¥llaw)-

In other words, M is an isometry of A(ID) onto the closed subalgebra
V3 of V of all the functions ¢(z,y) which depend only on = + y.

Remark: The subalgebra V3 is determined by the "level lines™:
x + y = const, which clearly depend on the group structure of D. In-
stead of D we can take any group G whose underlying topological space
is homeomorphic to the Cantor set; for every such G, V has a closed
subalgebra isometric to A(G).

We are now ready to prove:

Theorem. (a) Every function F, defined on R, which operates in 'V is
analytic. (b) Spectral synthesis is not always possible in V.

PROOF: (a) If F operates in V, so it does in V3 (since the operation by
F conserves the level lines), hence in A(D) and by Theorem 8.6 (rather,
exercise 8.5), F' is analytic.

(b) Let H C D be a closed set which is not a set of spectral synthesis
for A(D) (see Theorem 7.4). Define:

H ={(z,y):x+ye H} CDxD.

We contend that H* is not a set of spectral synthesis in V. By 7.3
we have a function f € A(D) which vanishes on H and which cannot
be approximated by functions in Iy(H) (i.e., functions that vanish in
a neighborhood of H), that is, for some 6 > 0, |[f — g[|am) > 0 for
every g € Iy(H). We show that H* is not of spectral synthesis for V' by
showing that for M f, which clearly vanishes on H*, and every ¢ € V
which vanishes in a neighborhood of H*, we have | M f — ¢||v > 6.

For this we notice that if ¢ vanishes on a neighborhood of H*, then
P ¢ vanishes on a neighborhood of H, so that

IMf = ¢llv > [PMf = Polam) = [If = Pollam) > 9.

Theorems 10.4 and 10.5 clearly imply Theorem 10.1.
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EXERCISES FOR SECTION 10

1. Let f be a continuous complex-valued function on a topological space
X. Assume 0 < |f(z)| < 1 on X. Show that f admits a unique representation
in the form f = 1 (g1 + ¢2) such that |g;(x)| = 1 on X and g, are continuous,
j = 1,2. Deduce that if X is homeomorphic to the Cantor set, every con-
tinuous complex-valued function f on X admits representations of the form
f = A flls(gr — g2) + f1 where g; are continuous, |g;(z)] = 1 on X, and
| f1lloc is arbitrarily small.

2. Let B be a Banach space with the norm || ||o and let B1 C B be a
subspace which is a Banach space under a norm || ||1 such that the imbedding of
Bi in B is continuous. Show that if there exist constants K > 0and 0 <n <1
such that for every f € B there exist g € B; and f; € B satisfying f = g — fi,
lglls < Kl fllo, and [| frllo < 7l fllo, then By = Band || |1 < K(L—5) 7| [lo.
Use this and exercise | to prove remark 10.4.

Hint: See either proofin 10.4.



Appendix A

Vector-Valued Functions

1 RIEMANN INTEGRATION

Consider a Banach space B and let F' be a B-valued function, de-
fined and continuous on a compact interval [a,b] C R. We define the
(Riemann) integral of F on [a, b] in a manner completely analogous to
that used in the case of numerical functions, namely:

DEFINITION:  [? F(x)dz = lim 322 (2,41 — 2,) F(;) where
a=x9 <21 < - <TNy1 =D

and the limit is taken as the subdivision {z; }ﬁvjol becomes finer and
finer, that is: as N — oo and maxg<;<n(zj+1 — ;) — 0. The existence
of the limit is proved, as in the case of numerical functions, by showing
that if {z;} and {y,} are subdivisions of [a, ] which are fine enough to
ensure that ||F'(«a) — F(3)|| < € whenever « and § belong to the same
interval [z, 2;41] (or [y, y;4+1]), then

N M
IS (et —2)Fes) = S (s — v Fui)|| < 206 — ae.
j=0 =0

This is done most easily by comparing either sum to the sum corre-
sponding to a common refinement of {z;} and {y}.

