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4.1 Introduction

In this chapter we develop DBMS data models and query languages to deal with
geometries changing over time. In contrast to most of the earlier work on this
subject, these models and languages are capable of handling continuously changing
geometries, or moving objects. We focus on two basic abstractions called moving
point and moving region. A moving point can represent an entity for which only the
position in space is relevant. A moving region captures moving as well as growing or
shrinking regions. Examples for moving points are people, polar bears, cars, trains,
or air planes; examples for moving regions are hurricanes, forest fires, or oil spills
in the sea.

The main line of research presented in this chapter takes a data type oriented ap-
proach. The idea is to view moving points and moving regions as three-dimensional
(2D-space + time) or higher-dimensional entities whose structure and behavior is
captured by modeling them as abstract data types. These data types can then be
integrated as attribute types into relational, object-oriented, or other DBMS data
models; they can be implemented as extension packages (“data blades”) for suitable
extensible DBMSs. Section 4.2 explains this idea in more detail and discusses some
of the basic questions related to it.

Once the basic idea is established, the next task is to design precisely a collection
of types and operations that adequately reflects the objects of the real world to be
modeled and is capable of expressing all (or at least, many) of the questions one
would like to ask about these objects. It turns out that besides the main types of
interest, moving point and moving region, a relatively large number of auxiliary
data types is needed. For example, one needs a line type to represent the projection
of a moving point into the plane, or a “moving real” to represent the time-dependent
distance of two moving points. It then becomes crucial to achieve (i) orthogonality
in the design of the type system, i.e., type constructors can be applied uniformly, (ii)
genericity and consistency of operations, i.e., operations range over as many types as
possible and behave consistently, and (iii) closure and consistency between structure
and operations of related non-temporal and temporal types. Examples of the last
aspect are that the value of a moving region, evaluated at a certain instant of time,
should be consistent with the definition of a static (non-temporal) region type, or
that the time-dependent distance function between two moving points, evaluated
at instant t0, yields the same distance value as determining for each of the two
moving points their positions p1 and p2 at instant t0, and then taking the distance
between p1 and p2. Section 4.3 presents such a design of types and operations in
some detail; it also illustrates the expressivity of the resulting query language by
example applications and queries.

Of course, when we design data types and operations, we have to specify their
semantics in some way. For each type, one has to define a suitable domain (the set
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of values allowed for the type), and for operations one needs to define functions
mapping the argument domains into the result domain. One of the fundamental
questions coming up is at what level of abstraction one should define semantics. For
example, a moving point can be defined either as a function from time into the 2D
plane, or as a polyline in the three-dimensional (2D + time) space. A (static) region
can be defined either as a connected subset of the plane with non-empty interior, or
as a polygon with polygonal holes. The essential difference is that in the first case
we define the domains of the data types just in terms of infinite sets whereas in the
second case we describe certain finite representations for the types.

We will discuss this issue in a bit more depth in Section 4.2 and introduce the
terms abstract model for the first and discrete model for the second level abstraction.
Both levels have their respective advantages. An abstract model is relatively clean
and simple; it allows one to focus on the essential concepts and not get bogged down
by implementation details. However, it has no straightforward implementation. A
discrete model fixes representations and is generally far more complex. It makes
particular choices and thereby restricts the range of values of the abstract model
that can be represented. For example, a moving point could be represented not only
by a 3D polyline but also by higher order polynomial splines. Both cases (and many
more) are included in the abstract model. On the other hand, once such a finite
representation has been selected, it can be translated directly to data structures.

Our conclusion is that both levels of modeling are needed and that one should
first design an abstract model of spatio-temporal data types and then continue by
defining a corresponding discrete model. Section 4.3 describes in fact an abstract
model in this sense. The definitions of semantics are given generally in terms of
infinite sets.

Section 4.4 then proceeds to develop a corresponding discrete model. Finite
representations for all the data types of the abstract model are introduced. Spatial
objects and moving spatial objects are described by linear approximations such
as polygons or polyhedra. For all the “moving” types, a sliced representation is
introduced which represents a temporal development as a set of units where a unit
describes the development as a certain “simple” function of time during a given
time interval. In Chapter 6 of this book it is shown how the representations of the
discrete model can be mapped into data structures that can be realistically used in a
DBMS environment and how example algorithms can work on these data structures
efficiently.

Section 4.4 concludes the main line of research presented in this chapter. Sec-
tion 4.5 entitled “Outlook” presents four other pieces of work carried out within
project CHOROCHRONOS. For lack of space, these developments are presented in
the form of relatively brief summaries. The first two can be viewed as extensions
of the approach described above, dealing with “spatio-temporal developments” and
time varying partitions of the plane. The latter two have a different focus of in-
terest and do not deal with moving objects; they develop a spatio-temporal model
over a rasterized space, and address the problem of treating legacy databases and
applications when a given database is changed to include the time dimension.

4.2 The Data Type Approach

In this section we describe the basic idea of representing moving objects by spatio-
temporal data types. After some motivation, the approach to modeling is explained,
and some example queries are shown. In the last subsection, we discuss two basic
issues related to the approach. This section (4.2) is based on [7].
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4.2.1 Motivation

We are interested in geometries changing over time, and in particular in geometries
that can change continuously, and hence in moving objects. In spatial databases,
three fundamental abstractions of spatial objects have been identified: A point de-
scribes an object whose location, but not extent, is relevant, e.g. a city on a large
scale map. A line (meaning a curve in space, usually represented as a polyline)
describes facilities for moving through space or connections in space (roads, rivers,
power lines, etc.). A region is the abstraction for an object whose extent is relevant
(e.g. a forest or a lake). These terms refer to two-dimensional space, but the same
abstractions are valid in three or higher-dimensional spaces.

