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Whereas earlier work on spatio-temporal databases generally focused on
geometries changing in discrete steps, the emerging area of moving objects
databases supports geometries changing continuously. Two important abstractions
are moving point and moving region, modeling objects for which only the time-
dependent position, or also the shape and extent are relevant, respectively.
Examples of the first kind of moving entity are all kinds of vehicles, aircraft,
people, or animals; of the latter hurricanes, forest fires, forest growth, or oil spills
in the sea. The goal is to develop data models and query languages as well as
DBMS implementations supporting such entities, enabling new kinds of database

applications.
In earlier work we have proposed an approach based on abstract data types.
Hence, moving point or moving region are viewed as data types with suitable
operations. For example, a moving point might be projected into the plane,
yielding a curve, or a moving region be mapped to a function describing the
development of its size, yielding a real-valued function. A careful design of a
system of types and operations (an algebra) has been presented, emphasizing
completeness, closure, consistency and genericity. This design was given at an
abstract level, defining, for example, geometries in terms of infinite point sets. In
the next step, a discrete model was presented, offering finite representations and

data structures for all the types of the abstract model.
The present paper provides the final step towards implementation by studying and
developing systematically algorithms for (a large subset of) the operations. Some
of them are relatively straightforward; others are quite complex. Algorithms are
meant to be used in a database context; we also address filtering techniques and
practical issues such as large object management or numeric robustness in the

context of an ongoing prototype implementation.

1. INTRODUCTION

The emerging area of moving objects databases has
recently received a lot of interest. Whereas earlier work
on spatio-temporal databases focused on geometries
changing in discrete steps, here the goal is to develop
data models and query languages supporting geometries
evolving continuously, hence moving objects. Two
important abstractions are moving point, describing
entities for which only the time-dependent location
needs to be managed, and moving region, for entities
whose time-varying shape and extent is relevant.
Examples of the former are cars, aircraft, ships, mobile
phone users, terrorists, or polar bears, of the latter
hurricanes, oil spills in the sea, forest fires, armies,

or tribes of people in history. Hence a wide range of
database applications managing such objects becomes
feasible.

In earlier work [11, 21, 14] we have developed a data
type oriented approach for modeling and querying such
data. The idea is to consider the two major abstractions
moving point and moving region as abstract data
types with suitable operations that can be embedded
into a DBMS data model and query language as
attribute types. Operations of interest are, for example,
evaluation of a moving region at a given instant of time
(yielding a region), projecting a moving point into the
2D space (resulting in a 2D curve), or determining when
a moving point was inside a moving region (yielding a
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time-dependent boolean).
Whereas [11] describes the approach and discusses

some related questions and options, reference [21]
presents a careful design of a system of data types and
related operations (an algebra). Here the emphasis is
on completeness, closure, consistency, and genericity in
the application of type constructors and the design of
operations.

An important fundamental issue discussed already
in [11] is which level of abstraction should be used in
defining such an algebra. For example, a moving region
could be defined either as a continuous function from
time into region values, or as a polyhedral shape in the
(2D + time) space. Characteristic for the first level of
abstraction is that it defines types in terms of infinite
point sets without regard to finite representations; for
the second level, that it is always necessary to provide
finite representations. In [11] the terms abstract model
and discrete model, respectively, have been introduced
for these two levels of abstraction.

In [21] the semantics of types and operations have
been defined at the level of an abstract model.
The paper [14] continues this work in defining a
corresponding discrete model. Hence it provides finite
representations, as well as data structures, for all the
types of the abstract model.

The next task in this development towards implemen-
tation is the study of algorithms for the rather large set
of operations defined in [21]. That is the purpose and
focus of the present paper. Whereas [14] just provides
a brief look into this issue by presenting two example
algorithms at the end, in this paper we present a com-
prehensive, systematic study of algorithms for a quite
large subset of the operations in [21]. It is still a subset,
to keep the task manageable, but this subset is formed
by a systematic restriction of the scope of the study.
Whereas some algorithms are relatively straightforward
and simple, there is still a considerable number of quite
involved ones. In all cases we analyze the complexity.
The data structures from [14] are also refined and ex-
tended by auxiliary fields to speed up computations.

Hence this paper offers a blueprint for implementing
a “moving objects” extension package (data blade,
cartridge, extender) for suitable extensible, e.g. object-
relational, database architectures. We are also working
on a corresponding prototype implementation; at the
end of the paper this implementation is described
and some of the practical issues going beyond just
algorithms, are discussed.

Earlier research on spatio-temporal databases gener-
ally focused on the treatment of discrete changes. Ex-
amples of such models are [41, 27]. Survey articles on
spatio-temporal research can be found in [1] and [26];
the latter already covers some of the recent work on
moving objects.

The group of Wolfson has proposed in [32, 38, 40,
39] a concept of moving objects databases that is
complementary to ours. Whereas our approach of

modeling describes movement in the past5, hence the
complete history of a moving object, their focus is
on capturing the current movement of entities, e.g.
vehicles, and their anticipated loations in the near
future. The basic idea is to store in a database not
the actual location of an object, which would need
to be updated frequently, but instead a motion vector
describing location, speed and direction for a recent
instant of time. As long as the predicted position
based on the motion vector does not deviate from the
actual position more than some threshold, no update
to the database is necessary. An important issue is,
for example, to balance the cost of updates against the
cost of imprecise information. They also offer a query
language based on temporal logic to formulate questions
about the near future movement. – This approach is
restricted to moving point objects, i.e., does not address
more complex geometries such as moving regions.

The constraint database approach is suitable for
modeling geometries in databases in a dimension-inde-
pendent way. This can obviously also be used to
describe spatio-temporal entities, e.g. in a 3D (2D
+ time) space. Especially relevant are the papers
by Grumbach and colleagues [16, 17, 18, 19] who
have implemented with the Dedale system one of the
few prototypes of constraint DBMS. Whereas [16, 17]
consider static geometries, [19] shows some spatio-
temporal examples (although these are still restricted to
stepwise constant geometries). In [18] a general concept
for interpolation is developed which is important not
only for moving objects, but also for digital terrain
modeling.

Further work related to the constraint approach is
[5, 6, 4]. The first [5] briefly addresses polygons whose
vertices move linearly with time. In [6] simple geometric
entities are considered whose temporal development
can be described by affine mappings; for them closure
properties are investigated. Reference [4] desribes
moving regions as sets of parametric rectangles, that is,
rectangle boundaries are linear functions of time. This
work has a more theoretical focus.

As an extension to our abstract model in [21],
the work in [13] introduces a concept of spatio-
temporal predicates. The goal is to investigate
temporal changes of topological relationships induced
by temporal changes of spatial objects. A corresponding
spatio-temporal query language incorporating these
concepts is presented in [12].

Further work on modeling includes [28, 33, 37]. In [28]
the modeling of position uncertainty due to a limited
set of observations is addressed. [33] focuses on moving
point objects and the inclusion of concepts of differential
geometry (speed, acceleration) in a calculus based query
language. Paper [37] considers movement in networks
and some evaluation strategies.

5It could also be a scheduled movement within any kind of
time frame.
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At the implementation level, some work addresses
indexing of current movement [25, 31, 2] and also of
motion history [29]. There is also some interesting
work on generators for test data which allow one to
create sets of (descriptions of) moving objects either
in a parametric way [34, 36] or in a kind of simulation
approach [30]. Algorithms for creating complete moving
region descriptions by interpolation from “snapshots”
(observations at certain instants of time) are studied in
[35].

As far as industrial solutions are concerned, the major
DBMS vendors do offer extension modules for spatial
or for temporal support. For example, Informix has
the “Informix Spatial Datablade” and the “Informix
Geodetic Datablade” for spatial support and the “Time
Series Datablade” for temporal support. IBM has the
“DB2 Spatial Extender”; Oracle the “Oracle Spatial
Cartridge” and the “Oracle Time Series Cartridge”.
However, we are not aware of a module supporting
spatio-temporal data, not even discretely changing
spatial values. So currently the combined use of spatial
and temporal fields in tables is the only way to provide
applications with a very limited support for discretely
changing geometries.

To our knowledge, except for [21] there does not
exist in the literature a comprehensive design of spatio-
temporal data types and operations, much less a
systematic study of how such types and operations
can be implemented. This paper is the first one to
present a careful design and analysis of data structures
and algorithms for an algebra on moving objects. It
provides a solid basis for implementing a “moving
objects datablade”.

The paper is structured as follows: Section 2 briefly
reviews the main concepts of [21, 14] which form
the basis for this paper. Section 3 describes the
employed data structures in detail including summary
fields containing derived information to speed up
computation, e.g. by filter steps. This is the basis
for describing and analyzing algorithms. Sections 4
and 5 systematically investigate algorithms for the
two major classes of operations studied. Some of the
most involved algorithms, namely set operations on
moving regions, and computations of distance functions
involving moving regions, are treated in Section 6.
Section 7 describes our prototype implementation and
certain implementation issues. Finally, Section 8 offers
conclusions.

2. REVIEW

In this section we review the material on which this
paper is based, namely the abstract model for moving
objects of [21] and the discrete model developed in
[14]. In the last subsection we define a concept to
systematically select a subset of the (signatures of)
operations in [21] for study in this paper.

→ BASE int , real ,
string , bool

→ SPATIAL point , points,
line, region

→ TIME instant
BASE ∪ TIME → RANGE range
BASE ∪ SPATIAL → TEMPORAL intime,moving

TABLE 1. Signature describing the abstract type system

2.1. The Abstract Model

Data Types. The abstract model of [21] offers the data
types, or actually the type system shown in Table 1.

The type system is described by a signature. A
signature in general has sorts and operators and defines
a set of terms. In this case the sorts are called kinds
and the operators are type constructors.6 The terms
generated by the signature are the available data types.
Some data types defined by this signature are int ,
region, range(instant), or moving(point).

The meaning of the data types, informally, is the
following. The constant types int , real , string , bool
are as usual, except that the domains are extended by
a special value “undefined”. A value of type point is a
point in the real (2D) plane, a points value a finite set of
points. A line value is a finite set of continuous curves
in the plane. A region value is a finite set of disjoint
faces where each face is a connected subset of the plane
with non-empty interior. Faces may have holes and may
lie within holes of other faces.

Type instant offers a time domain isomorphic to the
real numbers. The range type constructor produces
types whose values are finite sets of pairwise disjoint
intervals over the argument domain. The intime
constructor yields types associating a time instant with
a value of the argument domain.

The most important type constructor is moving .
Given an argument type α in BASE or SPATIAL, it
constructs a type moving(α) whose values are functions
from time (the domain of instant) into the domain of
α. Functions may be partial and must consist of only a
finite number of continuous components (which is made
precise in [21]). For example, a moving(region) value is
a function from time into region values.

To support a systematic design of operations, the
paper [21] has a concept of spaces and within each
space a notion of point types and point set types,
representing single values and sets of values from the
space, respectively. For example, Integer is a (1D) space
with a point type int and a point set type range(int),
and 2D represents the two-dimensional space and has
one point type point and three point set types points,
line, and region.

6We write signatures by giving first the argument and result
sorts, and then the operators with this functionality. As a
convention, kinds are denoted by capitals and type constructors
in italic underlined. Operations on data types are written in bold
face.
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Class Operations

Predicates isempty
=, 6=, intersects, inside
<,≤,≥, >, before
touches, attached,overlaps
on border,in interior

Set Operations intersection, union, minus
crossings
touch points, common border

Aggregation min, max, avg, center, single
Numeric no components, size, perimeter

duration, length, area
Distance and Direction distance, direction
Base Type Specific and, or, not

TABLE 2. Classes of Operations on Non-Temporal Types

Class Operations

Projection to Domain/Range deftime, rangevalues
locations, trajectory
routes, traversed, inst, val

Interaction with Domain/Range atinstant, atperiods
initial, final, present
at, atmin, atmax, passes

Rate of Change derivative, speed
turn, velocity

TABLE 3. Classes of Operations on Temporal Types

Operations. Over the types so defined, the abstract
model offers a large set of operations. In a first step,
it defines generic operations over the non-temporal
types (all types except those constructed by moving
or intime). These operations include predicates (e.g.
inside or ≤), set operations (e.g. union), aggregate
operations, operations with numeric result (e.g. size
of a region), and distance and direction operations.
Table 2 provides an overview, just listing the names of
operations. The precise signatures (i.e., the possible
combinations of argument and result types) and the
meaning of these operations will be given in Sections 4
through 6 of this paper.

In a second step, by a mechanism called temporal
lifting, all operations defined in the first step over non-
temporal types are uniformly and consistently made
applicable to the corresponding temporal (“moving”)
types. For example, the operation inside, applicable
e.g. to a point and a region argument and returning
bool , is by lifting also applicable to a moving(point)
vs. a region, or a point vs. a moving(region), or a
moving(point) vs. a moving(region); in all these cases
it returns a moving(bool).

Third, special operations are offered for temporal
types moving(α) whose values are functions (see
Table 3). They can all be projected into domain
(time) and range. Their intersection with values or
sets of values from domain or range can be formed
(e.g. atinstant restricts the function to a certain time
instant). The rate of change (derivative, speed) can
also be observed. Details about these operations can be
found in Section 4.

DBMS Embedding and Queries. An example now
shall briefly demonstrate how these data types can be

Operation Signature

trajectory moving(point) → line
length line → real
distance moving(point)

×moving(point) → moving(real)
atmin moving(real) → moving(real)
initial moving(real) → intime(real)
val intime(real) → real

embedded into any DBMS data model as attribute
types and how pertaining operations can be used in
queries. For example, we can integrate them into the
relational model and have a relation

planes (airline: string, id: string, flight: mpoint)

where mpoint is used as a synonym for moving(point)
and included into the relation schema as an abstract
data type. The term flight denotes a spatio-temporal
attribute whose values record the locations of planes
over time.7

For posing queries we introduce the signatures of
some operations. We only formulate special instances
of them as far as they are needed for our examples.
Corresponding generic signature specifications can be
found in [21].

The projection of a moving point into the plane may
consist of points and lines. The operation trajectory
computes the line parts of such a projection. The
operation length determines the length of a line value.
The distance between two moving points is calculated
by distance, used here in its temporally lifted version.
Operation atmin restricts a moving real to all times
with the same minimal real value. The first (instant ,
real) pair of a moving real is returned by the operation
initial. Operation val is here applied to a (instant ,
real) pair and projects onto the second component.

We can now ask a query “Give me all flights of
Lufthansa longer than 5000 kms”:

SELECT airline, id

FROM planes

WHERE airline = ‘‘Lufthansa’’

AND length(trajectory(flight)) > 5000

This query just employs projection into space. An
example of a genuine spatio-temporal query, which
cannot be answered with the aid of projections, is:
“Find all pairs of planes that during their flight came
closer to each other than 500 meters!”:

SELECT p.airline, p.id, q.airline, q.id

FROM planes p, planes q

WHERE val(initial(atmin(
distance(p.flight, q.flight)))) < 0.5

7It is true that air planes move in a 3D space whereas our
model describes movement in the 2D plane. We ignore this for the
moment as flights are a nice example to illustrate the approach,
and one can easily imagine a 3D version of the moving(point)
data type.
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→ BASE int , real
string , bool

→ SPATIAL point , points
line, region

→ TIME instant
BASE ∪ TIME → RANGE range
BASE ∪ SPATIAL → TEMPORAL intime
BASE ∪ SPATIAL → UNIT const

→ UNIT ureal , upoint
upoints, uline
uregion

UNIT → MAPPING mapping

TABLE 4. Signature describing the discrete type system

This query represents an instance of a spatio-temporal
join. Many further illustrating query examples
from different application scenarios (e.g., multimedia
presentations, forest fire control management) can be
found in [21]. These applications demonstrate that a
very flexible and powerful query language results from
this design.

2.2. The Discrete Model

In [14] data types are defined that can represent values
of corresponding types of the abstract model. Of course,
the discrete types can in general only represent a subset
of the values of the corresponding abstract type.

Let us once more clarify the role of the discrete model:
It introduces data types whose domains are defined
in terms of finite representations. Hence it is at an
intermediate level in abstraction between an abstract
model and concrete data structures. For example, in
a discrete model we may define values of a type to
be “finite sets of integers” without yet fixing a data
structure for this (such as an array of integers).