The following properties of the integral so defined are obvious:
(1) If F and G are both continuous B-valued functions on [a,b], and
¢1, ¢ € C, then:
b

b
/ (aF(z) + e2G(x))dz = 1 /

a

b
F(z)dz + (:2/ G(z)dz .

(2)Ifa < ¢ < bthen
/b F(z)dz = /C F(z)dz + /b F(x)dx

272
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b b
3) H F(x)d;r”g/ |1F(z)|dz.

(4) If 1 is a continuous linear functional on B, then:

</:F(l’)dx,u) = Ab(F(x),p>dx.

2 IMPROPER INTEGRALS

Let F be a B-valued function, defined and continuous in a nonclosed
interval (open or half-open; finite or infinite) say (a, b).

The (improper) integral fab F(z)dz is, by definition, the limit of
f:,/ F(z)dz where a < ¢’ < ¥ < b and the limit is taken as ¢’ — a
and b’ — b. As in the case of numerical functions the improper integral
need not always exist. A sufficient condition for its existence is

/ | F(x)]|dx < oo.

3 MORE GENERAL INTEGRALS

Once in this book (in VIII.8) we integrate a vector-valued function
which we do not know a-priori to be continuous. It is, however, the
pointwise limit of a sequence of continuous functions and is therefore
Bochner-integrable. We refer the reader to [10], chapter 3, §1, for de-
tails on the Bochner integral; we point out also that for the purpose of
VIIIL.8, as well as in other situations where the integral is used mainly to
evaluate the norm of a given vector, one can obviate the vector-valued
integration by applying linear functionals to the integrand before the
integration.

4 HOLOMORPHIC VECTOR-VALUED FUNCTIONS

A B-valued function F(z), defined in a domain 2 C C is holomor-
phic in Q if for every continuous linear functional ¢ on B, the numerical
function h(z) = (F(z), 1) is holomorphic in €.

This condition is equivalent to the apparently stronger one stating
that for each z; € Q, F has the representation F(z) = 37 a,,(z — z0)"
in some neighborhood of zy; the coefficients a, being vectors in B
and the series converging in norm. One proves that, as in the case of
complex-valued functions, the power series expansion converges in the
largest disc, centered at zy, which is contained in . These results are
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consequences of the uniform boundedness theorem (see [10], chapter
3, §2).

Many theorems about numerical holomorphic functions have their
generalizations to vector-valued functions. The generalizations of the-
orems dealing with "size and growth" such as the maximum princi-
ple, the theorem of Phragmeén-Lindel6f, and Liouville’s theorem are
almost trivial to generalize. For instance: the form of Liouville’s theo-
rem which we use in VIIL2.4 is

Theorem. Let F be a bounded entire B-valued function. Then F is a
constant.

PROOF: If F(z1) # F(z2) there should exist functionals ;1 € B* such
that (F(z1),u) # (F(z2),p) However, for all p € B*, (F(z),pu) is a
bounded (numerical) entire function and hence, by Liouville’s theorem,
is a constant. <

Another theorem which we use in IV.I.3 is an immediate conse-
quence of the power series expansion. We refer to

Theorem. Let F' be a B-valued function holomorphic in a domain §).
Let V be a B*-valued function in , holomorphic in z. Then h(z) =
(F(2),¥(z)) is a holomorphic (numerical) function in Q.

PROOF: Let zp € Q; in some disc around it F(z) = > a,(z — 20)",

U(z) = bz — 20) » hence h(z) = S (r_o(an, bn_&))(z — 20)", and
the series converges in the same disc.

Remark: ® of TV.1.3 corresponds to W here.



Appendix B

Elementary Probabilistic methods

In this appendix we give a few examples of the power of Probabilis-
tic methods in Harmonic analysis.

The approach is to replace the study of particular functions or se-
ries, by the study of #ypical functions or series. There are several ways
to define “typical”,

1. The Baire category “typical” in a complete metric space— what
happens for all but an exceptional set of the first category.