Since lines (curves) are themselves abstractions or projections of movements, it
appears that they are not the primary entities whose movements should be consid-
ered. From a practical point of view, although line values can change over time, not
too many examples for moving lines come into mind. Hence it seems justified to
focus first1 on moving points and moving regions. Table 4.1 shows a list of entities
that can move, and questions one might ask about their movements.

Although we focus on the general case of geometries that may change in a
continuous manner (i.e. move), one should note that there is a class of applications
where geometries change only in discrete steps. Examples are boundaries of states,
or cadastral applications, where e.g. changes of ownership of a piece of land can only
happen through specific legal actions. Our proposed way of modeling is general and
includes these cases, but for them also more traditional strategies could be used.

Also, if we consider transaction time (or bitemporal) databases, it is clear
that changes to geometries happen only in discrete steps through updates to the
database. Hence it is clear that the description of moving objects refers first of all
to valid time. So we assume that complete descriptions of moving objects are put
into the database by the applications, which means we are in the framework of his-
torical databases reflecting the current knowledge about the past2 of the real world.
Transaction time databases about moving objects may be feasible, but will not be
considered initially.

There is also an interesting class of applications that can be characterized as
artifacts involving space and time, such as interactive multimedia documents, virtual
reality scenarios, animations, etc. The techniques developed here might be useful
to keep such documents in databases and ask queries related to the space and time
occurring in these documents.

4.2.2 Modeling

Let us assume that a database consists of a set of object classes (of different types
or schemas). Each object class has an associated set of objects; each object has
a number of attributes with values drawn from certain domains or atomic data
types. Of course, there may be additional features, such as object (or oid-) valued
attributes, methods, object class hierarchies, etc. But the essential features are the
ones mentioned above; these are common to all data models and already given in
the relational model.

We now consider extensions to the basic model to capture time and space. As far
as objects are concerned, an object may be created at some time and destroyed at
some later time. So we can associate a validity interval with it. As a simplification,

1 Nevertheless, in the systematic design of Section 4.2, time-dependent line values will
come into play for reasons of closure.

2 For certain kinds of moving objects with predetermined schedules or trajectories (e.g.
spacecraft, air planes, trains) the expected future can also be recorded in the database.



100 Güting et. al.

Moving Points Moving Regions

People

• Movements of a terrorist / spy / crim-
inal

Animals

• Determine trajectories of birds,
whales, . . .

• Which distance do they traverse, at
which speed? How often do they stop?

• Where are the whales now?
• Did their habitats move in the last 20

years?

Satellites, spacecraft, planets

• Which satellites will get close to the
route of this spacecraft within the next
4 hours?

Cars

• Taxis: Which one is closest to a pas-
senger request position?

• Trucks: Which routes are used regu-
larly?

• Did the trucks with dangerous goods
come close to a high risk facility?

Planes

• Were any two planes close to a colli-
sion?

• Are two planes heading towards each
other (going to crash)?

• Did planes cross the air territory of
state X?

• At what speed does this plane move?
What is its top speed?

• Did Iraqi planes cross the 39th degree?

Ships

• Are any ships heading towards shallow
areas?

• Find “strange” movements of ships in-
dicating illegal dumping of waste.

Rockets, missiles, tanks, submarines

• All kinds of military analyses

Countries

• What was the largest extent ever of
the Roman empire?

• On which occasions did any two states
merge? (Reunification, etc).

• Which states split into two or more
parts?

• How did the Serb-occupied areas
in former Yugoslavia develop over
time? When was the maximal extent
reached? Was Ghorazde ever part of
their territory?

Forests, Lakes

• How fast is the Amazone rain forest
shrinking?

• Is the dead sea shrinking? What is the
minimal and maximal extent of river
X during the year?

Glaciers

• Does the polar ice cap grow? Does it
move?

• Where must glacier X have been at
time Y (backward projection)?

Storms

• Where is the tornado heading? When
will it reach Florida?

High/low pressure areas

• Where do they go? Where will they be
tomorrow?

Scalar functions over space, e.g. tempera-
ture

• Where has the 0-degree boundary
been last midnight?

People

• Movements of the celts etc.

Troops, armies

• Hannibal going over the alps. Show his
trajectory. When did he pass village
X?

Cancer

• Can we find in a series of X-ray im-
ages a growing cancer? How fast does
it grow? How big was it on June 1,
1995? Why was it not discovered then?

Continents

• History of continental shift.

Table 4.1. Moving objects and related queries
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and to be able to work with standard data models, we can even omit this validity
interval, and just rely on time-dependent attribute values described next.

Besides objects, attributes describing geometries changing over time are of par-
ticular interest. Hence we would like to define collections of abstract data types , or
in fact many-sorted algebras containing several related types and their operations,
for spatial values changing over time. Two basic types are mpoint and mregion,
representing a moving point and a moving region, respectively. Let us assume that
purely spatial data types called point and region are given that describe a point and
a region in the 2D-plane3 (a region may consist of several disjoint areas which may
have holes) as well as a type time that describes the valid time dimension. Then we
can view the types mpoint and mregion as mappings from time into space, that is

mpoint = time → point

mregion = time → region

More generally, we can introduce a type constructor τ which transforms any
given atomic data type α into a type τ(α) with semantics

τ(α) = time → α

and we can denote the types mpoint and mregion also as τ(point) and τ(region),
respectively.

A value of type mpoint describing a position as a function of time can be rep-
resented as a curve in the three-dimensional space (x, y, t) shown in Figure 4.1. We
assume that space as well as time dimensions are continuous, i.e., isomorphic to the
real numbers. (It should be possible to insert a point in time between any two given
times and ask for e.g. a position at that time.)

x

y

t

Fig. 4.1. A moving point

A value of type mregion is a set of volumes in the 3D space (x, y, t). Any inter-
section of that set of volumes with a plane t = t0 yields a region value, describing
the moving region at time t0. Of course, it is possible that this intersection is empty,
and an empty region is also a proper region value.