All type constructors of the abstract model have
direct counterparts in the discrete model except for the
moving constructor. This is, because it is impossible
to introduce at the discrete level a type constructor
that automatically transforms types into corresponding
temporal types. The type system for the discrete
model therefore looks quite the same as the abstract
type system up to the intime constructor, but then
introduces a number of new type constructors to
implement the moving constructor, as shown in Table 4.

Let us give a brief overview of the meaning of
the discrete type constructors. The base types
int , real , string , bool can be implemented directly in
terms of corresponding programming language types.
The spatial types point and points also have direct
discrete representations whereas for the types line
and region linear approximations (i.e., polylines and
polygons) are introduced. Type instant is also
represented directly in terms of programming language
real numbers. The range and intime types represent
sets of intervals, or pairs of time instants and
values, respectively. These representations are also

Abstract Type Discrete Type

moving(int) mapping(const(int))
moving(string) mapping(const(string))
moving(bool) mapping(const(bool))
moving(real) mapping(ureal)
moving(point) mapping(upoint)
moving(points) mapping(upoints)
moving(line) mapping(uline)
moving(region) mapping(uregion)

TABLE 5. Correspondence between abstract and discrete
temporal types

straightforward.
The interesting part of the model is how temporal

(“moving”) types are represented, namely by the so-
called sliced representation. The basic idea is to
decompose the temporal development of a value into
fragments called “slices” such that within the slice this
development can be described by some kind of “simple”
function. This is illustrated in Figure 1.

v

t x

y

t

FIGURE 1. Sliced representation of moving real and
moving points value

The sliced representation is built by a type
constructor mapping parameterized by the type
describing a single slice which we call a unit type.
A value of a unit type is a pair (i, v) where i is a
time interval and v is some representation of a simple
function defined within that time interval. There
exist unit types ureal , upoint , upoints, uline, and
uregion. For values that can only change discretely,
there is a trivial “simple” function, namely the constant
function. It is provided by a const type constructor
which produces units whose second component is just
a constant of the argument type. This is in particular
needed to represent moving int , string , and bool values.
A mapping then is basically a finite set of units whose
time intervals are pairwise disjoint. The data structure
for this (an array of units ordered by time intervals) is
discussed in Section 3.3.

In summary, we have the correspondence between
abstract and discrete temporal types shown in
Table 5. There we have omitted the representations
mapping(const(real)), etc. which can be used to
represent discretely changing real values and so forth,
but are not so relevant here.

We introduce a number of abbreviations for the
data types obtained by application of type constructors
(see Table 4). All the range types will be
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denoted by a prefix r ; hence instead of range(int),
range(real), etc. we can write rint , rreal , and so
forth. For range(instant), the type describing a
set of time intervals, we introduce a special name
periods. All the intime types are abbreviated by
a prefix i, hence we have iint for intime(int), for
example. All data types representing moving objects,
such as e.g. mapping(const(int)), mapping(ureal),
mapping(upoint), or mapping(uregion), are abbreviated
by a prefix m, hence we have corresponding type names
mint , mreal , mpoint , or mregion, respectively.

The data structures chosen to represent values of
the discrete model, and which are manipulated by the
algorithms developed in this paper, are explained in
some detail in Section 3.

2.3. Selecting a Subset of Algorithms

In the design of operations in [21], the emphasis was
on consistency, closure, and genericity; in particular,
all operations have been defined to be applicable to all
combinations of argument types for which they could
make any sense. Whereas this is nice and simple for
the user, it leads to a very large set of functionalities for
operations. Since it is not always the case that different
argument types for one operation can be handled by
the same algorithm, the task addressed in this paper
– namely to design algorithms for the operations – is
a very large one. To make it manageable, we try to
reduce the scope of the study a bit, as follows.

1. We do not study algorithms for operations on
non-temporal types (shown in Table 2) as such;
this kind of algorithms on static objects has been
studied before in the computational geometry or
spatial database literature. An example would be
an algorithm for intersecting two region values.
However we will study the lifted versions of these
operations which involve moving objects.

2. We do not consider the types moving(points) and
moving(line) or any signature of an operation
involving these types. These types have been added
in the design of [21] mainly for reasons of closure
and consistency; they are by far not as important as
the types moving(point) and moving(region) which
are in the focus of interest.

3. We do not consider predicates based on topology
(i.e. dealing with boundaries of objects); these
are the predicates touches, attached, overlaps,
on border, and in interior. These may be
treated in a follow-up study. No doubt they are
useful, but we need to limit the scope of this paper.

All other operations and functionalities are systemat-
ically considered in Sections 4 and 5. The paper [21] has
a very compact notation to describe signatures for op-
erations. Together with the restrictions just mentioned
it is not so easy to figure out, which functionalities re-
main. Therefore in the following sections we list explic-

itly for each operation which signatures remain to be
considered.

3. DATA STRUCTURES

In this section we describe in more detail the various
data types involved and the data structures used to
represent them. This is the basis for describing and
analyzing the algorithms of the following sections.

3.1. General Requirements and Strategy

As already pointed out in [14], the data structures for
the different data types defined here must fulfill some
requirements. They are intended to be used within a
database system, probably as an extension package of
some extensible database system, which implies that
values will be placed into memory under the control of
the DBMS. As a result, the proposed data structures
should not use pointers and their representation should
consist of a small number of memory blocks that can be
moved efficiently between secondary and main memory.

To fulfill these requirements, data types are generally
represented by a record (called the root record), which
contains some fixed size components and possibly one or
more components which are references to arrays. Any
part of the data structure that is of varying size will be
represented by such an array.

As we will see below, all data structures can easily
be designed following that schema with one exception:
The data structure representing a moving region (i.e.,
mapping(uregion)) is conceptually a record containing
some pointers to arrays which in turn contain again
pointers to arrays. Hence it is a two-level tree. However,
we will show in Section 7 how this structure can be
mapped to one of the first kind, so that indeed all data
structures have the form required above. Section 7 will
also explain how data types represented in this way
can be managed efficiently as attribute data types in
a DBMS.

In this paper, in addition to what has already been
explained in [14], we extend data structures by various
summary fields. These contain auxiliary information
derived from the value represented that can help to
speed up certain operations.

In the sequel, we describe data structures for data
types (roughly) in the order given by Table 4.

3.2. Non-Temporal Data Types

Base Types and Time Type. For the base types
int , real , string , bool and for type instant the
implementation is straightforward: they are represented
by a record which consists of a corresponding
programming language value together with a boolean
flag indicating whether the value is defined. For
string the value is a fixed length array of characters.
For instant , the value is of a data type coordinate
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which is a rational number of a certain precision.8 In
order to be able to represent the entire time domain
by intervals, we introduce additionally two predefined
constants mininstant and maxinstant describing the
first and last representable instants in the past and
the future, respectively. This means that we assume
a bounded, rather than an infinite, time domain at the
discrete level.

Spatial Data Types. A point is represented by a record
with two coordinates (values of the coordinate type) for
x and y and a defined flag. The coordinate type is also
used in all definitions of points in the following three
spatial data types.

The data types points, line, and region are illustrated
in Figure 2. In addition to the value representation
described next they contain summary fields which will
be explained at the end of this section.

FIGURE 2. A points value, a line value, and a region
value

A points value is a finite set of points in the plane. It
is represented by a (root) record containing a reference
to an array. Each element of the array represents
one point by its two coordinates. Points are in (x, y)-
lexicographic order.

The data structures for line and region are similar to
the ones proposed in [22]. A line value at the discrete
level is a finite set of line segments that are intersection-
free.9 It is represented as a root record with one array
of halfsegments. The idea of halfsegments is to store
each segment twice: once for the left (i.e. smaller)
end point and once for the right end point. These
are called the left and right halfsegment, respectively,
and the relevant point in the halfsegment is called
the dominating point. The purpose of this is to
support plane-sweep algorithms, which traverse a set
of segments from left to right and have to perform an
action (e.g. insertion into a sweep status structure) on
encountering the left and another action on meeting
the right end point of a segment. Each halfsegment is
represented as a pair of point values (representing the
end points) plus a flag to indicate the dominating end
point. Halfsegments are ordered in the array following a
lexicographic order extended to treat halfsegments with
the same dominating point (see [22] for a definition).

8See Section 7 for a discussion.
9Here we deviate from the description in [14] where

intersecting segments were allowed. An original pair of
intersecting segments is instead represented by four segments
meeting in an end point. The reason is that we want to reuse the
ROSE algebra implementation [22] which has this requirement.
See Section 7.

A region is given by the set of line segments forming
its boundary. There exists an additional structure,
however. A region is a finite set of disjoint faces. Each
face is a polygon possibly containing some polygonal
holes. We call the boundary of a simple polygon a cycle,
hence a face can be represented as a pair (c,H), where c
is an outer cycle and H is a set of hole cycles. A precise
definition can be found in [14].

A region is represented by a root record with three
arrays. The first array (segments array) contains the
sequence of halfsegments, as for line. Each record
of the segments array contains a halfsegment plus an
additional field next-in-cycle which links the segments
belonging to a cycle (in clockwise order for outer cycles,
counter-clockwise for hole cycles, so the area of the
face is always to the right). So one can traverse cycles
efficiently.

The second and third array (cycles and faces array)
represent the list of cycles and the list of faces belonging
to the region, respectively. They are also suitably linked
together so that one can traverse the list of cycles
belonging to a face, for example. More details about
such a representation can be found in [22].

Summary Fields. For the three data types points,
line, and region representing point sets in the plane,
we introduce the following summary fields stored in the
respective root records:

• object mbb – the object’s bounding box, a
rectangle. The minimum bounding rectangle for
all points or segments of the object. For points,
line, and region.

• no components – an integer. Contains the number
of points for points, the number of connected
components for line, and the number of faces for
region. Used to support the corresponding algebra
operation.

• length – a real number. The total length of line
segments for a line.

• perimeter, area – real numbers. For region.

In addition, obviously for all the arrays used in the
representation there is a field giving their actual length.
Hence one can determine the number of segments or
faces for a region, for example.

Summary fields are used to speed up operations. For
example, bounding boxes (here object mbb) are widely
used in geometric query processing to perform a first
check before examining the exact geometries. E.g., if an
intersects predicate on two region values needs to be
evaluated, one first checks whether the bounding boxes
overlap. Only in this case the exact geometries need
to be considered, perhaps in a plane-sweep algorithm.
Other summary fields directly support corresponding
operations. For example, to determine perimeter or
area of a region within a query, one can just look up
the stored values in O(1) time instead of starting the
algorithm to compute this value.
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Sets of Intervals. The range data types rint , rreal ,
rstring , rbool , and periods are represented by a
root record containing an array whose entries are
interval records ordered by value (all intervals must
be disjoint and non-adjacent, hence there exists a total
order). An interval record contains the four components
(s, e, lc, rc), where s and e are the start and end value
of the interval, respectively (therefore of type int , real ,
etc.), and lc and rc are booleans indicating whether the
interval is left-closed and right-closed, respectively.

Summary Fields. For the range types, we store in the
root record also:

• no components – an integer. The number of
intervals.

• min, max – of the corresponding data type. The
minimal and maximal value assumed in the set of
intervals.

• duration – a real number. The sum of the lengths
of all intervals, for periods.

These summary fields support the corresponding
operations no components, min, max, and length.

Instant, Value Pairs. An intime value of type iint ,
ireal , istring , ibool , ipoint or iregion is represented by
a corresponding record (instant, value), where value is
of the corresponding data type.

3.3. Temporal Data Types

Sliced Representation. Temporal (moving) data types
can be conceptually described as a set of units (see
Figure 1). A unit is represented by a record containing
a pair of values (interval, unit-function). The interval
defines the time interval for which the unit is valid; it
has the same form (s, e, lc, rc) as intervals in the range
types. The unit-function represents a function from
time to the corresponding non-temporal type α which
returns a valid α value for each time instant in interval.
For each temporal type there will be a corresponding
unit-function data structure. The time intervals of any
two distinct units are disjoint; hence units can be totally
ordered by time.

Units. Units for discretely changing types const(int),
const(string), and const(bool) use as a unit function
simply a value of the corresponding non-temporal type.
Hence, for a unit (i, v), the function is f(t) = v.

The ureal unit function is represented by a record
(a, b, c, r), where a, b, c are real numbers and r is a
boolean value. The function represented by this 4-tuple
is f(t) = at2+bt+c if r is false, and f(t) =

√
at2 + bt + c

if r is true. Hence we can represent (piecewise)
quadratic polynomials and square-roots thereof. –
The data type is designed in this way so that it can
represent the results of at least the most important
numeric operations, namely time dependent perimeter
and area for moving regions (linear and quadratic

polynomials, see Section 5.4) and distance between
moving points and moving regions (square roots of
quadratic polynomials, Sections 5.5 and 6.2).

A upoint unit function is represented by a record
(x0, x1, y0, y1), representing the function f(t) = (x0 +
x1t, y0 + y1t). Such functions describe a linarly moving
point. We also call the tuple (x0, x1, y0, y1) an mpoint
(“moving point”).

A uregion unit function is essentially a region whose
vertices move linearly (i.e. whose vertex positions are
linear functions of time), such that for all time instants
in the unit time interval, evaluating the vertex functions
yields a correct region value. Figure 3 shows an
example. For simplicity, this one consists only of a
single (moving) face without holes. In general, region

tt

xx

yy

FIGURE 3. A region unit

units have the same structure as region values, i.e. may
consist of multiple faces that may contain holes. The
major difference is that they are built from msegments
(“moving segments”) instead of ordinary segments. An
msegment is a pair of mpoints that are co-planar in
the 3D space. Hence an msegment, restricted to a
time interval, is a trapezium in the 3D space that
may degenerate into a triangle. Figure 4 shows two
examples. Note that the “walls” of the region unit in
Figure 3 are built from such msegments.

tt

xx

yy

FIGURE 4. Two moving segments (msegments)

A uregion unit function is represented by a record
containing three arrays, namely an msegments array, a
cycles array and a faces array. The msegments array
stores the msegments of the unit, using lexicographic
order on the tuples defining the msegment. As for
region, each msegment record has an additional field
next-in-cycle, and msegments of a cycle are linked in

The Computer Journal, Vol. ??, No. ??, ????



Algorithms for Moving Objects Databases 9

cyclic order, having always the interior of the face at
their right. The cycles and faces arrays are managed
similarly as for region. The cycles array keeps a record
for each cycle in the uregion, containing a pointer10 to
the first-mseg-in-cycle and a pointer to the next-cycle-
in-face. The faces array stores one record per face, with
a pointer to the first-cycle-in-face.

Representation of Temporal Types (Moving Objects).
A temporal data type is represented as a root record
containing an array of units ordered by their time
interval.

Note that all the unit types can be represented in
a single record except for the uregion type. In the
latter case, the record contains references to arrays.
Hence, as already mentioned in Section 3.1, the mregion
representation is conceptually a two-level tree which will
be mapped to a single root record with some arrays as
explained in Section 7.

Summary Fields. We now introduce summary fields,
first at the level of the entire moving object, and second
at the level of individual units. Summary fields are
added to the root record of the moving object, or the
record representing the unit, respectively.

Object Level.

• For all temporal types:

– no units – an integer.
– deftime – a periods value. The set of time

intervals for which the moving object is defined.
Obtained from merging the definition time
intervals of the units. We also call this the
deftime index. Note that a periods value
is represented by a root record containing a
reference to an array. Here the information
in the root record is integrated into the root
record of the moving object which now contains
a deftime array as well as its units array.

• For the non-spatial temporal types mint , mreal ,
mstring , mbool :

– min, max – of the respective data type. The
minimum and maximum value that the object
takes in all its definition time.

• For the spatial temporal types mpoint and
mregion:

– object pbb – the projection bounding box,
a rectangle. A projection bounding box
represents the minimum bounding box of all
points in the 2D space that at some time instant
belong to the spatiotemporal object.

Unit Level.
10The “pointers” mentioned here are always represented by

array indices.

• For ureal :

– unit min, unit max – real numbers. The
minimum and maximum value assumed by the
unit function.

• For upoint and uregion:

– unit pbb – a rectangle. The bounding box for
the spatial projection of the unit (analogous to
the object pbb).

• For uregion:

– unit no components – an integer. The number
of moving faces of the unit.

– unit perimeter, unit area – real unit functions,
describing the development of the perimeter
and the area during the unit interval.

– unit ibb – the interpolation bounding box,
a “moving rectangle”. This is a more pre-
cise filter than the unit pbb. It connects
the bounding box of the uregion projec-
tion at the start time of the unit with the
bounding box of the projection at the end
time. The unit ibb is stored as a record
(axmin , bxmin , axmax , bxmax , aymin , bymin , aymax ,
bymax ), representing one linear function fi for
each bounding box coordinate (xmin, xmax,
ymin and ymax ), with the value fi = ait + bi.