2. The measure or probabilistic definition. Here one defines a prob-
ability measure on a class of objects, say series, and “typical” is what
happens for all but an exceptional set of measure zero.

A beautiful example of the use of the category method is Kaufman’s
theorem VI1.9.4. Here we limit ourselves to the second approach in one
concrete case, that of series with coefficients that have random signs.

1 RANDOM SERIES

1.1 Independence. We refer the reader to Vk2.11 for some of the
basic terms.

Let (Q, B, P)be a probability space and Fj, j = 1,..., k sub-sigma-
algebras of B.
DEFINITION:  F; are independent if, whenever O; € F;, j=1,... k,
then

k k
(1.1) P(ﬂoj) =[[®©y.
1 1

The variables X1, . .., X}, are independent if Fx, are independent, where
Fx, denotes the field of the variable X, that is the sub-¢-algebra of B
spanned by the events {X; € O} = {w: X, (w) € O}, O open.

Theorem. The following conditions are equivalent:

275
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1. The random variables X1, . .., X} are independent.

2. The image of i under the map X — R* given by (X1,...,X},) is
a product measure.

3. If f; are continuous functions on the line such that f;(X;) have
expectation (are integrable), then E ([ f;(X;)) =1 E (f;(X;)).

4. dFge = [[ *dFx, (convolution product).

1.2 Rademacher functions. The Rademacher functions, {r,}, is a
sequence of independent random variables, taking the values 1 and —1
with probability £ for each.

A standard concrete realization is to define r,, on the interval [0, 1],
(endowed with the Lebesgue measure) as follows: let £, (z) be the co-
efficients in the (non-terminating) binary expansion of z € [0,1), that
is 2 = Y eg;(x)277, with ¢;(z) either zero or one, and set r,(z) =
()=,

Another common representation of the Rademacher functions is as
the characters &, defined by VIIL.(7.15) on the group D (with its Haar
measure).

Proposition. Let a, be real numbers such that Y |a,|> = a®. Then,
Jorall X > 0,

(1.2) P (Y e, >a)) < e,

and

(1.3) p (‘Zanrn

For complex a,, with Y |a%| = a?,

(1.4) P (‘Z anTn

PROOF: For real valued a,,,

E (e’\z“”””> = HE (erantn) = Hcosh Aay, < l_Ie%“i’\2 = 3@ N

A2
2

> cz/\) < 2e”

2
> (z/\) < de ¥

Write Y = Y a,r,. As E (c"’fuy) > AP (Y > a)), we obtain (1.2).
Applying the same inequality to —Y, we have (1.3).
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If the a,, are complex we write a; = ¢; + id;, the decomposition
to real and imaginary parts, and notice that |a;[* = ¢ + d7 so that if

Yo = and Y. d2 = d°, then o® = & + &2 If ’Zajrj‘ > a\ then

either
‘Z le'j‘ >cA or |Zdjl‘j‘ > dA

and we have (1.4) <

1.3 We denote by Trim ) the operator of trimming at height X, namely,
given a complex valued function ¢, we define

(1.5) Trim, g = min(|g|, A)-sgn (g),
where sgn (g) = g/|g| (and sgn (0) = 0).

Lemma. Assume Y |a,|? = a% and set X =" a,r,. Then, for A > 0,
(1.6) |X — Trimy X||%, < 4(\2 +242)e " 27

PROOF: If Gx(z) =P (|X| > z), then

oo

| X — Trim, X|[3. = 7/ r?dGx =)\2GX()\)+2/ rGx(z)dx.
A

A
Since Gx (z) < 4e~ 3.7, this is bounded by 4(\2 + 2a%)e 37 . <

1.4 Fubini. Let) a? =a® < oo,and X(t) = X(t,w) = > ane™r, (w).
Given A > 0, we have estimate (1.6) for every ¢ € T, and integrating dt
we have