We now describe a few example operations for these data types. For the moment,
these are purely for illustrative purposes; this is in no way intended to be a closed
or complete design. Such a complete design is developed in Section 4.3.

Generic operations for moving objects are, for example:
3 We restrict attention to movements in 2D space, but the approach can, of course, be

used as well to describe time-dependent 3D space.
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τ(α) × time → α at
τ(α) → α minvalue, maxvalue
τ(α) → time start, stop
τ(α) → real duration
α → τ(α) const

Operation at gives the value of a moving object at a particular point in time.
Minvalue and maxvalue give the minimum and maximum values of a moving
object. Both functions are only defined for types α on which a total order exists.
Start and stop return the minimum and maximum of a moving value’s (time)
domain, and duration gives the total length of time intervals a moving object
is defined. We shall also use the functions startvalue(x) and stopvalue(x) as an
abbreviation for at(x, start(x)) and at(x, stop(x)), respectively. Whereas all these
operations assume the existence of moving objects, const offers a canonical way to
build spatio-temporal objects: const(x) is the “moving” object that yields x at any
time.

In particular, for moving spatial objects we may have operations such as

mpoint × mpoint → mreal mdistance
mpoint × mregion → mpoint visits

Mdistance computes the distance between the two moving points at all times and
hence returns a time changing real number, a type that we call mreal (“moving
real”; mreal = τ(real)), and visits returns the positions of the moving point given
as a first argument at the times when it was inside the moving region provided as a
second argument. Here it becomes clear that a value of type mpoint may also be a
partial function, in the extreme case a function where the point is undefined at all
times.

Operations may also involve pure spatial or pure temporal types and other
auxiliary types. For the following examples, let line be a data type describing a
curve in 2D space which may consist of several disjoint pieces; it may also be self-
intersecting. Let region be a type for regions in the plane which may consist of
several disjoint faces with holes. Let us also have operations

mpoint → line trajectory
mregion → region traversed
point × region → bool inside
line → real length

Here trajectory is the projection of a moving point onto the plane. The corre-
sponding projection for moving regions is the operation traversed that gives the
total area the moving region ever has covered. Inside checks whether a point lies
inside a region, and length returns the total length of a line value.

4.2.3 Some Example Queries

The presented data types can now be embedded into any DBMS data model as
attribute data types, and the operations be used in queries. For example, we can
integrate them into the relational model and have a relation

flights (id:string, from:string, to:string, route:mpoint)

We can then ask a query “Give me all flights from Düsseldorf that are longer
than 5000 kms”:

SELECT id

FROM flights

WHERE from = "DUS" AND length(trajectory(route)) > 5000
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This query uses projection into space. Dually, we can also formulate queries project-
ing into time. For example, “Which destinations can be reached from San Francisco
within 2 hours?”:

SELECT to

FROM flights

WHERE from = "SFO" AND duration(route) <= 2.0

Beyond projections into space and time, there are also genuine spatio-temporal
questions that cannot be solved on projections. For example, “Find all pairs of
planes that during their flight came closer to each other than 500 meters!”:

SELECT A.id, B.id

FROM flights A, flights B

WHERE A.id <> B.id AND

minvalue(mdistance(A.route, B.route)) < 0.5

This is in fact an instance of a spatio-temporal join.
The information contained in spatio-temporal data types is very rich. In partic-

ular, relations that would be used in traditional or spatial databases can be readily
derived. For instance, we can easily define views for flight schedules and airports:

CREATE VIEW schedule AS

SELECT id, from, to, start(route) AS departure,

stop(route) AS arrival

FROM flights

CREATE VIEW airport AS

SELECT DISTINCT from AS code, startvalue(route) AS location

FROM flights

The above examples use only one spatio-temporal relation. Even more interesting
examples arise if we consider relationships between two or more different kinds of
moving objects. To demonstrate this we use a further relation consisting of weather
information, such as high pressure areas, storms, or temperature maps.

weather (kind:string, area:mregion)

The attribute “kind” gives the type of weather event, such as, “snow-cloud” or
“tornado”, and the “area” attribute provides the evolving extents of the weather
features.

We can now ask, for instance, “Which flights went through a snow storm?”

SELECT id

FROM flights, weather

WHERE kind = "snow storm" AND duration(visits(route, area)) > 0

Here the expression visits(route, area) computes for each flight/storm combination
a moving point that gives the movement of the plane inside this particular storm. If
a flight passed a storm, this moving point is not empty, that is, it exists for a certain
amount of time, which is checked by comparing the duration with 0. Similarly, we
can find out which airports were affected by snow storms:

SELECT DISTINCT from

FROM airport, weather

WHERE kind = "snow storm" AND inside(location, traversed(area))

Finally, we can extend the previous query to find out which airports are most
affected by snow storms. We can intersect the locations of airports with all snow
storms by means of visits and determine the total durations:
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SELECT code, SUM(duration(visits(const(location), area)))

AS storm hours

FROM airport, weather

WHERE kind = "snow storm"

GROUP BY code

HAVING storm hours > 0

ORDER BY storm hours

4.2.4 Some Basic Issues

Given this approach to spatio-temporal modeling and querying, several basic ques-
tions arise:

• We have seen spatio-temporal data types that are mappings from time into
spatial data types. Is this realistic? How can we store them? Don’t we need
finite, discrete representations?

• If we use discrete representations, what do they mean? Are they observations
of the moving objects?

• If we use discrete representations, how do we get the infinite entities from them
that we really want to model? What kind of interpolation should be used?

In the following subsections we discuss these questions.