These summary fields are used in various algorithms
presented in Sections 4 through 6. Some examples: The
deftime field is used e.g. in the deftime and present
operations (Sections 4.2 and 4.3) and in the lifted union
and minus operations (Section 5.2). The unit min and
unit max fields are used in the rangevalues operation
(Section 4). The various projection bounding boxes are
to be used for a sequence of filter steps, as explained in
Section 4.1.

4. ALGORITHMS FOR OPERATIONS ON
TEMPORAL DATA TYPES

In this section we start by giving algorithmic
descriptions of operations on temporal types (i.e.
moving objects) as shown in Table 3, namely for
projection into domain and range11 (Section 4.2),
for interaction with values from domain and range
(Section 4.3), and for rate of change (Section 4.4).

4.1. Common Considerations

Notations. From now on, we denote the first and
the second operand of a binary operation by a and
b, respectively. We denote the argument of unary
operations by a. In complexity analysis, m and n are
the numbers of units (or intervals) of, respectively, a
and b, while r is the number of units in the result. If
a is a type having a variable size, we denote by M the

11The routes operation mentioned in Table 3 is applicable only
to a moving(line) and therefore not considered in this paper.
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number of “components” of a. That is, for example,
if a is of type points then M is the number of points
contained in a, while if a is of type mregion then M is
the number of moving segments composing a. In any
case the size of a is O(M). For the second argument b
and for the result of an operation, we use with the same
meaning N and R, respectively. If a (resp. b, the result)
is of type mregion, we denote by u (resp. v, w) the
number of moving segments composing one of its units,
and by umax (resp. vmax, wmax) the maximum number
of moving segments contained in a unit. Finally, let d
denote the size of the deftime index of a moving object.

All complexity analyses done in this paper consider
CPU time only. So this assumes that the arguments are
in memory already and does not address the problem
of whether they need to be loaded entirely or this can
be avoided.

A study of I/O complexity is left to future work. It
depends on further implementation details such as those
we discuss in Section 7. Note that the implementation
described there indeed makes it possible to load
argument objects only partially.

Algorithmic Schemes. We now describe several algo-
rithmic schemes that are common to many operations.
In the following we call an argument of a temporal type
a moving argument. Every binary operation whose ar-
guments are both moving ones, requires a preliminary
step where a refinement partition of the units of the two
arguments is computed. A refinement partition is ob-
tained by breaking units into other units that have the
same value but are defined on smaller time intervals,
so that a resulting unit of the first argument and one
of the second argument are defined either on the same
time interval or on two disjoint time intervals. We de-
note the number of units in the refinement partition of
both arguments by p. Note that p = O(n + m). We
use M̂ (resp. N̂) with the same meaning as M (resp.
N) referring to the size of the refined partition of the
units of a (resp. b). We compute the refinement parti-
tion by a parallel scan of the two lists of units, with a
complexity of O(p). This complexity is obvious for all
types that have units of a fixed size, hence for all types
but mregion. Even for the latter type this complex-
ity can be achieved, if region units are not copied, but
pointers to the original units are passed to the subalgo-
rithm processing a pair of units for a given interval of
the refinement partition. If the refinement partition for
two mregion arguments is computed explicitly instead
(copying units), the complexity is O(M̂ + N̂).

For many operations whose result is of one of the
temporal types, a post-processing step is needed to
merge adjacent units having the same value. This
requires time O(r). Usually this step will be integrated
in the construction of result units.

We also assume, for each endpoint of a unit interval of
a region unit, that if the endpoint is included in the unit
interval, then the value of the region unit at the time

instant corresponding to the endpoint is a valid instance
of type region (i.e. is not a degenerate value which so
far it could be according to the definition in [14]). This
is not a restriction since if such a requirement is not
satisfied for an endpoint t̄ of a region unit ā, we can
exclude t̄ from the unit interval of ā and add a new
region unit whose unit interval consists only of t̄ and
whose value is obtained evaluating the value of ā at
time t̄ and removing degeneracies.

Filtering Approach. Even if not stated, each algorithm
filters12 its arguments using the auxiliary information
(i.e. the summary fields) provided by them, which varies
according to arguments’ types (see Section 3). In
particular, minimum and maximum values (stored in
the min and max fields of the root record) for moving
non-spatial types, and bounding boxes for non temporal
spatial types, are used. For mpoint and mregion
filtering is performed using projection bounding boxes.
Moreover, for mregion, two more filtering steps,
with increased selectivity, are performed using first
projection bounding boxes and then interpolation
bounding boxes of individual units.

Semantics of Operations. In the sequel we describe
algorithms for many operations. For each operation,
its meaning is briefly explained informally, we hope,
sufficiently clearly. However, if there is any doubt,
remember that these operations have originally been
defined in [21] and refer to the precise definition of
semantics given there.

Signature Abbreviations. Most of the operations are
polymorphic, i.e., allow for several combinations of
argument and result type. To avoid long listings of
signatures, but to be still precise about what signatures
are admitted, we introduce the following abbreviation
scheme, here illustrated for the rangevalues operator:

For α ∈ {int , bool , string, real}:

rangevalues mα → rα

Here α is a type variable ranging over the types
mentioned; each binding of α results in a valid
signature. Hence this specification expands into a list:

rangevalues mint → rint
mbool → rbool
mstring → rstring
mreal → rreal

4.2. Projection to Domain and Range

The operations described in this subsection get a
moving or intime value as operand and compute

12The term filter is widely used in geometric query processing
to describe a prechecking on approximations. For example, a
spatial join on two sets of regions may be implemented by first
finding pairs of overlapping bounding boxes and then performing
a precise check of geometries on the qualifying pairs. It is used
here and elsewhere also to describe prechecking of approximations
of two single spatial data type values.
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different kinds of projections either with respect to the
temporal component (i.e., the domain) or the function
component (i.e., the range) of a moving value.

deftime. This operation returns all times for which
a moving object is defined. It has the following
signatures:

For α ∈ {int , bool , string, real , point , region}:

deftime mα → periods

The algorithmic scheme is the same for all operation
instances, namely to read the intervals from the deftime
index incorporated into each argument object. The
time complexity is O(r) = O(d).

rangevalues. This operation is defined for one-
dimensional argument types only and returns all the
values assumed by the argument over time, as a set of
intervals. We obtain the following signatures:

For α ∈ {int , bool , string, real}:

rangevalues mα → rα

For the type mbool , in O(1) time we look up the minimal
range value min and the maximal range value max of
the moving boolean. The result is one of the interval
sets {[false, false]}, {[true, true]}, or {[false, true]}.

For the types mint and mstring we scan the mapping,
insert the range values into a binary search tree, and
finally traverse the tree and report the ordered sequence
of disjoint intervals. This takes O(m + m log k) time if
k is the number of different values in the range.

For the type mreal we use the summary field for the
minimal range value unit min and the maximal range
value unit max of each real unit. As the unit function is
continuous, it is guaranteed that all values in the range
[unit min, unit max ] are assumed. Hence for each unit
we have an interval, and the task is to compute the
union of all these intervals as a set of disjoint intervals.
This can be done by sorting the end points of intervals
and then sweeping along this one-dimensional space,
maintaining a counter to keep track of whether the
current position is covered or not, in O(m log m) time.

The projection of a moving point into the plane
may consist of points and of lines; these can be
obtained separately by the operations locations and
trajectory.

locations. This operation returns the isolated points
in the projection of an mpoint , as a points value. This
type of projection is especially useful when the mpoint
never changes its position, or does it in discrete steps
only. The signature is:

locations mpoint → points

In a first step we scan all units of the mpoint value
and compute for each unit the projection of its three-
dimensional segment into the xy-plane. As a result,

we obtain a collection of line segments and points (the
latter given as degenerate line segments with equal end
points). This computation takes O(m) time. From
this result only the points should be returned, and only
those points which do not lie on one of the line segments.
Therefore, in a second step we perform a segment
intersection algorithm with plane sweep [3] where we
traverse the collection from left to right and only insert
line segments into the sweep status structure. For each
point we test whether there is a segment in the current
sweep status structure containing the point. If this
is the case, we ignore the point; otherwise the point
belongs to the result and is stored (automatically in
lexicographical order) in a points value. This step and
also the total time takes O((m + k) log m), if k is the
number of intersections of the projected segments.

The algorithm described so far is only worthwhile
if for m = p + l the number of points p is almost
equal to the number of line segments l. Frequently,
this will not be the case, and either p is high and l
is low, or vice versa. If this information is known, it
may be more efficient to check the p points against the
l line segments. For that purpose, we scan all units
of the mpoint value and identify those p units with
a constant temporal behavior. Constant point units
with a temporally and geometrically connected unit can
be ignored. Afterwards the check is performed. Time
complexity is then O(m + p · l).

trajectory. This operation computes the more
natural projection of a continuously moving point as
a line value. Its signature is:

trajectory mpoint → line

In a first step, we scan all units of the mpoint value,
ignore those units with three-dimensional segments
perpendicular to the xy-plane, and compute for each
remaining unit the projection of its three-dimensional
segment into the xy-plane. This takes O(m) time. In a
second step, we perform a plane sweep algorithm to
find all pairs of intersecting, collinear, and touching
line segments, and we return a list of intersection-free
segments. This needs O(m′ log m) where m′ = m + k
and k is the number of intersections in the projection.
Note that k = O(m2). In a third step, we insert the
resulting segments into a line value. Since sorting is
necessary for this, O(m′ log m′) time is required which is
also the total time needed for this algorithm, which can
be as bad as O(m2 log m2) in terms of parameter m, the
number of units. However, in most cases the projection
will not have a quadratic number of intersections.

traversed. This operation computes the projection of
a moving region into the plane. Its signature is:

traversed mregion → region

Let us first consider roughly how to compute the
projection of a single region unit into the plane. We
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use the observation that each point of the projection in
the plane either lies within the region unit at its start
time, or is traversed by a boundary segment during
the movement. Consequently, the projection is the
geometric union of the start value of the region unit
and all projections of moving segments of the region
unit into the plane.

The algorithm has four steps. In a first step, all region
units are projected into the plane. In a second step, the
resulting set of segments is sorted, to prepare a plane
sweep. In a third step, a plane sweep is performed
on the projections in order to compute the segments
forming the contour of the covered area of the plane. In
a fourth step, a region value has to be constructed from
these segments. In a bit more detail the algorithm is as
follows:

algorithm traversed (mr)
input: a moving region mr (of type mapping(uregion))
output: a region representing the trajectory of mr
method

let L be a list of line segments, initially empty;
for each region unit do

compute the region value r at start time;
put each line segment of r together with a flag

indicating whether it is a left or right
segment into L (it is a left segment if the
interior of the region is to its right);

project each moving segment of the unit into
the plane and put these also with
a left/right flag into L;

endfor;
sort the (half)segments of L in (x, y)-lexicographical order;
perform a plane sweep algorithm over the segments in

L, keep track in the sweep status structure of
how often each part of the plane is covered by
projection areas, and write segments belonging
to the boundary (i.e., segments which separate
0-areas from c-areas with c > 0) into a list L′.

sort the segments of L′ in lexicographical order, and
insert them into a region value

end traversed.

The time complexity of the first step is O(M). The
second step needs O(M log M), the third O(M ′ log M)
where M ′ = M+K and K is the number of intersections
of segments in the projection. The final step takes
O(R log R) where R is the number of segments in the
contour of the covered area. In the worst case we may
have R = Θ(M ′). Hence, the total time complexity is
O(M ′ log M ′).

inst, val. For values of intime types, these two
trivial projection operations yield their first and
second component, respectively, in O(1). Signatures
considered are:

For α ∈ {int , bool , string, real , point , region}:

inst iα → instant
val iα → α

4.3. Interaction with Domain/Range

atinstant. This operation restricts the moving entity
given as an argument to a specified time instant. The
signatures to be considered in our restricted model are
shown below:

For α ∈ {int , bool , string, real , point , region}:

atinstant mα × instant → iα

For all types the general algorithmic scheme is the
one given in section 5.1 of [14]. Namely, to first
perform a binary search on the array containing the
units to determine the unit containing the argument
time instant t and then to evaluate the moving entity
at time t. For types mint , mbool , and mstring this
is trivial. For types mpoint and mreal it is simply
the evaluation of low degree polynomial(s) at t. For
all these types the time needed is O(log m). For type
mregion, each moving segment in the appropriate region
unit is evaluated at time t to get a line segment.
A proper region data structure is then constructed,
after a lexicographic sort of halfsegments, in time
O(R log R). The total complexity is O(log m+R log R).
For more details see the discussion of the algorithm
uregion atinstant(u, t) in section 5.1 of [14].

atperiods. This operation restricts the moving entity
given as an argument to a specified set of time intervals.
Signatures to be considered are:

For α ∈ {int , bool , string, real , point , region}:

atperiods mα × periods → mα

For all types it is essentially required to form an
intersection of two ordered lists of intervals where in
each list binary search is possible. There are three kinds
of strategies:

1. Perform a parallel scan on both lists returning
those units of a (or parts thereof) whose time
interval is contained in time intervals of b. The
complexity is O(m + n).

2. For each unit in a perform a binary search on
b for its start time. Then scan along b to
determine intersection time intervals and produce
corresponding copies of this unit. The complexity
is O(m log n + r). A variant is to switch the role
of the two lists and hence to obtain complexity
O(n log m + r).

3. For the first interval in b, perform a binary
search for the unit s in a containing (or otherwise
following) its start time. For the last interval in
b, perform a binary search for the unit e in a
containing (or otherwise preceding) its end time.
Compute q as the number of units between s and
e (using the indexes of s and e). This has taken
O(log m) time so far. Now, if q < n log m then
do a parallel scan of b and the range of a between
s and e computing result units. Otherwise, first
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for each interval in b perform a binary search on
a for its start time, and afterwards scan along
a to determine intersection time intervals and
produce corresponding copies of this unit. The
time required is either O(log m + n + q), if q <
n log m, or O(n log m+r), if q ≥ n log m. The total
time required is O(log m+n+min(q, n log m)+ r),
since if q < n log m then q = min(q, n log m) while
otherwise n log m = min(q, n log m).
We expect that often m will be relatively large and
n and r be small. For example, let n = 1 and r = 0.
In this case, the complexity reduces to O(log m).
On the other hand, if n log m is large, then the
complexity is still bounded by O(log m + n + q)
(note that r ≤ q) which is in turn bounded by
O(m + n) (because q ≤ m). Hence this strategy
gracefully adapts to various situations, is output-
sensitive, and never more expensive than the simple
parallel scan of both lists of intervals.

For type mregion copying into result units is more
expensive, providing a complexity of O(log m + n +
min(q, n log m) + R), where R is the total number of
msegments in the result.

initial, final. These operations provide the value of
the operand at the first and last instant of its definition
time, respectively, together with the value of the time
itself. Signatures considered are:

For α ∈ {int , bool , string, real , point , region}:

initial, final mα → iα

For all types the first (last) unit is accessed and the
argument is evaluated at the start (end) time instant of
the unit. The complexity is O(1) but for type mregion
where O(R log R) is required to build the region value.

present. This operation allows one to check whether
the moving value exists at a specified instant or is
ever present during a specified set of time intervals.
Signatures considered are:

For α ∈ {int , bool , string, real , point , region}:

present mα × instant → bool
mα × periods → bool

When the second parameter is an instant, for all
types the approach is to perform a binary search on
the deftime array for the time interval containing the
specified instant. Time complexity is O(log d).

When the second parameter is a period (a set of
time intervals), for all types the approach is similar
to the one used for atperiods. Differences are: (i)
instead of using the list of units of the first parameter
its deftime array is used, (ii) as soon as the result
becomes true the computation can be stopped (early
stop), and (iii) no result units need to be reported. Time
complexity is, depending on the strategy followed: (i)

O(d + n), (ii) O(d log n) or O(n log d), (iii) O(log d +
n + min(q, n log d)). An overall strategy could be to
determine q in O(log d) time and then – since all
parameters are known – to select the cheapest among
these strategies.

at. The purpose of this operation is the restriction of
the moving entity to a specified value or range of values.
Signatures considered are:

For α ∈ {int , bool , string, real}:
For β ∈ {point , points, line, region}:

at mα × α → mα
mα × rα → mα
mpoint × β → mpoint
mregion × point → mpoint
mregion × region → mregion

The general approach for the restriction to a specified
value is based on a scan of each unit of the first
argument which is checked for equality with the second
argument. For mbool , mint , and mstring , the equality
check for units is trivial, while for mreal and mpoint
one needs to solve equations, produce a small constant
number of units in output and possibly merge adjacent
result units with the same value. In any of the previous
cases complexity is O(m).