(1.7) / E (|X(t) — Trim, X (¢)]?) ;—; < AN + 20%)e 57

Reversing the order of integration (Fubini’s theorem) we obtain that
there exist choices of w for which

P P P 2
(1.8) 1 (£) — Trimy X ()| 22p) < 4(X° +2a%)e ™ 22
This proves

Theorem. Given complex numbers a,, such that >"|a?| = o and given
X\ > 0, there exists a choice of e, = 1 such that, with g(t) = ¥ 2na,e™,

. : : oy — A2
(1.9) lg(t) — Trimy g(t) |72 (r) < 4N + 20°)e™ 22
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When (1.9) is valid, if N is sufficiently large, we can replace Trim) g
by the Fejér sum ¢ = o (Trim) g) and still have ||¢|| < A and

‘ 9y 22
(1.10) lg(t) = @llZ2(my < 4N+ 20%)e ™ 2

In the next section we use (1.10) systematically with A, = 10*||gx || z2,
and ¢, = oy, (Trim,, gx), where Ny is big enough to guarantee

(1.11) lgx(t) — o) 720r) < 5-10°F exp(—.5-10°%) | g[|72

which we often replace by the (very wasteful)

(1.12) lgw(t) — or )1 22(r) < exp(—10%)] gl

These inequalities are valid for a proper choice of signs.

2 FOURIER COEFFICIENTS OF CONTINUOUS FUNCTIONS

What we show here is that, in terms of size, Fourier transforms of
continuous functions majorize any £ sequence.

2.1 Theorem (delLeeuw-Kahane-Katznelson). For any sequence
{a,} € % there exist functions f € C(T) such that |f(n)| > |a,| for all
n € 2.

PROOF: We may clearly assume that a,, > 0, and that > a% = 1. The
required continuous function f is obtained as a uniformly convergent
sum ), o with ¢ defined recursively.

Write g1 = 23 enane™, A1 = 20, and choose &, = +1 such that

(1.11) is valid for g1, A1, and ¢1, so that
g1 — p1]/22 < 4-500e70 < 10719,

The choice of \; = 20 is not optimal; it is done to make obvious the
super—exponential decay of || gx || > below. Write

Ay ={ne€Z:|¢g1(n)] < 3a,/2}.

If n € Ay then |g1(n) — ¢1](n) > a,,/2, which implies

(2.1) > al <4llg -7 <4107,
neA;
Write go =33, A en2ane’ where €, o = +1 are chosen such that

(1.1 1) is valid for g2, /\2 =100 ”92||L2, NQ, and Y2 = ON, (':[‘I‘il’n)\2 gg).
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Notice that
|g2llz <6-1077 and [41(n) + go(n)] > (1+27Y)a, forall n.

The inductive step is virtually identical: assuming g; and ¢; known,
j < k,and

(22) [21(n) + -+ @r1(n) + gr(n)| > (1 +2'"F)a,
for all n, we set
(2.3) Ar={ne€Z:|gi(n)+---+oe(n) < (1 +2F)a,}

and define gr1 = 33, c4, Snrane™™ With {s, ;} such that (1.12) is
valid for )\, = 10*. Independetly of the choice of signs, (2.2) is valid
for k+1.

For n € Ay we have |jx(n) — ¢r(n)| > 27 %a,, so

(2.4) lgr1llZe < 2°%|lge — ull7z < 2°% exp(=10%)] gi|Z2-

The norms ||gx| /2 decrease super—exponentially; |¢x|| are only
exponentially bigger so that the series f = 3 ¢, converges uniformly
and (2.2) implies that | f(n)| > a,, for all n. <

3 PALEY-ZYGMUND, (when Y |a.|> = co).

The following special case of a theorem of Paley and Zygmund
shows that, as opposed to the “smoothing effect” that adding random
signs has on trigonometric series with coefficients in £2, turning the se-
ries a.s. into the Fourier series of a subgaussian function* on T, the
series Y a,r,e™ with 3 |a,|? = oo is almost surely not a Fourier—
Stieltjes series.