Abstract vs. Discrete Modeling. What does it mean to develop a data model with
spatio-temporal data types? Actually, this is a design of a many-sorted algebra.
There are two steps:

1. Invent a number of types and operations between them that appear to be suit-
able for querying. So far these are just names, which means one gives a signature.
Formally, the signature consists of sorts (names for the types) and operators
(names for the operations).

2. Define semantics for this signature, that is, associate an algebra, by defining
carrier sets for the sorts and functions for the operators. So the carrier set for
a type α contains the possible values for α, and the functions are mappings
between the carrier sets.

For a formal definition of many-sorted signature and algebra see [24] or [18]. Now
one can make such designs at two different levels of abstraction, namely as abstract
or as discrete models.

Abstract models allow us to make definitions in terms of infinite sets, without
worrying whether finite representations of these sets exist. This allows us to view a
moving point as a continuous curve in the 3D space, as an arbitrary mapping from
an infinite time domain into an also infinite space domain. All the types that we
get by application of the type constructor τ are functions over an infinite domain,
hence each value is an infinite set.

This abstract view is the conceptual model that we are interested in. The curve
described by a plane flying over space is continuous; for any point in time there
exists a value, regardless of whether we are able to give a finite description for
this mapping (or relation). In Section 4.2.2 we have in fact described the types
mentioned under this view. In an abstract model, we have no problem in using
types like “moving real”, mreal, and operations like

mpoint × mpoint → mreal mdistance

since it is quite clear that at any time some distance between the moving points
exists (when both are defined).
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The only trouble with abstract models is that we cannot store and manipulate
them in computers. Only finite and in fact reasonably small sets can be stored; data
structures and algorithms have to work with discrete (finite) representations of the
infinite point sets. From this point of view, abstract models are entirely unrealistic;
only discrete models are usable.

This means we somehow need discrete models for moving points and moving
regions as well as for all other involved types (mreal, region, . . . ). We can view
discrete models as approximations, finite descriptions of the infinite shapes we are
interested in. In spatial databases there is the same problem of giving discrete
representations for in principle continuous shapes; there almost always linear ap-
proximations have been used. Hence, a region is described in terms of polygons and
a curve in space (e.g. a river) by a polyline. Linear approximations are attractive
because they are easy to handle mathematically; most algorithms in computational
geometry work on linear shapes such as rectangles, polyhedra, etc. A linear approx-
imation for a moving point is a polyline in 3D space; a linear approximation for a
moving region is a set of polyhedra (see Figure 4.2). Remember that a moving point
can be a partial function, hence it may disappear at times, the same is true for the
moving region.
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Fig. 4.2. Discrete representations for moving points and moving regions

Suppose now we wish to define the type mreal and the operation mdistance.
What is a discrete representation of the type mreal? Since we like linear approx-
imations for the reasons mentioned above, the obvious answer would be to use a
sequence of pairs (value, time) and use linear interpolation between the given values,
similarly as for the moving point. If we now try to define the mdistance operator

mpoint × mpoint → mreal mdistance

we have to determine the time-dependent distance between two moving points rep-
resented as polylines. To see what that means, imagine that through each vertex of
each of the two polylines we put a plane t = ti parallel to the xy-plane. Within each
plane t = ti we can easily compute the distance; this will result in one of the vertices
for the resulting mreal value. Between two adjacent planes we have to consider the
distance between two line segments in 3D space (see Figure 4.3). However, this is
not a linear but a quadratic function.

So it seems that linear functions are not enough to represent moving reals. Maybe
quadratic polynomials need to be introduced to represent the development between
two vertices. But this immediately raises other questions. Why just quadratic func-
tions motivated by the mdistance operation, perhaps other operations need other
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Fig. 4.3. Distance between segments of two moving points represented by polylines

functions? And all kinds of operations that we need on moving reals must then be
able to deal with these functions.

This example illustrates that choosing finite representations leads into difficult
tradeoffs. Other choices for a moving point could be polynomial splines which are
capable of describing changes in speed or acceleration much better (with polylines,
speed is stepwise constant, and acceleration is either 0 or infinite, which seems quite
unnatural). For moving regions, an alternative to the polyhedral representation
could be sequences of affine mappings (where each transition from one state of a
region to the next can be described by translation, rotation, and scaling). This
model can describe rotations much better, but does not support arbitrary changes
of shape.

We have concluded from such considerations that both levels of modeling are
indispensable. For the discrete model this is clear anyway, as only discrete models
can be implemented. However, if we restrict attention directly to discrete models,
there is a danger that a conceptually simple, elegant design of query operations is
missed. This is because the representational problems might lead us to prematurely
discard some options for modeling.

For example, from the discussion above one might conclude that moving reals are
a problem and no such type should be introduced. But then, instead of operations
minvalue, maxvalue, etc. on moving reals one has to introduce corresponding op-
erations for each time-dependent numeric property of a moving object. Suppose we
are interested in distance between two moving points, speed of a moving point,
and size and perimeter of a moving region. Then we need operators mindistance,
maxdistance, minspeed, maxspeed, and so forth. Clearly, this leads to a prolif-
eration of operators and to a bad design of a query language. So the better strategy
is to start with a design at the abstract level, and then to aim for that target when
designing discrete models.

Observations vs. Description of Shape. Looking at the sequence of 3D points de-
scribing a moving point in a discrete model, one may believe that these are obser-
vations of the moving object at a certain position at a specific time. This may or
may not be the case. Our view is that it is, first of all, an adequate description of
the shape of a continuous curve (i.e., an approximation of that curve). We assume
that the application has complete knowledge about the curve, and puts into the
database a discrete description of that curve.