For mregion × point , use the algorithm for the more
general case of operation inside(mpoint×mregion) [14].
The kernel of this algorithm is the intersection between
a line in 3D - corresponding to a (moving) point -
and a set of trapeziums in 3D - corresponding to
a set of (moving) segments. In the order of time,
with each intersection the (moving) point alternates
between entering and leaving the (moving) region
represented by trapeziums and the list of resulting
units is correspondingly produced (for more details
see section 5.2 of [14]). In this particular case, point
b corresponds to a vertical line in 3D (assuming an
(x, y, t)-coordinate system as in Figure 3), and the
complexity is O(M+K log kmax), where K is the overall
number of intersections between moving segments of a
and (the line of) point b and kmax is the maximum
number of intersections between b and the moving
segments of a unit of a.

For the restriction to a specified range of values different
approaches are used. For mbool it is simply a scan of a’s
units, with O(m) complexity. For mint and mstring , a
binary search on b’s range is performed for each unit of
a, with an O(m log n) complexity.

For mreal , for each unit of a find ranges intersecting
b by means of a binary search on b (using the lowest
value of a given by the min field in the current unit)
plus a scan along b. For each intersection of the unit
function of a with an interval of b return a unit with
the same unit function and an appropriately restricted
time interval. Complexity is O(m log n + r). This is
illustrated in Figure 5.
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tt
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FIGURE 5. The at operation on a real unit and a set of
real intervals. Three units with time intervals indicated at
the bottom are returned.

For mpoint × points, for each unit of a do a binary
search on b with the x-interval of the unit pbb to find
the first point of b which is inside that x-interval.
Starting from the found point, scan the points of b
checking for each of them first if it is in the unit pbb and
then whether it intersects the moving point. Sort the
resulting units. Complexity is O(m log N +K̂ +r log r),
where K̂ is the sum, over all units, of the number
of points of b which are inside the x-interval of the
respective unit pbb.

Alternative approach (as for case mpoint × line
discussed next): For each unit of a compute the
intersection of the unit pbb and of the object pbb of b
as a filter. If the bounding boxes intersect, compute
the intersection of the moving point with each point
of b and then sort the resulting units. Complexity is
O(mN + r log r).

For mpoint × line, for each unit of a prefilter
by intersecting its unit pbb with b’s object mbb and
process intersecting pairs by computing the intersection
between the mpoint of a’s current unit (a line segment
in 3D) and each line segment of b (which is a vertical
rectangle in 3D), producing result units corresponding
to intersections. Sort the result units. Complexity is
O(mN + r log r).

For mpoint×region, use the algorithm recalled above
for the more general case of operation inside(mpoint ×
mregion) [14]. That means, initially convert the
region value into a region unit, replacing segments by
corresponding (vertical) msegments. The complexity
is O(mN + K log kmax) where K is the total number
of intersections of mpoints (3D segments) in a with
msegments in b, and kmax is the maximal number of
msegments of b intersected by a single mpoint.

For mregion × region, use the algorithm for
intersection in the more general case mregion ×
mregion (see Section 6.1).

atmin,atmax. These operations restrict the moving
value to the time when it is minimal or maximal.
Signatures considered are:

For α ∈ {int , bool , string, real}:

atmin, atmax mα → mα

For all types scan units to see if their value is the
minimum (resp. maximum) as given by the min (resp.
max ) field of the moving object. For mreal the
comparison is done with the unit min or unit max
summary field. If the unit qualifies, its time interval
is reduced to the corresponding instant or interval.
Complexity is O(m).

passes. This allows one to check whether the moving
value ever assumed (one of) the value(s) given as a
second argument. Signatures considered are:

For α ∈ {int , bool , string, real}:
For β ∈ {point , points, line, region}:

passes mα × α → bool
mpoint × β → bool
mregion × β → bool

For mbool , compare b with index min or max, with
a complexity O(1). For mint , mstring , and mreal ,
scan each unit (in the latter case use unit min and
unit max values) and stop when a matching value is
found. Complexity is O(m).

For mpoint × β and mregion × β, proceed as for
the at operation, but stop and return true as soon
as an intersection is discovered. In the worst case
complexities are the same as for the at operation.

4.4. Rate of Change

The following operations deal with an important
property of any time-dependent value, namely its rate
of change.

derivative mreal → mreal
derivable mreal → mbool
speed mpoint → mreal
velocity mpoint → mpoint
mdirection mpoint → mreal

They all have the same global algorithmic scheme and
scan the mapping of the units of the argument moving
object a, computing in constant time for each unit of a
a corresponding result unit, possibly merging adjacent
result units with the same value. The total time needed
is O(m). In the sequel we briefly discuss the meaning
of the operation and how the result unit is computed
from the argument unit.

derivative. This operation has the obvious meaning,
i.e., returns the derivative of a moving real as a moving
real. Unfortunately in this discrete model it cannot
be implemented completely. Recall that a real unit
is represented as u = (i, (a, b, c, r)) which in turn
represents the real function at2 + bt + c if r = false
and the function

√
at2 + bt + c if r = true, both defined

over the interval i. Only in the first case is it possible
to represent the derivative again as a real unit, namely
the derivative is 2at + b which can be represented as a
unit u′ = (i, (0, 2a, b, false)).

In the second case, r = true, we assume that the
result function is undefined. Since for any moving
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object units exist only for time intervals with a defined
value, we return no result unit at all.

This partial definition is problematic, but it seems to
be better than not offering the operation at all. On the
other hand, the user must be careful when applying this
function. To alleviate the problem, we introduce next
an additional operation derivable (not present and not
needed in the abstract model of [21]).

derivable. This new operation checks for each unit of
a moving real whether or not it describes a quadratic
polynomial whose derivative is representable by a real
unit. It returns a corresponding boolean unit.

speed. This operation computes the speed of a
moving point as a real function. Since each point
unit describes linear movement, the resulting real unit
contains just a real constant, whose computation is
trivial.

velocity. This operation computes the velocity of a
moving point as a vector function. Again, due to
the linear movement within a point unit, the velocity
is constant at all times of the unit’s interval [t0, t1].
Hence, each result unit contains a constant moving
point representing the vector function

velocity(u, t) =
(

x(t1)− x(t0)
t1 − t0

,
y(t1)− y(t0)

t1 − t0

)

mdirection. We rename the operation turn of [21] to
mdirection, which seems a more appropriate name.13

For all times of the lifespan of a moving point, it returns
the angle between the x-axis and the tangent (i.e., the
direction) of a moving point at time t. Due to the
linear movement within a point unit, also the direction
is constant within the unit’s interval.

A special case arises if for two temporally consecutive
units u and v two end points coincide, i.e., if,
e.g., xu(t1) = xv(t0) and yu(t1) = yv(t0). Then
mdirection(v, t) (i.e., the direction of the second unit) is
assigned to this common end point, in agreement with
the formal definition of semantics from [21].

5. ALGORITHMS FOR LIFTED OPERA-
TIONS

In this section we give algorithmic descriptions of
lifted operations. Recall that these are operations
originally defined for non-temporal objects (see Table 2)
that are now applied to “moving” variants of the
arguments. We consider predicates (Section 5.1), set
operations (Section 5.2), aggregation (Section 5.3),
numeric properties (Section 5.4), distance and direction
(Section 5.5), and boolean operations (Section 5.6).

13An operation turn which better captures the meaning of the
original turn operation of [21] is defined in [7]. However, in this
discrete model which only has linear movement the operation has
no interesting result and is omitted.

5.1. Predicates

isempty. This predicate checks, for each time instant,
whether the argument is defined. Signatures considered
are:

For α ∈ {int , bool , string, real , point , region}:

isempty mα → mbool

We remark that the result is defined from mininstant
to maxinstant (the “bounds” of time introduced at
the beginning of Section 3.2). Scan the deftime index
returning units with true value for intervals where a
is defined and units with false value in the other case.
Complexity is O(d) where d is the size of the deftime
index.

=, 6=. These predicates check for equality of the
arguments over time. Signatures considered are:

For α ∈ {int , bool , string, real , point , region}:

(1) mα × α → mbool
(2) mα × mα → mbool

The general approach for operations of group (1) (whose
second argument is of a non-temporal type), is based
on a scan of each unit of the first argument which is
checked for equality with the second argument. The
equality check for all cases but mregion is done as
in the corresponding cases for the at operation (see
Section 4.3), except that a boolean unit is returned, and
so complexities are the same. For mregion the equality
check for units is done as follows. First check whether u
and N are equal numbers. If not we report a single unit
(i, false) where i is the time interval of the argument
unit. Otherwise proceed as follows:

repeat
take a moving segment s of the current unit of a;
if s is static (i.e. does not change in time) then

search for a matching segment in b; (*)
if the search fails then return (i, false) endif

endif
until s is not static or s is the last segment;
if s is the last segment then return (i, true) endif ;
compare s with all segments of b, finding k intersections

t1, . . . , tk such that s is equal to a segment of b;
if k = 0 then return (i, false) endif ;
for each ti

for each msegment s of the current unit
evaluate s at time ti;
search for a matching segment in b; (*)
if no segment was found then exit

endfor;
if the loop terminated normally then

return (ti, true) endif
endfor;
return (i, false)

This algorithm is based on the observation that if the
region unit has a single moving segment, then it can
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be equal to a static region only in a single instant of
time. – Steps labeled (*) take time O(log N) because
halfsegments in the region representation are ordered
lexicographically. The worst case complexity per unit
is O(kN log N).14 In the worst case k = O(N) but in
most practical cases, k is a small constant. Assuming
the latter, the total complexity is O(mN log N). In fact,
in practice in almost all cases during the evaluation of
a unit an early stop will occur so that most units will
be evaluated in O(1) time, and if the moving region is
never equal to the static region, this can be determined
in O(m) time.

The general approach for operations of group (2) is
based on a parallel scan of units of the refinement
partition. Each pair of units is checked for equality. For
mbool , mint , and mstring , such a check is trivial. For
mreal and mpoint one first checks whether coefficients
are the same: if so, produce the output unit, otherwise
intersect the curves and produce output units (at most
a small constant number). In any of the previous cases,
complexity is O(p).

For mregion process each pair of units with time
interval i of the refinement partition as follows:
if u and v are different then return (i, false) endif ;
do a parallel scan of the lists of moving segments to find

a pair (s1, s2) of different segments;
if no pair of different segments is discovered then

return (i, false)
else

let s′ be the smaller segment among s1 and s2 {this
segment is guaranteed not to appear in the other list};

compare s′ with the remaining segments of the other list
finding k intersections t1, . . . , tk with equality

endif ;
if k = 0 then return (i, false) endif ;
for each ti

evaluate both units at time ti;
sort the obtained segments and do a parallel scan to

check for equality, stopping early if a non-matching
pair of segments is found, and otherwise returning
an appropriate result unit (*)

endfor

Noting that the step labeled (*) requires time
O(u log u), per unit time complexity is O(ku log u). In
the worst case k = O(u) but in most practical cases,
k is a small constant. Assuming the latter, the total
complexity is O(p(umax log umax)). Again, if the two
moving regions are never equal, then a pair of units will
almost always be handled in O(1) time, and the total
time will be O(p).

intersects. This predicate checks whether the argu-
ments intersect each other. Signatures considered are:

intersects points × mregion → mbool
region × mregion → mbool
line × mregion → mbool
mregion × mregion → mbool

14Probably one can show that it is even bounded by
O(N log N), but we have not yet proved that.

For points × mregion use the corresponding algorithm
for the inside predicate.

In Section 6 an algorithm for the case mregion ×
mregion is described in detail. This algorithm can
be easily specialized to the cases region × mregion
and line × mregion, the latter due to the fact that
the algorithm does not require that a’s p-faces form
polyhedra in 3D space (the term p-face is introduced in
Section 6).

inside. This predicate checks if a is contained in b.
Signatures considered are:

inside mregion × points → mbool
mregion × line → mbool

mpoint × region → mbool
point × mregion → mbool
mpoint × mregion → mbool

points × mregion → mbool

mpoint × points → mbool
mpoint × line → mbool

line × mregion → mbool
region × mregion → mbool
mregion × region → mbool
mregion × mregion → mbool

In the first two cases the result of the operation is always
false.

For mpoint × region and point × mregion use the
more general algorithm for case mpoint × mregion
briefly described in Section 4.3 and detailed in [14].
Complexity is O(N̂ + K log kmax).

For points ×mregion, for each of the points of a use
the algorithm for the case point×mregion. Complexity
is O(M(N + K log kmax)).

For mpoint × points consider each unit of a, and for
each point of b check if the moving point passes through
the considered point. If so, produce a unit with true
value at the right time instant. Sort all produced units
by time and then add remaining units with false value.
Complexity is O(mN + r log r).

The case mpoint × line is similar to the previous one,
but you have also to consider that if the projection
of a moving segment overlaps with a segment of b the
corresponding result unit is defined on a time interval
rather than a single instant.

For line ×mregion, region ×mregion and mregion ×
region proceed as in the more general case mregion ×
mregion, described in detail in Section 6.

<,≤,≥, >. These predicates check the order of the
two arguments. Signatures considered are:

For α ∈ {int , bool , string, real}:

<,≤,≥, > α × mα → mbool
mα × α → mbool
mα × mα → mbool

Algorithms are analogous to those for operation =.
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5.2. Set Operations

We recall that for set operations a regularized set
semantics is adopted. For example, forming the union
of a region and a points value yields the same region
value, because a region cannot contain isolated points.

intersection. Computes the intersection of the
arguments. Signatures considered are:

For α ∈ {int , bool , string, real , point}:
For β ∈ {points, line, region}:

(1) mα × α → mα
mpoint × β → mpoint
mregion × point → mpoint
mregion × region → mregion

(2) mα × mα → mα

mpoint × mregion → mpoint
mregion × mregion → mregion

For all signatures of group (1) use the corresponding
algorithms for operation at (see Section 4.3).

For the signatures of group (2) (both arguments are
moving ones and belong to the same point type) do
a parallel scan of the refinement partition units and
for time intervals where the values of the argument
are the same, produce a result unit with such a value.
For the cases mpoint and mreal this requires solving
equation(s). In any case the complexity is O(p).

The algorithm for case mpoint×mregion is analogous
to the corresponding one for the inside operation (see
Section 5.1) but for reporting point units with the same
value as a instead of boolean units with true value and
no unit instead of boolean units with false value.

For mregion × mregion the algorithm is rather
complex and is described in Section 6.

union. Computes the union of the arguments.
Signatures considered are:

union mpoint × region → mregion
mpoint × mregion → mregion
point × mregion → mregion
mregion × region → mregion
mregion × mregion → mregion

For mpoint × region, the result is region b for all
times for which a is defined (due to the regularized set
semantics). Hence d corresponding region units have
to be constructed, getting time intervals from scanning
the deftime index of a. Since sorting is required once to
put msegments in the region units into the right order,
the complexity is O(dN + N log N).

For mpoint × mregion and point × mregion simply
return b as result.

For mregion × region use the more general algorithm
for the case mregion × mregion, which is described in
Section 6.

minus. Computes the difference of a and b. Signa-
tures considered are:

For α ∈ {int , bool , string, real , point}:
For β ∈ {points, line, region}:

(1) mα × α → mα
α × mα → mα
mα × mα → mα
mpoint × β → mpoint
point × mregion → mpoint
mpoint × mregion → mpoint

(2) region × mpoint → mregion
mregion × point → mregion
mregion × mpoint → mregion
mregion × points → mregion
mregion × line → mregion

(3) mregion × region → mregion
region × mregion → mregion
mregion × mregion → mregion

For all cases where the type of a is a point type
(group (1)), algorithms are similar to those for
intersection, except for the production of result units.
Complexities are the same as corresponding algorithms
for intersection.

Algorithms for cases in group (2) are trivial due to
the regularized set semantics. For region ×mpoint one
simply transforms a into a moving region defined on the
same definition time as b, with a complexity O(dM +
M log M) (as discussed above for union(mpoint ×
region)), while for mregion × point , mregion ×mpoint ,
mregion × points, mregion × line one simply returns a
as the result.