This and Theorem 2.1 are, in a sense, two sides of the same coin;
showing, in particular, that the Hausdorff—Young theorem can not be
extended beyond p = 2.

3.1 Lemma. Adssume > |a2| = a®. Then |3 anr,(w)||pr > a(ev/2)™t

PROOF: We may assume, with no loss of generality, that a = 1. If
a, are real-valued, the functions ¥y = ]—[{V (1 + ia,r,) are uniformly

bounded by [[(1+ |a,|?) < el = ¢,

G [Yar)] > e-llf(z aneu(@)ods] = e 3 lanl?,

* A random variable X is subgaussian if e¢!X|” is integrable for some constant ¢ > 0.
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since the only integrands with non-zero integrals are i|a,,|°.
For a,, which are not necessarily real-valued, break the sum into its
real and imaginary parts, and apply (3.1) to each. <

Remark: The products defining ¢ are the Riesz products of the sec-
ond kind (see V.1.3) for the group D.

3.2 Lemma. Let X be a non-negative random variable, E (X 2) < oc.
Then for0 < A< 1,

E(X)’
E(X?)

P({w: X(w) > AE(X)}) > (1))

PROOF: Denote A = {w: X(w) > AE(X)}, a = P(A). The contribu-
tion of the set A to E (X) is at least (1 — A\)E (X), which means that
average of X on A is at least a71(1 — M)E (X), and the contribution
of A to E (X?) is therefore at least a (1 — A\)’E (X)?. Tt follows that
a1 - N?E(X)? <E(X?),anda > (1 - A\’E(X)* /E (X?). <

Corollary. IfY |a2| = a?, then
(3.2) P({w: ‘Zanrn(w)’ > a/10}) > 27372,

PROOF: Take \ = %, X = [> anry,| and use Lemma 3.1 to estimate
E (X). <

Theorem (Paley—Zygmund). If > |a,|*> = oo then the series

(3.3) > anr,e™
is almost surely not a Fourier—Stieltjes series.

PROOF: We use the standard notation for the Fejér kernel,
" bl Y
(3.4) Ku()= 3 (1 - L)em,

n—+1

j=—n

the de la Vallée Poussin kernel,

(35) Vn(t) = 2K2n+l<ﬁ) - K‘fb(t)v
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and introduce the polynomials

(36) W]\,j"N(t) = VN(t) - Vg]\/j(t) = Z (2]\4’]\/(?1)62.7”.

M<|n|<2N+1

We have 0 < ¢y n(n) < 1 and, for n such that 2M < |n| < N,
(IA,th(TL) = 1. Also, ||Kn||L1 =1, ”Vn”Ll < 2, and HWM,NHLl < 4,
and it follows that if v ¢ M(T), then for every N > M ¢ N, the L'-
norm of the polynomial

(3 7) UV x W]W.,N = Z CI\,I,N(TL)I//\(TL)eint
M<|n|<2N+1

is bounded by 4||v|| pr¢r).

Choose inductively {A;, N;} such that A/; > 3N;_;, and then N;
big enough to have 3>,/ ., <, |an[> > 10-2%7, and write

(3.8) Uj(w,t) = Z evn(n)a,r,e™.

M;<|n|<2N;+1

If for a given ' the series (3.3) is the Fourier—Stieltjes series of a
measure v, , then

(3.9) (W t) = vy *Way vy, and W5 1) g < 4wl

For every t € T, (3.2) implies P(¥; (w,t) > 27) > ¢ = 273¢~2. This
implies
P ,u({(w,t) 0w, t) > 21}) >,

so that setting Q; = {w: p({t: ¥, (w,t) > 27}) > c}, we have P(2;) > c.
Since (2; are independent, we have P (limsup ;) = 1 (Borel-Cantelli),
and for no w € limsup 2; can the series (3.3) be Fourier—Stieltjes series.

<
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