What is the difference to observations? Observations could mean that there are
far too many points in the representation, for example, because a linear move-
ment over an hour happens to have been observed every second. Observations could
also be too few so that arbitrarily complex movements have happened between two
recorded points; in that case our (linear or other) interpolation between these points
could be arbitrarily wrong. Hence we assume that the application, even if it does
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make observations, employs some preprocessing of observations and also makes sure
that enough observations are taken. Note that it is quite possible that the appli-
cation adds points other than observations to a curve description, as it may know
some physical laws governing the movements of this particular class of objects.

The difference in view becomes even more striking if we consider moving regions.
We require the application to have complete knowledge about the 3D shape of a
moving region so that it can enter into the database the polyhedron (or set of poly-
hedra) as a good approximation. In contrast, observations could only be a sequence
of region values. But whereas for moving points it is always possible to make a
straight line interpolation between two adjacent positions, there is no way that a
database system could, in general, deduce the shape of a region between two arbi-
trary successive observations. Hence, it is the job of the application to make enough
observations and otherwise have some knowledge how regions of this kind can be-
have and then apply some preprocessing in order to produce a reasonable polyhedral
description. How to get polyhedra from a sequence of observations, and what rules
must hold to guarantee that the sequence of observations is “good enough” may be
a research issue in its own right. We assume this is solved when data are put into
the database.

The next two sections of this chapter will present first a careful and formal design
of an abstract model, and then a discrete model offering finite representations for
the types of the abstract model.

4.3 An Abstract Model: A Foundation for Representing
and Querying Moving Objects

This section aims to offer a precise and conceptually clean foundation for imple-
menting a spatio-temporal DBMS. It presents a simple and expressive system of
abstract data types, comprising data types and encapsulating operations, that may
be integrated into a query language, to yield a powerful language for querying spatio-
temporal data such as moving objects. In addition to presenting the data types and
operations, insight into the considerations that went into the design is offered, and
the use of the abstract data types is exemplified using SQL. This section is based
on [21] where complete formal definitions of all the concepts presented here can be
found.

The next section defines the foundation’s data types. As a precursor to defining
the operations on these, Section 4.3.2 briefly presents the SQL-like language, the
abstract data types are embedded into. An overview of the operations is provided
in Section 4.3.3, and Sections 4.3.4 and 4.3.5 present the specific operations. Sec-
tion 4.3.6 demonstrates the use of the abstract data types in a forest management
application. Finally, Section 4.3.7 summarizes the section.

4.3.1 Spatio-Temporal Data Types

This section presents a type system, constructed by introducing basic types and
type constructors. Following an overview, the specific types are presented.

Overview The signature (see, e.g., [18,24]) given in Table 4.2 is used in defining
the type system. In this signature, kinds are capitalized and denote sets of types,
and type constructors are in italics. This signature generates a set of terms, which
are the types in the system. Terms include int, region, moving(point), range(int),
etc. Type constructor range is applicable to all types in kinds BASE and TIME,
and hence the types that can be constructed by it are range(int), range(real),
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→ BASE int, real, string, bool
→ SPATIAL point, points, line, region
→ TIME instant

BASE ∪ TIME → RANGE range
BASE ∪ SPATIAL → TEMPORAL intime, moving

Table 4.2. Signature Describing the Type System

range(string), range(bool), and range(instant). Type constructors with no argu-
ments, for example region, are types already and are called constant.

Although the focus is on spatio-temporal types, especially moving(point) and
moving(region), to obtain a closed system, it is necessary to include the other types
given in the table. We proceed to describe these types in moe detail, covering also
their semantics.

Base Types The base types are int, real, string, and bool. These have the usual
semantics, and they all include an undefined value. The semantics of a type α is
given by its carrier set, Aα. For example, Astring

�
= V ∗ ∪ {⊥}, where V is a finite

alphabet. As a shorthand, we define Āα to mean Aα \ {⊥}, i.e., the carrier set
without the undefined value.

Spatial Types The four spatial types in the system, point, points, line, and region
(cf. [19]), are illustrated in Figure 4.4. Informally, these types have the following
meaning. A value of type point represents a point in the Euclidean plane or is
undefined. A points value is a finite set of points. A line value is a finite set of
continuous curves in the plane. A region is a finite set of disjoint parts, termed
faces, each of which may have holes. A face may lie within a hole of another face.
Each of the three set types may be empty.

a point value a points value a line value a region value

Fig. 4.4. The Spatial Data Types

The formal definitions, given elsewhere [21], are based on the point set paradigm
and on point set topology, which provides concepts of continuity and closeness, as
well as allows us to identify special topological structures of a point set, such as
its interior, closure, boundary, and exterior. We assume that the reader has some
familiarity with basic concepts of topology [17].

The point and point set types are quite simple to define formally. Specifically,
Apoint

�
= R

2 ∪ {⊥} and Apoints
�
= {P ⊆ R

2 | P is finite}.
The definition of line is based on curves (continuous mappings from [0, 1] to R

2)
that are simple in the sense that the intersection of two curves yields only a finite
number of proper intersection points (disregarding common parts that are curves
themselves). The line data type is to represent any finite union of such simple
curves. When the abstract design of data types given here is implemented by some
discrete design, some class of curves will be selected for representation, for example
polygonal lines, curves described by cubic functions, etc. We just require that the
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class of curves selected has this simplicity property. This is needed, for example, to
ensure that the intersection operation between two line values yields a finite set
of points, representable by the points data type.

A finite union of curves basically yields a planar graph structure (whose nodes
are intersections of curves and whose edges are intersection-free pieces of curves).
Given a set of points of such a graph, there are many different sets of curves resulting
in this point set. For example, a path over the graph could be interpreted as a
single curve or as being composed of several curves. A design is chosen where (i)
a line value is a point set in the plane that can be described as a finite union of
curves, and (ii) there is a unique collection of curves that can serve as a “canonical”
representation of this line value. For a line Q, we let sc(Q) (the simple curves of
Q) denote this representation.