For mregion × region and region × mregion use the
algorithm for the more general case mregion×mregion,
described in Section 6.

5.3. Aggregation

Aggregation in the unlifted mode reduces sets of points
to points. In the lifted mode it does this for all times
of the lifespan of a moving object. In our reduced type
system we only have to consider moving regions.

center. This operation computes the center of gravity
of a moving region over its whole lifespan as a moving
point. The signature is:

center mregion → mpoint

The algorithm scans the mapping of region units.
Because a region unit develops linearly during the unit
interval i = [t0, t1], the center of gravity also evolves
linearly and can be described as a point unit. It is
therefore sufficient to compute the centers of the regions
at times t0 and t1 and to determine the pertaining linear
function afterwards.

For computing the center of a region we first
triangulate all faces of the region. This can be done
on the basis of [15] in time O(u log u) and results in
O(u) triangles. For each triangle in constant time we
compute its center viewed as a vector and multiply this
vector by the area of the triangle. For all triangles we
sum up these weighted products and divide this sum by
the sum of all weights, i.e., the areas of all triangles.

The Computer Journal, Vol. ??, No. ??, ????



18 J.A. Cotelo Lema, L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schneider

The resulting vector is the center of the region. Note
that it may lie outside of all faces of the region. The
time complexity for computing the center is O(u log u).

For each region unit, by interpolation between the
centers at its start and end times a corresponding point
unit is determined. The total time for the center
operation on a moving region is O(M log umax).

5.4. Numeric Properties

These operations compute some lifted numeric proper-
ties for moving regions.

no components mregion → mint
perimeter mregion → mreal
area mregion → mreal

Here no components returns the time dependent
number of components (i.e., faces) of a moving region
as a moving integer, and perimeter and area the
respective quantities as moving reals.

The algorithmic scheme is the same for all three
and very simple: Scan the sequence of units and
return the value stored in the respective summary
field unit no components, unit perimeter, or unit area,
possibly merging adjacent units with the same unit
function. This requires O(m) time for m units.

The values for the summary fields are com-
puted when their region unit is constructed. The
unit no components value is determined as a by-
product when the structure of faces within the unit is
set up (see Section 3).

For the unit perimeter function, we observe that the
boundary of a region unit consists of moving segments;
for each of them the length evolves by a linear function.
Hence the perimeter, being the sum of these lengths,
also evolves by a linear function. The perimeter
function can be computed by either summing up the
coefficients of all the moving segments’ length functions,
or by linear interpolation between the start and end
time perimeter of the unit.

For the unit area function, the computation is
slightly more complex. The area of a simple static poly-
gon (a cycle) c consisting of the segments s0, . . . , sn−1

with si = ((xi, yi), (x(i+1) mod n, y(i+1) mod n)) may be
determined by calculating the areas of the trapezia un-
der each segment si down to the x-axis15 and by sub-
tracting the areas of the trapezia under the segments at
the bottom of the cycle from the areas of the trapezia
under the segments at the top of the cycle. We can
express this by the formula

area(c) =
n−1∑

i=0

(x(i+1) mod n − xi)
y(i+1) mod n + yi

2

Note that if cycles are connected clockwise, then in
this formula top segments will yield positive area

15This assumes that y-values are positive. If they are not, one
can instead form trapeziums by subtracting a sufficiently negative
y-value.

contributions and bottom segments negative ones, as
desired. Hence, the formula computes correctly a
positive area value for outer cycles (see Section 3).
Indeed, for hole cycles (represented in counter-clockwise
order) it computes a negative value which is also correct,
since the areas of hole cyles need to be subtracted from
the region area. That means, we can simply compute for
all cycles of a region their area according to the formula
above and form the sum of these area contributions to
determine the area of the region.

In a region unit where we have moving segments, we
can replace each xi and each yi by a linear function.
For a moving unit cycle c we therefore have

area(c, t) =
n−1∑

i=0

(x(i+1) mod n(t)− xi(t))
y(i+1) mod n(t) + yi(t)

2

Each factor in the sum is the difference respectively
sum of two linear functions. Hence, it is a linear
function again, and therefore the product is a quadratic
polynomial. The sum of all quadratic polynomials is a
quadratic polynomial as well. Again we can sum up the
area function contributions over all moving cycles of a
region unit, to get the area function for the unit.

The cost of computing unit perimeter and unit area
fields is clearly linear in the size of the unit, i.e., O(u)
time. In all cases, it is dominated by the remaining cost
for constructing the region unit.

5.5. Distance and Direction

In this subsection we discuss lifted distance and
direction operations.

distance. The distance function determines the
minimum distance between its two argument objects for
each instant of their common lifespan. The pertaining
signatures are:

For α, β ∈ {point , region}:

distance mreal × real → mreal
mreal × mreal → mreal
mα × β → mreal
mα × mβ → mreal

For all function instances the algorithm scans the
mapping of the units of the moving object(s) and
returns one or more real units for each argument unit.

The computation of the distance between an mreal
value and a real value s leads to several cases. If
ur = (i, (a, b, c, r)) ∈ ureal with i = [t0, t1], t0 < t1, and
r = false, the unit function of ur describes the quadratic
polynomial at2 + bt + c. The distance between ur and
s is then given by the function f(t) = at2 + bt + c− s,
which is a quadratic polynomial, too. Unfortunately,
this function usually does not always yield a positive
value for all t ∈ i, as required in the definition of
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distance. Therefore it is necessary to determine the
instants of time when f(t) = 0 and to invert the value of
the function in those time intervals when it is negative.
This is illustrated in Figure 6. To program this, one

tt

vv

ff((tt))
ss

ff((tt))

ss

FIGURE 6. Computing the “distance” between a real
function and a real constant

needs to distinguish various cases, which is a bit tedious.
In any case we obtain as a result either one, two, or three
new real units.

If r = true, the function of ur describes the square
root polynomial

√
at2 + bt + c. The distance between

ur and s is then given by the function
√

at2 + bt + c−s.
Unfortunately, this term is not expressible by a square
root polynomial and thus not by a real unit. Hence,
strictly speaking, this operation is not implementable
within this discrete model.

Similarly as discussed above for the derive operation,
we believe it is better to offer a partial implementation
than none. Hence, for square root polynomial units
we consider the result as undefined and return no unit
at all (again, as for derive). The derivable operation
can also here be used to check for which part of the
argument the result could be computed.

In both cases, the time complexity is O(1) per unit
and O(m) for a moving real.

The algorithm for computing the distance between
two mreal values is similar to the previous one, because
a real value in the above context can be regarded as
a “static” moving real. The difference is that first a
refinement partition of both moving reals has to be
computed which takes O(m + n). If ur = (i, (a, b, c, r))
and vr = (i, (d, e, f, s)) are corresponding real units
of both refined moving reals with r = s = false,
their distance is given by the quadratic polynomial
(a−d)t2 +(b−e)t+(c−f) which has to be processed as
in the previous algorithm. If r = true or s = true, no
unit is returned. The time complexity of this algorithm
is O(m + n).

We now consider the case of an mpoint value and a
point value p = (x′, y′) with x′, y′ ∈ real. If up =
(i, (x0, x1, y0, y1)) ∈ upoint with x0, x1, y0, y1 ∈ real,
the evaluation of the linearly moving point at time t is
given by (x(t), y(t)) = (x1t + x0, y1t + y0). Then the
distance is

distance((up, p), t)
=

√
(x(t)− x′)2 + (y(t)− y′)2

=
√

(x1t + x0 − x′)2 + (y1t + y0 − y′)2

Further evaluation of this term leads to a square root
of a quadratic polynomial in t which is returned as a

real unit. The time complexity for a moving point and
a point is O(m).

The distance calculation between two mpoint values
requires first the computation of the refinement
partition in O(m + n) time. The distance of two
corresponding point units up and vp is then determined
similarly as in the previous case and results again in
a square root of a quadratic polynomial in t which
is returned as a real unit. This algorithm requires
O(m + n) time.

The remaining operation instances can be grouped
according to two algorithmic schemes. The first
algorithmic scheme, which is described in Section 6.2.1,
relates to the distance computation between a moving
point and a region, between a moving point and a
moving region, and between a moving region and
a point. The second algorithmic scheme, which
is described in Section 6.2.2, refers to the distance
computation between a moving region and a region as
well as between two moving regions. The grouping
is possible, because the spatial argument objects
can be regarded as “static” spatio-temporal objects.
Therefore, the first algorithmic scheme deals with the
distance between a moving point and a moving region,
and the second algorithmic scheme deals with the
distance between two moving regions.

direction. This operation returns the angle of the line
from the first to the second point at each instant of the
common lifespan of the argument objects.

direction mpoint × point → mreal
point × mpoint → mreal
mpoint × mpoint → mreal

Unfortunately, the result of these operation instances
cannot be represented as a moving real, because
their computation requires the use of the arc tangent
function. This can be shown as follows: given two
points p = (x1, y1) and q = (x2, y2), the slope
between the horizontal axis and the line through p
and q can be determined by tan α = y2−y1

x2−x1
. Thus

α = arctan y2−y1
x2−x1

holds. We can continue this to the
temporal case. For two point units (after the calculation
of the refinement partition) as well as for a point unit
and a point value, this leads to α(t) = arctan y2(t)−y1(t)

x2(t)−x1(t)

and α(t) = arctan y2(t)−y1
x2(t)−x1

respectively. Consequently,
this operation is not implementable in this discrete
model.

5.6. Boolean Operations

Boolean operations are included in the scope of
operations to be temporally lifted.

and, or. These operators represent the lifted logical
conjunction respectively disjunction connectives. Their
signatures are:
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and, or mbool × bool → mbool
mbool × mbool → mbool

For the first operator instance we scan all boolean
units in a and to evaluate for each unit the unlifted
logical connective applied to its boolean value and to
b, returning a corresponding unit. Time complexity is
O(m). For the third operator instance we compute the
refinement partition and then proceed in the same way
for pairs of units. Time complexity is O(p).

not. This operation is the lifted logical negation
operator. Its signature is

not mbool → mbool

Here one just scans the units, negating their values, in
O(m) time.

6. SELECTED ALGORITHMS

In this section we describe some of the more complex
algorithms. Section 6.1 develops a single uniform
algorithm for the operations intersection, union, and
difference on moving regions. Predicates intersects
and inside can be implemented by variants of this
algorithm. Section 6.2 considers the computation of
distances between moving points and moving regions.

6.1. Algorithm for Set Operations on Moving
Regions

6.1.1. Overall Algorithm Description
We describe an algorithm to compute for two given
moving regions a and b their union, intersection, or
difference. As for algorithms of Sections 4 and 5, we first
compute a refinement partition of the two argument
mappings. Then we consider in turn each pair of region
units defined on the same unit interval. To simplify
exposition, we describe the algorithm referring just to
a pair of uregion unit functions ā of a and b̄ of b.

We recall that each uregion is a set of moving
segments (Figures 3 and 4). Each moving segment
defines a polygonal face (either a triangle or a
trapezium) in the 3D space (x, y, t) which we call p-
face to avoid confusion with faces of a uregion. For the
purpose of description we view ā and b̄ as two sets of
p-faces.

The intersection of a p-face f of ā with another p-face
g of b̄ is a segment s in the 3D space, lying within both
f and g. Segment s can be computed by (i) computing
the supporting planes Pf and Pg of the two p-faces in
the 3D space and (ii) clipping their intersection (a line)
by both p-faces. Since both p-faces are convex, the
result can only be a single segment.

Depending on the operation type (i.e., union,
intersection, or difference) different parts of f and g
will be selected as a result p-face. Figure 7 below shows
two intersecting p-faces f and g: the viewpoint is in
the direction of the intersection segment s. The short

f g

s0

1

2

1

f g

intersection

f g f g

union

f g

f \ gf \ g g \ f

FIGURE 7. Cases for two intersecting p-faces f and g

rightwards pointing bars at the end of f and g indicate
on which side of them their interior is. The numbers
in the leftmost drawing indicate how many times space
is covered by the two region units. Hence, 0 denotes
space outside both region units (0-covered), 1 the space
within exactly one of the two (1-covered) and 2 the
one within both (2-covered). Intersection asks for the
boundary of the 2-covered zone, union for the boundary
of the 0-covered zone, and difference for the boundary
of one of the 1-covered zones f \ g or g \ f . Given one
of the participating p-faces, say f , and the intersection
segment s, one can therefore determine, for each of these
operations, on which side of s the part of f contributing
to the result will be.

The algorithm works in three steps. In the first one,
all segments which are on the boundary of a result p-
face are computed. In the second one, the segments
facing each other on opposite sides of a result p-face are
suitably linked together. In the third one, result region
units are produced by computing for each of them the
proper structure in terms of cycles of moving segments
and their nesting, to compose faces.

Step 1. Computing Result Segments. The first step of
the algorithm computes for each pair of p-faces their
intersection segment. For each p-face f we store in a
list Lf each intersection segment lying within it together
with an indication on which side of s the result p-face
is (see Figure 8 (left)).

f
s

f
s

FIGURE 8. s is an intersection segment lying on p-face f

The first step can be described as follows:

for each p-face f in ā do
for each p-face g in b̄ do

if f intersects g then
mark f and g as having an intersection;
compute the intersection segment s;
append s to Lf together with an indication on which

side of s the result part of f lies;
append s to Lg together with an indication on which

side of s the result part of g lies;
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endif
endfor

endfor;

Step 2. Finding Mates. Now consider a p-face f of
one of the two input region units, say ā. If f is marked
as not having intersections with p-faces of b̄, then it is
either entirely inside or entirely outside b̄. Depending
on this fact and on the considered operation, either f
is a whole p-face of the result object or no part of f is
a p-face of the result object. On the other hand, if f
does have intersections with p-faces of b̄, the intersection
segments lying within it, possibly together with (part
of) the boundary of f , form boundaries of a (set of)
result p-face(s), as shown in Figure 8 (right).

For the p-face f , its face normal vector is
perpendicular to the face and points to the outside of
the region unit. The face normal vector can easily be
computed initially for each p-face (msegment) based on
the cyclic order in which msegments are linked.

For the result p-faces, we should also keep track on
which side the result region is. This depends on the
operation: For union, intersection, and ā \ b̄, result
p-faces have their normal vectors pointing in the same
direction as f ; for b̄ \ ā they point in the opposite
direction. One can easily check this considering the
result p-faces in Figure 9 (left) lying on p-face f under
various operations.

f

π

t

s"

s
s'

s"'

w
f

w

FIGURE 9. Classification of left and right segments and
their mating

In general, result p-faces are not just triangles or
trapeziums, as it is required to form moving segments.
For this reason it is necessary to cut them at suitable
points on the t-axis (see Figure 9 (right)), together with
every other p-face (possibly lying within an input p-face
other than f) whose projection on the t-axis intersects
these cutting points.

To determine a coordinate system for the face f , let
w be the axis orthogonal to both the t-axis and the
result p-face’s normal vector π (hence lying in the result
p-face’s supporting plane), directed so that a rotation
of 90 degrees bringing a halfline from the position of
the positive t semi-axis to the position of the positive
w semi-axis is seen from the positive π semi-axis as a

clockwise rotation. See again Figure 9 (left), where the
direction of w is explicitly drawn.

Let us call left (resp., right) boundary of f ∈ ā∪ b̄ the
segment, of the two ones not orthogonal to the t-axis,
such that the value w(t̄) of its w coordinate at a given
value t̄ of the t coordinate is lower (resp., greater) than
the corresponding value w(t̄) of the other segment (see
once more Figure 9 (right)).

We now determine which parts (if any) of the left
and right boundaries of f are also boundaries of some
result p-face. For example, in Figure 8 (right), the left
boundary of f is divided into two segments of which the
lower one is part of the boundary of the result, while the
whole right boundary of f is also part of the boundary
of the result. This task is easy to accomplish using
information computed in the first step of the algorithm
(note that for this computation intersection segments
of f orthogonal to the t-axis are needed, for details see
subsection 6.1.2).

Let Sf be the set of intersection segments of f
not orthogonal to the t-axis plus the set of segments
corresponding to the parts of f ’s boundary computed
above. We now extend the classification in terms of
left and right segments to each s ∈ Sf as follows: s
is a left (resp., right) boundary of the result p-face if a
line in the t-w plane, parallel to the w-axis and directed
accordingly to it, encounters s after an even (resp., odd)
number of other intersections. In Figure 10, where bold
lines denote the boundary of the result p-face lying in p-
face f in case of union between f and g, the line denoted
with h encounters first the left boundary of f , second,
the intersection segment s, which is then classified as
right, third, s′′′, classified as left, and finally, the right
boundary of f , classified as right.

We also mate each left (resp., right) segment s ∈ Sf

with a (list of) right (resp., left) segments according to
the following rule: two segments s and t are mated iff
a segment h lying in the plane t-w and orthogonal to
the t-axis exists such that h intersects both s and t and
is completely inside the result p-face. As an example,
consider again Figure 10 where segments h′ and h′′′

allow to mate, respectively, the left boundary of f with s
and s′′′ with the right boundary of f . The same drawing
may be used to check the case of intersection between
f and g, where the result p-face is only the smaller
pentagonal polygon inside the trapezium, since in this
case segment h′′ allows to mate intersection segments s
and s′′′.

To do the mating, we perform a plane sweep, in order
of increasing t values, of the set Sf . A time instant te is
relevant for the plane sweep if a segment s ∈ Sf has the
t value of one of its endpoints equal to te. A boundary
segment s is active at time te if it intersects a sweep
plane at position te. During the sweep we maintain
a dictionary Df of active boundary segments sorted
according to their current w coordinate. When a new
segment s is inserted into Df we check, if it exists, its
immediate predecessor s′ along the w-axis. If s′ does
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FIGURE 10. Classification of left and right segments and
their mating

not exist or is a right boundary, we mark s as a left
boundary. Otherwise we mark s as a right boundary
and append s and s′ to each other’ lists of mates. Note
that in this way for each segment its list of mates will be
ordered from bottom to top, i.e., in increasing t-order.

In more detail, the second step of the algorithm
proceeds as follows:

for each p-face f in ā do
if f is marked as having intersections then

insert from Lf into Sf intersection segments of f not
orthogonal to the t-axis

compute and insert into Sf parts of the left (resp.
right) boundary of f contributing to a result p-face
{see subsection 6.1.2}

else {f is either entirely inside or entirely outside b̄}
check whether f is inside b̄; {see subsection 6.1.2}
if f is inside b̄ then

case union, difference ā \ b̄: Sf := ∅
{f does not contribute to result}

case intersection, difference b̄ \ ā: insert into Sf

the entire left and right boundaries of f
else {f outside b̄}

case union, difference ā \ b̄: insert into Sf

the entire left and right boundaries of f
case intersection, difference b̄ \ ā: Sf := ∅

endif {f inside b̄}
endif {f intersect b̄}
sort Sf lexicographically by (t, w) coordinates of

lower end points
initialize Df to empty
for each relevant time value te

let Newte be the sublist of Sf with t = te

perform a parallel scan of Df and Newte ,
removing from Df all segments whose uppermost
endpoint has t = te and inserting into it segments
from Newte

for each segment of Newte encountered during this scan:
let s′ be the immediate predecessor of s (along the

w-axis) in Df

if s′ does not exist or s′ is right boundary then
mark s as left boundary

else {s′ is left boundary}
mark s as right boundary
append s′ to the list of the mates of s

append s to the list of the mates of s′

endif
endfor
if the last segment s of Newte is a left boundary then

let s′ be the immediate successor of s in Df

append s′ to the list of the mates of s
append s to the list of the mates of s′

endif
endfor

endfor;
for each p-face g in b̄ do

(analogous)
endfor;

Step 3. Computing Result Region Units. To produce
result region units we merge together the sets Sf , for
all f ∈ ā ∪ b̄, in a list ST . Note that each segment s
lies within both a p-face f of ā and a p-face g of b̄, and
is part of both a result p-face hsf coplanar with f and
a result p-face hsg coplanar with g. In particular s is
a left boundary of one of hsf and hsg and is a right
boundary of the other. This means that there are two
distinct instances of s, one stored in Sf and the other in
Sg: we say they are each other’s buddy. Buddies store
different lists of mates and we need to couple them to
properly reconstruct cycles of moving segments in the
result region units.

Therefore, we sort segments in ST according to a
(t, x, y)-lexicographical order on their lower end points.
Since t is the most significant coordinate, after the
sorting buddies appear consecutively in ST , and with
a linear scan we retain in ST for each segment only
one of the two buddies, but with both t-ordered lists of
mates.

Next we perform a bottom to top plane sweep of
the 3D space (i.e., in order of increasing t coordinate).
During the sweep, a list A of segments currently
intersecting the sweep plane (active segments), is
maintained. In each step, the plane sweep advances
from one relevant value of time, t′, to the next t′′. At
time t′′, the following actions are performed: (i) the list
A of active segments is traversed, and a region unit for
the time interval [t′, t′′) is constructed from them (see
below, how), (ii) during the traversal, segments whose
top point has time coordinate t′′ are removed from A,
and (iii) segments whose bottom point has coordinate
t′′ are appended to A.

Note that at time t with t′ < t < t′′ for each active
segment s lying within p-faces f of ā and g of b̄, exactly
one of its mates lying within f and one of its mates
lying within g are also active segments. We call them
the active mates of s at time t. Then we use active
segments to construct a result uregion as follows. For
each active segment s we produce the moving segment
m connecting s with its mate s′, of the two active ones,
such that m has the interior of the uregion to its right,
when traversed from s to s′. Then m is inserted into
a lexicographically sorted list MS of moving segments
of the current result uregion, and linked, to form a
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cycle, with moving segments produced while visiting the
active mates of s if these have been already inserted in
MS .

When all active segments have been processed, MS
contains all moving segments of the current result region
unit linked into cycles. It only remains to connect outer
cycles of the region unit’s faces with the associated
hole cycles (i.e. to construct the faces array of the
uregion). First of all, for each cycle we determine
whether it is an outer or a hole cycle with a linear scan
of its moving segments (for details see subsection 6.1.2).
Then, for each hole cycle c we perform a plumbline
algorithm scanning moving segments of outer cycles and
sort intersection points to find the outer cycle directly
enclosing c.

In more detail, the third step of the algorithm
proceeds as follows:

ST := ∅;
for each face f of ā ∪ b̄

insert all segments in Sf into ST

endfor;
(t, x, y)-lexicographically sort segments of ST ;
scan through ST to couple buddies, delete one of them,

and store both lists of mates in a single representative;
let A be the list of active segments; A := ∅;
scan ST and append to A all segments with bottom

t-coordinate t0;
from now on scan ST and process in each step a set of

segments with bottom t-coordinate te:
for each relevant time value te

initialize to empty the list of moving segments MS ;
scan the list A:
for each active segment s in A

let s1 and s2 be the active mates of s;
produce the moving segment m connecting s with its

active mate sj such that m has the interior of the
uregion to its right, when traversed from s to s′;

insert m into MS ;
for i = 1, 2

if while previously visiting si a moving segment mi

has been inserted into MS then
link appropriately m and mi

endif
endfor;
if the uppermost endpoint of s has t = te

for i = 1, 2
remove s from the head of si’s list of mates {so

that the new head of the list now contains
the new active mate of si}

endfor
endif

endfor
scan moving segments of MS to determine whether each

cycle is a hole or an outer one {see subsection 6.1.2};
for each hole cycle c

intersect a halfline starting from a point on c’s boundary
and directed according to its normal with all moving
segments of outer cycles and collect intersections;

sort intersections and repeatedly delete adjacent
intersections belonging to the same cycle: the only
one remaining identifies the cycle containg c

endfor
report in output MS together with information about

cycles and their nesting;
append the group of segments starting at time te to A

endfor

Analysis. To analyze the time complexity of the
algorithm we introduce new parameters:

• k̄ is the number of intersecting pairs of p-faces (f, g)
with f ∈ ā and g ∈ b̄;

• R̄ is the total number of moving segments of result
region units produced by the algorithm with input
region units ā and b̄;

• h̄ is the total number of hole cycles of result region
units produced by the algorithm with input region
units ā and b̄.

In the first step of the algorithm constant time
computations are performed for each pair of p-faces,
hence the step requires time O(uv).

The analysis of the second step is more complex.
Consider the case of a p-face f intersecting p-faces
of the other input region unit. The computation of
parts of f ’s left and right boundaries contributing to a
result p-face requires to sort segments of Lf intersecting
such boundaries (for details see subsection 6.1.2). The
overall cost for all p-faces of this computation is
therefore O(k̄ log k̄). Consider now the case of a p-face
f not intersecting any p-face of the other input region
unit. To determine whether f is inside the other region
unit requires to scan through all other unit’s moving
segments (for details see subsection 6.1.2). Hence the
overall cost for all p-faces of such a computation is
O(uv).

Successively, in any of the two cases, all segments
lying within f are ordered along the t-axis, which costs,
for all p-faces, O(k̄ log k̄).

Then, at each relevant time instant te, some segments
are removed from the list Df of active segments, while
other segments belonging to the sublist Newte are
inserted into Df .

Since each segment is removed from Df and inserted
in Newte only once per p-face it lies within, and
since each segment lies within only two p-faces, the
overall cost of these operations, for all p-faces and
for all relevant time instants, is O(k̄). Moreover, at
each relevant time instant te, linear scans of Df are
also performed to merge Df and Newte and to mate
segments. Since for any relevant time instant te and
for any segment contained in Df at time te a moving
segment in a result region unit is produced in the third
step of the algorithm, the overall cost of all scans, for
all p-faces and for all relevant time instants, is O(R̄).

In the third step the global list of segments ST is
constructed and sorted, which requires time O(k̄ log k̄).

During the plane sweep, for each relevant time
instant, the list of active segments is traversed and
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for each segment contained in it a moving segment is
produced and inserted into a sorted list. The overall
cost of these operations for all relevant time instants is
therefore O(R̄ log R̄).

To determine whether cycles are hole or outer ones
requires time O(R̄) (for details see subsection 6.1.2),
and for each hole cycle a sorting of outer cycles’ moving
segments is required to discover the outer cycle directly
enclosing it, hence the overall cost of these operations
for all cycles of all result units is O((1 + h̄)R̄ log R̄).
Note that h̄ may be 0.

Since k̄ = O(R̄), the total cost of the algorithm is
O(uv + (1 + h̄)R̄ log R̄). Summing up this cost for all
pairs (ā, b̄) of the refinement partition’s region units,
we have that the cost of this algorithm to perform
a set operation on two input moving regions is O(p ·
umaxvmax + R log R̄max + p · h̄maxR̄max log R̄max), where
h̄max and R̄max are the respective maximal values of h̄
and R̄ over all elements of the refinement partition. We
have written the bound in this way, since the last term
is zero, if there are no hole cycles (and generally the
number of hole cycles will be a small constant), and the
second term only depends on the size of the output.

6.1.2. Detailed Description of Subalgorithms
In this subsection we give details of how to perform
three tasks required by the algorithm for set operations:
to determine parts of the boundaries of a p-face
contributing to a result p-face (done during step 2), to
check whether a p-face is inside a region unit (step 2),
and to determine whether a cycle is a hole or an outer
one (step 3).

To compute parts of the left boundary of a p-face f
contributing to a result p-face, we proceed as follows.
We compute all intersections of the left boundary with
some intersection segment of f (intersection segments
of f are stored in the list Lf during the first step of the
algorithm).

If no intersection is found, we consider an intersection
segment s′ having an end point with smallest w
coordinate, and we check whether the left boundary of
f is part of the boundary of a result p-face using the
indication on which side of s the result p-face lies (such
indication is stored together with s in the first step of
the algorithm).

Otherwise we sort intersections by t values and
observe that they split the left boundary into
subsegments. Then, for an intersection between a
segment s and the left boundary, we use the indication
on the side of s where the result p-face lies, to
determine whether the corresponding subsegment of the
left boundary is part of the boundary of a result p-
face (special care must be taken to handle the case of
multiple segments intersecting the left boundary in the
same point). In more detail we proceed as follows:

for s in Lf

if s intersects the left boundary then insert s
in the list Lleft endif

endfor
if no intersections are found then

let s′ be a segment of Lf having an end point with
smallest w coordinate

decide whether the left boundary contributes to a result
p-face using the indication on which side of s the result
p-face lies

else
sort Lleft by increasing values
split the left boundary at all intersection points with a

segment of Lleft generating segments l0, . . . , l|Lleft|+1

for each li
let si be the segment of Lleft whose intersection

with the left boundary generated li
decide whether li contributes to a result p-face using

the indication on which side of s the result p-face lies
endfor

endif

Since segments of Lleft are a subset of the segments in
Lf , the overall complexity, for all p-faces, is O(k̄ log k̄).

To check whether a p-face f of ā is inside unit region
b̄, we consider f at any particular time, for example at
time t′, and check whether the resulting line segment
f(t′) is inside b̄(t′), the region at time t′. For this,
the “plumbline algorithm” can be used: we count the
number of line segments of b̄(t′) intersecting a halfline
extending from one end point of f(t′) in y-direction.
This is implemented by a loop:

let p be the smaller end point of f(t′);
count := 0;
for each face g in b̄ do

if g(t′) is above p then count := count + 1 endif
endfor;
return count is odd

The complexity of the above loop is O(v), hence the
overall cost of this task, for all p-faces is O(uv).

To determine whether a cycle is a hole or an outer one
we consider one of its moving segments m. We evaluate
m at a time instant t and using also the coordinates
of the moving segment following m in the cycle, we
determine on which side of m the interior of the region
unit is. Then we consider a halfline extending from a
point of m(t) towards the interior of the region unit, and
count the number of intersections with other moving
segments of the cycle. If such a number is odd the
cycle is an outer one, while in the other case it is a
hole cycle. Since to count intersections we have to
examine all moving segments of the cycle, the cost
of this computation, for all cycles of all region units
resulting from the application of the algorithm to a pair
of unit regions, is O(R̄).

6.1.3. Use of Projection Bounding Boxes
It is possible to improve the algorithm using projection
bounding boxes (the unit pbb fields) of ā and b̄. First,
one can check in advance whether the projection
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bounding boxes of ā and b̄ intersect. If they don’t
intersect, then union returns the set of p-faces ā ∪ b̄,
intersection is empty, difference ā \ b̄ is ā, and b̄ \ ā
is b̄. In this case the running times are O(u + v),
O(1), O(u), and O(v), respectively. Second, if the
projection bounding boxes overlap, then let I be their
intersection rectangle. Reduce ā to ā′, the p-faces whose
xy-projection intersects I, and similarly b̄ to b̄′. This
step takes O(u + v) time. The first step of the above
algorithm, determining intersection segments is then
run with the sets ā′ and b̄′. The second step proceed
as before except when one determines whether a p-face
f of ā not intersecting p-faces of b̄ is inside or outside
b̄. In order not to lose the efficiency gain, one should
find a technique to decide this, if possible, based on b̄′

rather than b̄.
Consider the relationship between I and B, the

projection bounding box of b̄. We can distinguish two
cases (see Figure 11):

1. I has a common boundary with B.
2. I is completely inside B.

B

A

I

B

A= I B’

FIGURE 11. Relationship between I and B

For the plumbline algorithm, we have the freedom
to select any of the directions above, below, left, or
right from the given end point of a segment. Hence,
in the first case, we can select a direction with a
common boundary of B and I (left or below in
Figure 11 (left)) and so reduce search to the segments
in b̄′. To support the second case, select one of the
four rectangles adjacent to I and connecting to the
boundary of B, for example, the one with minimal area
(see Figure 11 (right)), and call it B′. Before running
the second step of the algorithm, compute the set b̄′′ of
faces of b̄ that overlap B′. For any face f of ā′ for which
the inside test is needed, checking can then be done just
with the faces in b̄′′ as well as those in b̄′.

Any faces of ā\ ā′ or b̄\ b̄′ can be reported directly, as
described above for disjoint projection bounding boxes.
Let u′, v′, and v′′ be, respectively, the sizes of the sets ā′,
b̄′, and b̄′′. The running time for overlapping projection
bounding boxes is O(u+v+u′v′+u′v′′+(1+ h̄)R̄ log R̄)
for processing one pair of units.

6.1.4. Algorithm for the Intersects Predicate
The algorithm for the intersects predicate follows the
same approach as the generalized algorithm for set
operations described in subsection 6.1.1. However, since
the aim is not to construct region units representing the
result of an intersection operation, but only to find time

intervals when intersections occur, it is not needed to
mate intersection segments and to consider in any way
an intersection segment with respect to both p-faces it
lies within. Again, we describe the algorithm referring
just to a pair of input region units ā of a and b̄ of b.