When defining certain operations, we need a notion of components of a line
value. Let meet* denote the transitive closure of the meet relationship on curves.
This relation partitions the components of a line value Q into connected com-
ponents, denoted as components(sc(Q)). The decomposition into corresponding
point sets is defined as blocks(Q) = {points(C) | C ∈ components(sc(Q))}, where
points(C) returns the points in a partition.

A region value is defined as a point set in the plane with a certain structure.
region values do not have geometric anomalies such as isolated or dangling line
or point features, and missing lines and points in the form of cuts and punctures.
Specifically, a region can be viewed as a finite set of so-called faces, where any two
faces are disjoint except for finitely many “touching points” at their boundaries.
Moreover, boundaries of faces are simple (as for lines). For example, the intersection
of two regions will also produce only finitely many isolated intersection points. The
boundary of a face may have outer as well as inner parts, i.e., a face may have holes.

We require that the same class of curves is used in defining the line and the
region type. We can denote a given region value Q by faces(Q). We also extend
the shorthand Ā to the spatial data types and all other types α whose carrier set
contains sets of values. For these, we define Āα

�
= Aα \ {∅}.

Time Type Type instant represents time points. Time is considered to be linear
and continuous, i.e., isomorphic to the real numbers. Specifically, the carrier set for
instant is Ainstant

�
= R ∪ {⊥}.

Temporal Types From the base and spatial types, we derive corresponding tem-
poral types. Type constructor moving yields, for any given type α, a mapping from
time to α.

Definition 1. Let α, with carrier set Aα, be a data type to which the moving type
constructor is applicable. Then the carrier set for moving(α) is defined as follows:

Amoving(α)
�
= {f |f : Āinstant → Āα is a partial function ∧ Γ (f) is finite}

Hence, each value f is a function describing the development over time of a value
from the carrier set of α. The condition “Γ (f) is finite” ensures that f consists of
only a finite number of continuous components (the notion of continuity used here is
defined elsewhere [21]). As a result, projections of moving objects (e.g., into the 2D
plane) have only a finite number of components. This is needed in the decompose
operation (for lack of space not defined in this section, but in [21]), and it serves to
making the design implementable.

For all “moving” types we introduce extra names by prefixing the argument type
with an “m”, that is, mpoint, mpoints, mline, mregion, mint, mreal, mstring,
and mbool. This is just to shorten some signatures.
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The temporal types obtained through the moving type constructor are func-
tions, or infinite sets of pairs (instant, value). It is practical to have a type for
representing any single element of such a function, i.e., a single (instant, value)-
pair, for example, to represent the result of a time-slice operation. The intime type
constructor converts a given type α into a type that associates instant values with
values of α.

Definition 2. Let α be a data type to which the intime type constructor is appli-
cable, with carrier set Aα. The carrier set for intime(α), is defined as follows:

Aintime(α)
�
= Ainstant × Aα

Range Types (Sets of Intervals) For all temporal types, we desire operations
that project into their domains and ranges. For the moving counterparts of the base
types, e.g., moving(real) (whose values come from a one-dimensional domain), the
projections are, or can be compactly represented as, sets of intervals over the one-
dimensional domain. Hence, we are interested in types to represent sets of intervals
over the real numbers, over the integers, etc. The range type constructor provides
these types.

Definition 3. Let α be a data type to which the range type constructor is appli-
cable (and hence on which a total order < exists). An α-interval is a set X ⊆ Āα

such that ∀x, y ∈ X ∀z ∈ Āα (x < z < y ⇒ z ∈ X).
Two α-intervals are adjacent if they are disjoint and their union is an α-interval.

An α-range is a finite set of disjoint, non-adjacent intervals. For an α-range R,
points(R) denotes the union of all its intervals.

Definition 4. Let α be any data type to which the range type constructor is
applicable. Then the carrier set for range(α) is:

Arange(α)
�
= {X ⊆ Āα | ∃ an α-range R (X = points(R))}

A range value X has a unique associated α-range denoted by intvls(X). We use
periods as a shorthand for ranges over the time domain, range(instant).

Design Rationale We have attempted to ensure consistency and closure between
non-temporal and temporal types. The former is ensured by introducing temporal
types for all base types and all spatial types through the moving constructor. Clo-
sure under projection is ensured: For all temporal types, data types are available to
represent the results of projections into (time) domain and range.

The type system offers uniform support for the point vs. point set view. All data
types belong to either a one- or two-dimensional space. This principle requires that
each space includes data types that represent a single value (a “point”) and a set
of values (a “point set”). This is the basis for the definitions of generic operations
in the next sections and is explained in more detail there.

Additional discussions of design considerations may be found in [20].

4.3.2 Language Embedding of Abstract Data Types

In order to illustrate the use in queries of the operations to be defined in the next
section, these must be embedded in a query language. We use an SQL-like lan-
guage, with which most readers should be familiar. It is convenient to employ a few
constructs, which are expressible in one form or another in most object-oriented or
object-relational query languages. We briefly explain these constructs.

Assignment. The construct LET <name> = <query> assigns the result of query
to name.
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Multistep queries. A query may encompass a list of initial assignments and one
or more subsequent query expressions.

Conversions between sets of objects and atomic values. A single-attribute, single-
tuple relation may be converted into a typed, atomic value and vice-versa, using
the notations ELEMENT(<query>) and SET(<attrname>, <value>). For example,
expression SET(name, "John Smith") returns a relation with an attribute name
and a single tuple with value John Smith.

Defining derived attributes. We allow arbitrary abstract data type operations in
the WHERE clause, where they form predicates, and in the SELECT clause, where they
produce new attributes. The notation <new attrname> AS <expression> is used.