In a first step, for each p-face f of ā we scan p-faces of
b̄ to find intersection segments. If f has no intersection
with b̄’s p-faces, we check whether f is completely inside
b̄. If that is the case then ā and b̄ intersect each other on
the whole unit interval where both are defined. Hence
the algorithm halts returning a single ubool unit with
true value.

Otherwise, i.e. if none of the faces of ā is completely
enclosed, we store intersection segments in a global
list ST . We also compute parts of the left and right
boundaries of f that belong to boundaries of p-faces
of ā ∩ b̄ and insert them into ST . When all p-faces
of ā have been processed, we sort ST by increasing t
values and then traverse it keeping a counter for the
number of active segments.16 The t values relevant for
the result are those corresponding to transitions of the
counter from 0 to 1 or from 1 to 0. The former type
of transition indicates that the corresponding relevant
t value is the end point of a result unit with false value
and the start point of a subsequent result unit with true
value, while the latter type of transition indicates the
inverse situation.

If we denote by k̄ the number of intersection
segments, the algorithm requires time O(uv + k̄ log k̄)
where the first term is due to the search of intersection
segments and the second to the sorting operations
performed on such segments.

Summing up this cost for all pairs (ā, b̄) of refinement
partition’s region units, we have that the cost of this
algorithm to perform a set operation on two input
moving regions is O(p · umaxvmax + K log k̄max), where
k̄max is the maximum number of intersection segments
generated by a pair of region units, while K is the total
number of intersection segments for all pairs of input
region units.

6.1.5. Algorithm for the Inside Predicate
In this subsection we describe an algorithm for the
case mregion × mregion of the inside predicate. Also
this algorithm is similar to the one for set operations
described in subsection 6.1.1 and regards the arguments
as sets of p-faces. Since the algorithm does not use
the fact that a’s p-faces form polyhedra in 3D space, it
handles also the operation inside(line ×mregion).

As usual the algorithm considers one after the other
pairs of units ā of a and b̄ of b. In a first step, each p-face
f of ā is processed separately as follows. For each p-face
g of b̄ the intersection segment of f and g is computed.
If f does not intersect any p-face of b̄ then it is either

16Here the sweep works slightly differently than in Section 6.1.1:
for each segment we produce one entry in ST for the lower end
point and one for the upper one to be able to decrement the
counter on meeting the upper end.
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completely inside or completely outside b̄. Otherwise,
intersection segments and parts of the boundary of f
determine a set P of p-faces of the object f ∩ b̄ (see
Figure 12). Then, at time t̂, f is inside b if and only if

f

b

f

inside

FIGURE 12. A face f intersecting b̄ and a hexagonal
p-face in f ∩ b̄ forming the set P

all the points of f having their t coordinate equal to t̂
are contained in the set-union of p-faces in P . To verify
such a condition, one performs a sweep of f ’s support
plane maintaining a list of active segments which belong
to the boundaries of p-faces in P : the condition is
verified when there are only two active segments one
of which is a subsegment of the left boundary of f and
the other a subsegment of the right boundary of f . If
it is discovered that f is completely outside b̄ or it is
never entirely inside b̄, the algorithm halts reporting a
single result unit with false value. Otherwise a set of
disjoint time intervals where f is inside b̄ is discovered.

In a second step, we insert such sets of intervals for all
p-faces of ā into a sorted list and then traverse the list
maintaining, for each value of t, a counter c of how many
intervals contain t. Since two intervals that contain the
same t value come from two different p-faces, ā is inside
b̄ when the value of the counter is equal to the number
of p-faces of ā.

Let k̄ be the number of intersecting pairs (f, g) of p-
faces, with f ∈ ā and g ∈ b̄. The total number, for all
f ∈ ā, of the intersection segments lying within f and
the subsegments of f ’s boundaries which bound p-faces
of f ∩ b̄ is O(k̄). Hence, also the sum for all f ∈ ā
of the number of time intervals where f is inside b̄, is
O(k̄). Then the cost of the algorithm is O(uv+ k̄ log k̄).
The overall cost, for all pairs (ā, b̄) of the refinement
partition’s region units, is therefore O(p · umaxvmax +
K log k̄max), where k̄max is the maximum number of
intersecting pairs of p-faces for a pair of region units,
while K is the total number of intersecting pairs of p-
faces for all pairs of input region units.

6.2. Computing the Distance between Two
Moving Spatial Objects

In this section we deal with the computation of the
distance between a moving point and a moving region
(Section 6.2.1) and the distance between two moving

regions (Section 6.2.2). The result is a moving real.
One of the two operands of each operation may also be
a spatial data type (i.e., point or region, respectively)
which in this context can be interpreted as a “static”
or “constant” spatio-temporal data type. Finally,
in Section 6.2.3, we investigate the use of filtering
techniques for accelerating computation.

6.2.1. Distance between a Moving Point and a Moving
Region

Assuming that we are given a moving point mp and
a moving region mr , in a first step we have to find
out when mp was outside mr , because only then the
distance function yields a value greater than 0. For that
purpose, we employ the algorithm inside of Section
5.2 in [14] (already described with the at operation
in Section 4), which for mp and mr returns a moving
boolean mb representing when mp was inside mr . This
takes O(m+n+N) time (in practical cases) [14]. Hence,
the first step of the algorithm can be formulated as
follows:

mb := not inside(mp, mr)

where not is the negation operator on moving booleans
(see Section 5.6). The negation of the moving boolean
takes O(b) time, if b is the number of boolean units.
All boolean units with a false value indicate a distance
equal to 0, whereas the other boolean units point
to a distance greater than 0 and require further
computation.

In a second step we compute the refinement partition
between mp and mr and afterwards between the result
and mb. This enables us later to identify all those point
units, region units, and boolean units that have the
same unit interval and the value true in the boolean
unit. This constellation indicates that the point unit
is located outside of the region unit in the same unit
interval. This step takes O(m + n + b) time.

Finally, the third step of the algorithm scans the
refinement partition of mp,mr , and mb and performs
the distance computation. For each refinement interval
we check whether corresponding point, region, and
boolean units exist. Only if this is the case, the distance
function has to be computed. If the value of the boolean
unit is false, the distance is 0, because the point unit is
located inside the region unit. Otherwise, the distance
between mp and mr has to be explicitly calculated by
a function, say, upoint uregion dist . In the worst case,
mp and mr are completely disjoint and have the same
lifespan. Then the time complexity of the third step is
O(m+n+ b) times the time complexity of the function
upoint uregion dist described next.

The function upoint uregion dist takes a point unit
up and a region unit ur as operands and returns a set
urls of real units representing the distance of up and
ur for each time of their common lifespan. It works as
follows:
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let up = (i′,mpo), ur = (i′′, F ), i := i′ ∩ i′′, up′ = (i,mpo),
ur ′ = (i, F );

rlus := ∅;
for each moving segment s of ur ′ do

units := upoint mseg dist(up′, s);
rlus := concat(rlus, units);

endfor;
compute the refinement rlus ′ of all real units in rlus and

attach the pertaining distance functions to each resulting
time interval;

urls := ∅;
for each refinement interval i of rlus ′ do

units := min func(rlus ′, i);
urls := concat(urls, units);

endfor

This algorithm consists of three parts. In the first
part, the distance functions, which are represented as
real units, are determined between the point unit and
each moving segment of the region unit, i.e., between
the 3D segment and each lateral face in 3D space. For
a point unit and a single moving segment this is done
by the operation upoint mseg dist (explained below).
All resulting real units are collected in an unsorted list
rlus. An example of such a collection of real units has
been given on the left side of Figure 13. It has been
computed with respect to a point unit and three moving
segments, the latter forming a unit region. The distance
computation yields the real units u1 and u2 for the first
moving segment, the units u3, u4 and u5 for the second
moving segment, and the units u6 and u7 for the third
moving segment.

rlus

t

i

u2

u1

u5

u6

u3

u4
u7

rlus’

u1 u3 u6, ,

u1 u3 u7, ,

u1 u4 u7, ,

u2 u4 u7, ,

u2 u5 u7, ,

FIGURE 13. Distance functions, which are represented
as real units, for a point unit and the moving segments of a
region unit in time interval i (left side), and their refinement
showing for each subinterval the attached active distance
functions (right side).

The function upoint mseg dist calculates the distance
between a point unit up and a moving segment s, the
latter spanning a triangle or trapezium. Let P be the
supporting plane uniquely determined by s. Two cases
have to be distinguished: either a part of the projection
of up into P lies inside s, or outside of s (Figure 14a).
Because up is t-monotonic, at most one connected part

of up can lie inside s, and at most two connected parts
can lie outside of s. Both cases have to be distinguished,
because the distance function is a linear polynomial in
the first case (Figure 14b) and a quadratic polynomial
in the second case, as we will see.

(a)

up
s

up at time t"
up at time t’

s at time t1

up at time t0

up at time t1

s at time t0q

p

(b)

up

s q

p P

FIGURE 14. (a) Projection of point unit up into the
supporting plane P determined by the moving segment
s = (p, q), (b) linear development of the distance between
up and P and between up and the projection of up lying
inside s.

An intersection of the projected point unit up and
the moving segment s yields those segment parts lying
inside or outside of s. All these segment parts are
transformed back to the temporal domain, and we
assume that up has the unit interval [t0, t1], enters s
at time t′ and leaves s at time t′′ (Figure 14a).

In the first case, the minimum distance at each
time t ∈ [t′, t′′] is given by up and a point inside the
lateral face spanned by s. According to Figure 14b,
in this time interval the distance evolves linearly. To
compute the distance we consider the situation at
some time t: the points up(t), p(t), and q(t) form a
triangle. The perpendicular through up(t) on s(t) is
the minimum distance between up(t) and s(t), denoted
by dist((up, s), t). The distance between up and s at
time t can then be calculated as

distance1((up, s), t) = dist((up, s), t′)+
dist((up, s), t′′)− dist((up, s), t′)

t′′ − t′
· (t− t′)

which is a linear function, needs O(1) time, and can be
represented as a real unit.

In the second case, the minimum distance at each
time t ∈ [t0, t′] or t ∈ [t′′, t1] is either given by the two
point units up and p or by up and q. We have dealt with
calculating the distance of two moving points as well as
two point units in Section 5.5. The distance function
is described by a quadratic polynomial. This also
needs O(1) time so that the first part of the algorithm
upoint uregion dist needs O(v) time. In Section 6.2.3
we will show how the number of moving segments to be
considered in the further parts of this algorithm can be
drastically reduced by using a filter technique.

In the second part of this algorithm, the task is to
refine all real units of the list rlus into the list rlus ′

and to attach all active (i.e., valid) distance functions
to each refinement interval of i. For this, each real unit
ur j = (ij , uj) with ij = [t′, t′′] and ij ⊆ i is represented
twice, namely by its left end point (t′, l, uj) and its right
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end point (t′′, r, uj). This can be done by a scan of rlus
in O(v) time. Afterwards, all end points are sorted with
respect to time and for equal times by the condition
that r < l. This takes O(v log v) time. From this sorted
list of end points we now derive the list rlus ′ of real
units where each resulting subinterval is annotated with
the current list of active distance functions. In each
subinterval, O(v) distance functions are active, each
related to exactly one of the at most v moving segments
(compare to the stripes of the left side of Figure 13).
Moreover, for each right end point with t′ < t1, a new
left end point exists at time t′.

Algorithmically, we maintain a list adf of active
distance functions, which is empty at the beginning. For
one or several consecutive left end points at the same
time t′, a new active refinement unit is created which
is annotated with a copy of adf and the corresponding
new distance functions. For one or several consecutive
right end points at the same time t′, the currently active
refinement unit is closed, and all distance functions
related to these right end points are removed from adf .
At time t1, list adf is empty again. The right side of
Figure 13 shows the result for our example.

At most O(v) real units (distance functions) and
hence at most O(v) refinement units can exist.
Therefore, the time complexity of the second part of
the algorithm is O(v2). For each interval of an active
refinement unit, the list adf has then O(v) entries which
have to be attached to the active refinement unit.

In the third part of the algorithm upoint uregion dist ,
for each of the O(v) refinement units of rlus ′, the
function min func computes the minimum of the
distance functions associated with each refinement
interval i. This means to compute the lower contour
of all function graphs (see Figure 15).

i
t

... ...

v

FIGURE 15. The lower contour of an arrangement of
function graphs in time interval i.

Computational Geometry [24] gives us a solution
to this problem. By using a combination of divide
and conquer and sweep technique, we can compute
the lower contour of k different t-monotonic function
graphs, which are defined over the same time interval
and where any two function graphs intersect each other
in at most two points, in time O(k log k). In our case, k
is bounded by v so that the time complexity of function
min func is O(v log v). Hence, the time complexity of

the third part of the algorithm is O(v2 log v).
In summary, the time complexity of the function

upoint uregion dist is O(v) for the first part, O(v2)
for the second part, and O(v2 log v) for the third part.
Consequently, its overall time complexity is O(v2 log v).

The overall time complexity of the whole algorithm
is as follows. The first step needs O(m + n + b + N)
time, the second step O(m + n + b) time, and the
third step O((m + n + b) v2

max log vmax) time. Since
N ≤ vmaxn, altogether, the algorithm requires O((m +
n + b) v2

max log vmax) time.

6.2.2. Distance between Two Moving Regions
The algorithmic scheme for computing the distance
between two moving regions mr1 and mr2, respectively
between a moving region and a region, is similar to
the one in Section 6.2.1. For the first step of the
algorithm, we use now the intersects operation on
two moving regions (Section 6.1.4), since the distance
is 0 whenever regions intersect. This needs O((m +
n)umaxvmax + K log k̄max) time (with the notations of
Section 6.1.4). As a result of this step we obtain the
time intervals when mr1 was intersecting or disjoint
from mr2 as a moving boolean mb. In the second
step, the refinement partition is computed between
mr1, mr2, and mb. This takes O(m + n + b) time.
Concerning the third step of the algorithm, we have
to replace the operation upoint uregion dist by the
operation uregion uregion dist . The second and third
parts of these two operations are identical. But the first
part has to be changed in a way that we use two nested
loops, each traversing the moving segments of one of
the two region units, to compute the distance functions
for each pair of moving segments.

The distance computation for two moving segments
is performed by the function mseg mseg dist (replacing
upoint mseg dist). If their supporting planes are
parallel, we can determine their distance in constant
time. If they are not parallel, at least one of the
four end point units of both moving segments must be
involved in the distance calculations. Hence, we have
to perform four distance computations, each between a
point unit and a moving segment. This can be done
by the function upoint mseg dist in constant time (see
Section 6.2.1).

In total, the first part requires O(uv) time and
produces O(uv) real units. This has a negative effect
on the runtimes of the second and third part of the
operation uregion uregion dist . The time complexity of
the second parts develops to O(u2v2) time, since O(uv)
refinement units exist and since for each interval of an
active refinement unit, the list adf of active distance
functions has O(uv) entries, which have to be attached
to the active refinement unit. Consequently, the third
part requires O(u2v2 log uv) time, which is also the
overall time complexity of uregion uregion dist .

The overall time complexity of the whole algorithm
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is as follows. The first step needs O((m+n)umaxvmax +
K log k̄max) time, the second step O(m + n + b) time,
and the third step O((m+n+b) u2

maxv
2
max log umaxvmax)

time. Thus, the whole algorithm requires O((m + n +
b)u2

maxv
2
max log umaxvmax + K log k̄max) time, where K

is the total number of intersections between moving
segments of the two arguments, and k̄max the maximal
number of intersections between a pair of units.

This seems very expensive. Nevertheless, the filtering
technique described next may help a lot.

6.2.3. Using a Filtering Technique
A problem of the two algorithms described in the two
previous subsections is the large number of distance
computations. The distance computation between a
moving point and a moving region yields O(v) distance
functions for each refinement unit. For two moving
regions these are even O(uv) functions per unit. A
filtering technique to reduce the number of distance
functions (real units) would therefore be very attractive.

In case of a point unit and a region unit, we consider
the projection of the point unit and all moving segments
of the region unit into the xy-plane. This gives us a 2D-
segment and a list of 2D-faces (triangles, trapezia). By
a scan through all faces, we try to exclude as many faces
as possible that cannot have a minimum distance to the
segment. During the scan, for each face we compute its
minimum and maximum distance to the segment; we
thus obtain a distance interval. We also keep in mind
the current minimum minmax of all right end points
of distance intervals. It is initialized with the right end
point of the distance interval of the first face in the scan.
If the next distance interval in the scan is considered,
and its left end point is greater than minmax , this
interval can be ignored. Otherwise, it is inserted into
a candidate list, which is initialized with the distance
interval of the first face, and minmax is assigned the
minimum of its current value and the right end point
of the distance interval just inserted. The consequence
is that during the scan, the value of minmax decreases.
Because it can happen during the scan that minmax
falls below a left end point of a distance interval inserted
already earlier into the candidate list, a second scan of
the candidate list is necessary which removes all those
intervals with a left end point greater than minmax .
Only for the moving segments remaining to the final
candidate list, the exact distance computations have to
be executed. This filtering step takes only O(v) time.