Defining operations. New operations may be derived from existing ones, using
LET <name> = <functional expression>. A functional expression has the form
FUN (<parameter list>) <expression> and corresponds to the lambda abstrac-
tion in functional languages. For example, a new operation square can be defined
and used as follows: LET square = FUN (m:integer) m * m; square(5)

Defining aggregate functions. Any binary, associative, and commutative opera-
tion defined on a data type can be used as an aggregate function over a column
of that data type, using the notation AGGR(<attrname>, <operator>, <neutral
element>). In case the argument relation is empty, the neutral element is returned.
In case it has a single tuple, then that single attribute value is returned; otherwise,
the existing values are combined by the given operator. Moreover, an aggregate func-
tion may be named, using the notation LET <name> = AGGREGATE(<operator>,
<neutral element>).

With these constructs and given a relation employee(name:string, salary:int,
permanent:bool), we can sum all salaries and determine whether all employees have
permanent positions.

SELECT AGGR(salary, +, 0) FROM employee

LET all = AGGREGATE(and, TRUE);

SELECT all(permanent) FROM employee

4.3.3 Overview of Data Type Operations

The design of the operations adheres to three principles: (i) Design operations as
generic as possible. (ii) Achieve consistency between operations on non-temporal
and temporal types. (iii) Capture the interesting phenomena.

The first principle is crucial, as the type system is quite large. To avoid a prolif-
eration of operations, a unifying view of collections of types is mandatory. This is
enabled by relating each type to either a one-dimensional or a two-dimensional space
and by considering all values as either single elements or subsets of the respective
space. For example, type int describes single elements of the one-dimensional space
of integers, while range(int) describes sets of integers. Similarly, point describes
single elements of two-dimensional space, whereas points, line, and region describe
subsets of this space.

Next, in order to achieve consistency of operations on non-temporal and tempo-
ral types, we first define operations on non-temporal types and then systematically
lift these operations to become temporal variants of the respective types.

Finally, to obtain a powerful query language, it is necessary to include operations
that address the most important concepts from various domains (or branches of
mathematics). Whereas simple set theory and first-order logic are certainly the
most fundamental and best-understood parts of query languages, operations based
on order relationships, topology, metric spaces, etc., are also needed. While there
is no clear recipe for achieving closure of “interesting phenomena,” this motivates
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the inclusion of concepts and operations such as distance, size of a region, and
relationships of boundaries.

Section 4.3.4 develops operations on non-temporal types, based on the generic
point and point set (value vs. subset of space) view of these types. Section 4.3.5
defines operations on temporal types.

4.3.4 Operations on Non-Temporal Types

The classes of operations on non-temporal types are given in Table 4.3, which also
lists the names of the operations on these types. Although the focus is on moving
objects, and hence on temporal types, the definitions of operations on non-temporal
types are essential, as these operations will later be lifted, to obtain operations on
temporal types.

Class Operations

Predicates isempty
=, �=, intersects, inside
<,≤,≥, >, before
touches, attached, overlaps, on border,
in interior

Set Operations intersection, union, minus
crossings, touch points, common border

Aggregation min, max, avg, center, single

Numeric no components, size, perimeter, duration,
length, area

Distance and Direction distance, direction

Base Type Specific and, or, not

Table 4.3. Classes of Operations on Non-Temporal Types

We take the view that we are dealing with single values and sets of these values
in one- and two-dimensional space. The types can then be classified according to
Table 4.4. (Remember that “temporal types” are functions of time. Types instant
and periods are not temporal types in this sense.) The table contains five one-

1D Spaces 2D Space
discrete continuous

Integer Boolean String Real Time 2D

point int bool string real instant point

point
set

range(int) range(bool) range
(string)

range
(real)

periods points, line,
region

Table 4.4. Classification of Non-Temporal Types

dimensional spaces, Integer, Boolean, etc., and one two-dimensional space, 2D. For
example, space Integer has two types, int and range(int). We distinguish between
1D and 2D spaces because only the 1D spaces have a (natural) total order. The
distinction between discrete and continuous one-dimensional spaces is important for
certain numeric operations. To have a uniform terminology, in any of the respective
spaces, we call a single element a point and a subset of the space a point set; and
we classify types as point types or point set types.

Example 1. We introduce the following example relations for use within this section,
representing cities, countries, rivers, and highways in Europe.
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city(name:string, pop:int, center:point)
country(name:string, area:region)
river(name:string, route:line)
highway(name:string, route:line)

Notations for Signatures The notations for signatures used when defining the
data type operations next are partly based on Table 4.4. We let π and σ be type
variables that range over all point and point set types of Table 4.4, respectively.
If several type variables occur in a signature (e.g., for binary operations), then
they are assumed to range over types of the same space. For example, in signature
π×σ → α we can select one-dimensional space Integer and instantiate π to int and
σ to range(int); or we can select two-dimensional space 2D and then instantiate π
to point and σ to either points, line, or region.

In signature σ × σ → α, both arguments have to be the same type. However, in
signature σ1 ×σ2 → α, type variables σ1 and σ2 can be instantiated independently,
but must range over the same space. The notation α ⊗ β → γ indicates that any
order of the two argument types is valid.

Some operations are restricted to certain classes of spaces, namely 1D = {Integer,
Boolean, String, Real, Time}, 2D = {2D}, 1Dcont = {Real, Time}, 1Dnum =
{Integer, Real, Time}, and cont = {Real, Time, 2D}. A signature is restricted to a
class of spaces by putting the name of the class behind it in square brackets. For
example, a signature α → β [1D] is valid for all one-dimensional spaces.

Generic operations with generic names may have more appropriate, specific
names when applied to specific types. For example, a generic size operation ex-
ists for point set types. For type periods the name duration is more appropriate.
In this case, we introduce the more specific name as an alias with the notation
size[duration].