In case of two region units we apply the same
algorithm. Here, we perform a nested loop on two
sets of 2D-faces and must be able to determine the
minimum and maximum distance between two faces.
The candidate list is maintained in the same way. This
takes O(uv) time.

In practice, this filtering technique lets us expect a
drastic reduction of distance computations which can
be bounded, say, by a very small constant c << v.

Under this assumption, the first part of the function
upoint uregion dist still needs O(v) time, because we
have to consider all 2D-faces of moving segments, and
the second and third part require constant time per
refinement unit. Hence, upoint uregion dist needs O(v)
time, and the runtime of the whole algorithm for a
moving point and a moving region is O((m+n+b) vmax).
This assumption applied to the first part of the function
uregion uregion dist still leads to O(uv) for the first
part, because we have to consider the product of the
2D-faces of both region units, and to a constant time
per refinement unit for the second and third part.
Hence, uregion uregion dist needs O(uv) time, and the
runtime of the whole algorithm for two moving regions
is O((m + n + b) umaxvmax + K log k̄).

7. A PROTOTYPE IMPLEMENTATION

A prototypical implementation of the data structures
and algorithms described in this paper is underway and
has been partially completed. In this section we report
on the details and current status of this implementation,
as well as the problems faced during its development
and how have they been addressed.

7.1. Implementation Environment

The prototype is being developed as an algebra
module for the experimental extensible database system
SECONDO [10] and as an Informix Datablade. The
package is being built over a database interface layer
that isolates the core of the package from database
specific details, allowing us to use it in both database
systems by just changing the interface layer.

SECONDO is an experimental extensible database
system supporting the implementation of a wide
range of data models and query languages. It is
more flexible than common extensible and object-
relational systems, offering the full extensibility of
second-order signature (see [20]). Extensibility is
provided by algebra modules defining and implementing
new types (type constructors, in fact) and operators.
The current SECONDO version provides two algebra
modules: the standard algebra module, which provides
basic alphanumeric data types int , real , bool and
string , and the relational algebra module, which
provides a relational algebra implementation. For more
information about SECONDO see [10].

The spatiotemporal algebra has been built as two
modules, one of them providing all the spatial data
types and operations (the ROSE algebra module [23])
and the other providing the spatiotemporal support
(the ST algebra module). Both modules make use of
the standard and relational algebras of SECONDO and
work together with them. The standard algebra is used
to provide the alphanumeric types, whereas all data
types provided by the spatiotemporal algebra can be
used in SECONDO’s relational algebra as new attribute
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types. This is similar for the Illustra version with regard
to its relational algebra and the alphanumeric types
provided by it.

The ROSE algebra module has been designed to work
independently of the ST module, allowing the user to
install it alone if only spatial support is needed. For its
development an existing ROSE algebra implementation
has been taken as a basis, adapting it to be used within
a database system as part of a spatiotemporal algebra.
For that purpose, two main changes have been done:

1. It no longer uses the realms machinery [23] which
basically provides a set of static geometries as a
basis for defining values of spatial data types, since
this strategy does not work any more in the spatio-
temporal case with continuous change. Instead,
the new implementation uses fixed size rational
coordinates for the space, together with a pre-
processing (realmization) step that makes explicit
the intersection points of the arguments for each
binary operation and a post-processing step that
joins those segments of the result that can be
represented as one (see [8]). These changes make it
possible to use the original algorithms proposed in
[22], although without ensuring consistency in the
results of different operations (guaranteed before
by the realm basis). However, if consistency is
required, it can be easily achieved by using also a
dual grid representation [8], where some additional
restrictions on the precision of coordinates of
spatial objects are made to ensure that the
resulting spatial data types are closed under the
ROSE algebra operations and therefore consistency
is achieved. This solution is entirely satisfactory in
the static case. We discuss in Section 7.4 possible
options to achieve consistency in the dynamic case.

2. The arrays used in the original implementation
are replaced by database arrays, a tool that
automatically stores its data under the control of
the database system, simplifying the development
of new complex data types in algebra modules. Its
implementation is described in Section 7.2.

The package is being implemented in C++, making
an intensive use of templates. They are used, for
example, for implementing the type constructors (range
and mapping) and the database arrays.

The alphanumeric data types and operations are
provided using the existing database support (existing
algebra modules in SECONDO), whereas the spatial
data types and operations are implemented in the
ROSE algebra module. In its current version, the ST
algebra module provides all the range and temporal
data types and part of the spatiotemporal operations
considered in this paper. Table 6 shows the status
of their implementations. Some operations over range
types (including periods) not considered in this paper
are also provided, such as duration, min, max and
before.

Completely (all signatures) implemented:
deftime atinstant speed
rangevalues atperiods
trajectory initial, final =, 6=
traversed present intersects
inst,val atmin, atmax <,≤,≥, >

Partially (some signatures) implemented:
at intersection distance

union
inside minus

Not yet implemented:
locations isempty direction
passes
derivative center and, or, not
derivable no components
velocity perimeter
mdirection area

TABLE 6. Spatiotemporal operations currently imple-
mented in the ST algebra module.

In the following subsections we address some specific
implementation issues. First, we show how arrays are
stored under the database control through the use of
database arrays. Second, the mapping template, used
for implementing the temporal data types, is described.
Finally, some numerical robustness and consistency
aspects are taken into consideration.

7.2. Database Arrays and Large Object Man-
agement

In Section 3, the data structures for complex data types
were defined as using arrays for storing part of their
data. For implementing them in an algebra module,
each array is replaced by a database array (dbarray),
an array implementation whose data are stored under
the control of the database system. This is done by
storing its content in a large object, which is a piece
of storage space referenced by some identifier. Large
object support is widely provided by current extensible
database systems. In the SECONDO extensible DBMS,
database arrays support is already provided and, thanks
to its use of so-called faked large objects [9], they
are automatically either represented inline in a tuple
representation, or outside in a separate list of pages,
depending on their size.

A rough description17 of the data structure and
methods of a dbarray can be seen in Table 7. A
dbarray uses an nlob (a specialization of large objects
implementing the nestable interface, whose peculiarities
are described below) to store its content. The template
argument type T Elem can be any type, as far as it
does not contain any pointer or other dbarray.

17Although using a C++ like syntax, some liberties have been
taken for the sake of clarity: return values have been removed
for methods that only return error codes, and integer values are
always represented by int, regardless of which numerical precision
is required.
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template <class T Elem> class dbarray

private: int numElem; nlob data;

public: create(int numElem); setNumElem(int newSize);

destroy(); T Elem * get(int index, void * buffer);

open(int mode); T Elem * getRange(int index, int numElem, void * buffer);

close(); put(int index, T Elem value);

int getNumElem(); putRange(int index, int numElem, T Elem * buffer);

nest(nlob * extrn); bool isNested();

unNest(); restoreNestedRef(nlob * extrn);

TABLE 7. Definition of the dbarray template class.

Methods create(), destroy(), open() and close()
are self-explanatory. Method getNumElem() returns
the size (number of entries) of the array, whereas
setNumElem() sets it. Methods get() and put() allow
to retrieve (respectively set) the content of the element
index in the array. With getRange() and putRange() a
range of elements can be retrieved/set at a time.

Both nlob and dbarray classes implement the nestable
interface, which allows them to either store their content
in their own large object or as part of another external
nlob, as shown in Figure 16. In both cases the nested
state of the object will be transparent for the user,
except that when nested the object will be read-only.

nest unnest

T_Elem

T_Elem

nlob_1

nlob_2

nlob_extern

nlob_extern

nlob_1

dbarray

nlob_2
dbarray

FIGURE 16. Behaviour of the nest() and unnest()
methods.

The nestable interface provides the methods shown in
Table 8. The purpose of these methods is the following:

• nest(): this method gets as argument a pointer
extrn to an nlob. If the object whose nest() method
is called is an nlob, it appends its data to extrn,
keeping an internal reference to it as well as the
required indexes to be able to find on it its data.
If the object is not an nlob, then it calls the
nest() method (with the same argument) of all the
nestable objects it uses.

• unNest(): the object for which it is called must
have been previously nested. If it is an nlob, it
reads its data from the external nlob it uses and
stores them in its own large object. If it is not an
nlob, then it calls the unnest() method of all the
nestable objects it uses.

• isNested(): this method returns true if the object
is nested, false otherwise.

• restoreNestedRef (): the object for which it is called
must have been previously nested. It restores all
internal references to the nlob on which the object
has been nested, making them point to the nlob
passed as argument to the function (extrn). It is
used to correct these references when the external
nlob object has been reallocated. When called
for an nlob it just replaces its internal pointer
by the new one. For any other object, it calls
the restoreNestedRef () method (with the same
argument) of all the nestable objects used by it.

The dbarray class is used for the implementation of
most of the non-alphanumeric types, whereas its nesting
capabilities are designed to support the implementation
of temporal data types, as shown in next section.

7.3. Representation of Temporal Data Types

In the data model proposed in this paper, temporal data
types (e.g., mint , mreal , mregion, etc.) are represented
following a common schema, by decomposing them
into units, each of them containing a time interval for
which it is defined and the function that represents
its behavior during that time interval. Therefore,
it seems advisable to represent all of them using a
common data structure, providing the same interface
and simplifying the implementation of algorithms that
work on the temporal types. With this purpose, we
introduce the mapping data structure. It consists of an
array (dbarray) of units, a deftime field (of type periods)
and an additional nlob object extrn.

The methods provided by this data structure are
shown in Table 9. The template type T Unit specifies
the type of unit to use, whereas T Value is the non-
temporal type associated to it (e.g., point for a upoint).

Methods create(), destroy(), open() and close()
behave similarly to the ones of the dbarray class.
Method unitIndex () is used for getting the index of
the unit that defines the object’s value for a given time
instant t, whereas getUnit() allows to retrieve a unit by
its index. Method setUnit() allows to store one unit
in a given position in the array, whereas appendUnit()
appends it to the end of the array (increasing its
size by 1). Method deftime() returns the periods
of time for which the mapping contains units and
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Methods of the nestable interface (for a class T Elem)

T Elem::nest(nlob * extrn); bool T Elem::isNested();

T Elem::unNest(); T Elem::restoreNestedRef(nlob * extrn);

TABLE 8. Definition of the nestable interface.

template <class T Unit, class T Value> class mapping

private: dbarray<T Unit> intervals; int num of units;

periods deftime; nlob extrn;

public: create(int num of units); appendUnit(T Unit u);

destroy(); setUnit (int index, T Unit u);

open (int mode); Periods * deftime ();

close (); mapping * atperiods (Periods * p);

int numUnits (); mapping * at (T Value * v);

int unitIndex(Instant t); bool present (Instant * t);

T Unit * getUnit(int index); bool present (Periods * p);

TABLE 9. Definition of the mapping template class.

methods atperiods() and at() return a copy of the
mapping data structure restricted to the periods passed
as argument, or to the instants at which it takes the
non-temporal value passed as argument, respectively.
Method present() allows to check whether the object’s
value is defined at a given time instant or is ever defined
during a given set of time intervals.

Any T Unit type designed to be stored in the
mapping data structure must implement the nesting
interface. Whenever a unit is stored (methods
setUnit() and appendUnit()) it is nested over extrn
and stored in the dbarray. When a unit is retrieved
(method getUnit()), it is read from the dbarray and
its restoreNestedRef () method is called (with extrn as
argument) to ensure it points to the right place. The
object is returned nested, so if this is relevant the user
code should call its unnest() method. In general that
will not be needed, because in most cases the unit will
only be read.

With the implementation described above, a mapping
data structure can contain units with dbarray compo-
nents, allowing the implementation of a mregion as de-
scribed in section 3, with a root record containing a
mapping data structure for uregions, instead of the ar-
ray and the deftime field, and the uregions using a dbar-
ray instead of a conventional one.

7.4. Numbers and Robustness

As already mentioned when describing the ROSE
algebra module, the current implementation uses fixed
size rationals for space coordinates, and the same holds
for time values.

Although the use of such a representation for
the space, combined with some restriction approach
(e.g., dual grid), is enough to ensure consistency
among the spatial operations to be implemented in
this package, it is not enough to ensure it for
the whole spatiotemporal algebra, where continuously
changing values are represented. Moreover, not even

consistency between spatial operations can be ensured
if spatiotemporal operations returning spatial values are
used, because even if the user applications use dual grid
restrictions for the objects they store in the system, the
results of those spatiotemporal operations would not.

One solution would be to provide an extra operation
which would get a spatial value and return an
approximation conforming dual grid restrictions. That
way, for applications that need spatial consistency the
spatial result of any spatiotemporal operations can be
approximated to a dual grid conforming value, allowing
to use the spatiotemporal capabilities of the algebra
module and at the same time keep the consistency
among spatial operations (assuming of course that
the spatial values stored by the user applications also
conform to the dual grid restrictions). For applications
where spatial consistency is not relevant, this extra
operation can be simply ignored.

A second solution would be to replace the fixed
size rationals by varying length rationals, what would
ensure consistency among operations for the whole
spatiotemporal algebra. Although this option is not
being provided in the current implementation, we plan
to develop in the future a version with support for
varying length rationals and explore the costs that this
could have in its performance. The approach used in
the current version for implementing the mapping data
structure (where units using dbarrays are nested) could
be also used to deal with a varying size representation
for coordinates and time.

8. CONCLUSIONS

This paper provides the third major step of a
development started in the papers [11, 21, 14]. The
three steps are:

1. Design a comprehensive system of data types and
operations for moving objects (or, more generally,
time-dependent geometries), first at the level of an
abstract model [21].
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2. Define finite representations for all the types of the
abstract model that can be mapped into efficient
data structures [14]. This is the data type part of
a discrete model for [21].

3. Design efficient algorithms for the operations of the
abstract model, which is the operational part of the
discrete model for [21].

When we started the work on this third step, it
appeared rather overwhelming, due to the fact that the
generic design of operations in [21] literally produces
hundreds of signatures for which efficient algorithms
should be found, and it was not clear initially how many
of them can be treated in a generic way by the same
algorithm, or need specialized techniques. And indeed,
this paper is quite long. Nevertheless, after reducing the
scope slightly, we succeeded in mapping this unknown
terrain, and we feel that the paper strikes a reasonable
balance between treating briefly large sets of relatively
straightforward algorithms and going into detail on the
more involved ones.

As a result, this paper offers a very good basis
for the implementation of a quite powerful DBMS
extension package for moving objects. Note that the
model implemented here includes the case of geometries
changing in discrete steps; so this can be used as a quite
general package supporting spatio-temporal database
management.

So far we have assumed that the operations of
our moving objects algebra may be used in a query
language and are mapped directly to algorithms of
the physical algebra for query execution. A very
interesting issue for further research is the design of new
auxiliary operations in the physical algebra to support
compound operations in the logical algebra, so that
query optimization can map the latter to more efficient
algorithms. Two examples:

The compound operation min(deftime( )): mpoint
→ instant can be implemented in O(1) time by looking
up the first instant of the deftime index of the argument,
instead of first producing a copy of this index and then
looking up the instant. Hence, introducing such an
operation, called e.g. mindeftime would be beneficial.

The compound operation

atperiods( ,deftime(at( ,true))):
mregion ×mbool → mregion

restricts the moving region argument to the times when
its second argument is true. This can be implemented
by a parallel scan of the two argument mappings in
O(m + n + R) time. This compound operation is
particularly interesting as it implements the when
operator of the abstract model (which was always
supposed to be implemented by rewriting, see [21]).
Again, one might introduce a corresponding when
operator at the physical level.

Other future work is, of course, the implementation
of a DBMS extension package as described in this

paper (for us: completion of the prototype described
in Section 7), and the experimental evaluation of such
a package.
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[21] R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen,
N.A. Lorentzos, M. Schneider, and M.Vazirgiannis.
A Foundation for Representing and Querying Moving
Objects. ACM Transactions on Database Systems,
25(1):1–42, 2000.
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