In defining semantics, u, v, . . . denote single values of a π type, and U, V, . . .
generic sets of values (point sets) of a σ type. For binary operations, u or U will
refer to the first and v or V to the second argument. Furthermore, b (B) ranges
over values (sets of values) of base types, and predicates are denoted by p. We use
µ to range over moving objects and t (T ) to range over instant values (periods).

For the definition of the semantics of operations we generally assume strict
evaluation, i.e., for any function fop defining the semantics of an operation op
we assume fop(. . . ,⊥, . . .) = ⊥. Undefined arguments are therefore not handled
explicitly in definitions.

Predicates We consider unary and binary predicates. At this abstract level, we
can ask whether a single point is undefined, and whether a point set is empty. The
generic predicate isempty[undefined] is used for this purpose.

The design of binary predicates is based on the following strategy. First, we con-
sider possible relationships between two points (single values), two point sets, and a
point vs. a point set in the respective space. Second, orthogonal to this, predicates
are based on three different concepts, namely set theory, order relationships, and
topology. This design is shown in Table 4.5. The signatures and definitions for these
predicates are as expected and have been omitted. Predicates related to distance or
direction (e.g., “north”) can be obtained via numeric evaluations (see Section 4.3.4).

Set Operations Set operations are fundamental and are available for all point-set
types. Where feasible, we also allow set operations on point types, thus allowing
expressions such as u minus v and U minus u. Resulting singleton or empty sets
are interpreted as point values.
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Sets Order (1D) Topology

point vs. point u = v, u �= v u < v, u ≤ v
u ≥ v, u > v

point set U = V, U �= V U before V ∂U ∩ ∂V �= ∅ (touches)
vs. point set U ∩ V �= ∅

(intersects)
∂U ∩ V o �= ∅ (attached)

U ⊆ V (inside) Uo ∩ V o �= ∅ (overlaps)

point u ∈ U (inside) u before V u ∈ ∂U (on border)
vs. point set U before v u ∈ Uo (in interior)

Table 4.5. Analysis of Binary Predicates

Defining set operations on the combination of one- and two-dimensional point
sets is more involved. This is because we are using arbitrary closed or open sets
in one-dimensional space, whereas only closed point sets (points, line, and region)
exist in two-dimensional space. This renders it necessary to apply a closure operation
after applying the set operations on such entities which adds all points on the
boundary of an open set.

Because there are three point set types in 2D space, an analysis of which ar-
gument type combinations make sense (return interesting results) and of what the
result types are is required.

Generally, set operations may return results that intermix zero-, one-, and two-
dimensional point sets, i.e., points, lines, and proper regions. Usually one is inter-
ested mainly in the result of the highest dimension. This is reflected in the concept
of regularized set operations [32]. For example, the regularized intersection removes
all lower-dimensional pieces from the corresponding intersection result. We adopt
regularization in the semantics of the three “standard” 2D set operations, union,
minus, and intersection.

The union of arguments of equal types has the usual semantics, and union on
different types is not defined. Difference always results in the type of the first ar-
gument. Closure has to be applied to the result. Intersection produces results of
all dimensions smaller than or equal to the dimension of the lowest-dimensional
argument. For example, the intersection of a line value with a region value may
result in points and lines. We define the intersection operator for all type combi-
nations with regularized semantics. To make the other parts of results available, we
introduce specialized operators, e.g., common border and touch points.

The resulting set operations are given in Table 4.6. The notation min(σ1, σ2)
refers to taking the minimum in an assumed “dimensional” order: points < line <
region. The table uses predicates, e.g., is2D, with the obvious meaning, as well
as the notations ρ(Q), Qo, and ∂Q for the closure, interior, and boundary of Q,
respectively.

The following example shows how, with union and intersection, we obtain the
corresponding aggregate functions over sets of objects (relations).

Example 2. “Determine the region of Europe from the regions of its countries.”

LET sum = AGGREGATE(union, TheEmptyRegion);

LET Europe = SELECT sum(area) FROM country

Aggregation Aggregation reduces sets of points to points (Table 4.7). For open and
half-open intervals, we use the infimum and supremum values, i.e., the maximum
and minimum of their closure, for computing minimum and maximum values. This
is preferable over returning undefined values. In all domains that have addition, we
can compute the average (avg). In 2D, the average is based on vector addition and
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Operation Signature Semantics

intersection π × π → π if u = v then u else ⊥
minus π × π → π if u = v then ⊥ else u

intersection π ⊗ σ → π if u ∈ V then u else ⊥
minus π × σ → π if u ∈ V then ⊥ else u

σ × π → σ if is2D(U) then ρ(U \ {v})
else U \ {v}

union π ⊗ σ → σ if is1D(V ) or type(V ) = points
then V ∪ {u} else V

intersection, σ × σ → σ [1D] U ∩ V, U \ V, U ∪ V
minus, union

intersection σ1 × σ2 → min(σ1, σ2) [2D] [21]
minus σ1 × σ2 → σ1 [2D] ρ(Q1 \ Q2)
union σ × σ → σ [2D] Q1 ∪ Q2

crossings line × line → points [21]
touch points region ⊗ line → points

region × region → points
common
border

region × region → line

Table 4.6. Set Operations

Operation Signature Semantics

min, max σ → π [1D] min(ρ(U)), max(ρ(U))

avg σ → π [1Dnum] 1
|intvls(U)|

∑
T∈intvls(U)

sup (T )+inf (T )
2

avg[center] points → π [2D] 1
n

∑
p∈U

−→p
avg[center] line → π [2D] 1

‖U‖
∑

c∈sc(U)
−→c ‖c‖

avg[center] region → π [2D] 1
M

∫
U
−→p dA where M =

∫
U

dA

single σ → π if ∃u : U = {u} then u else ⊥
Table 4.7. Aggregate Operations

is usually called center (of gravity). It is often useful to have a “casting” operation
available to transform a singleton set into its single value; operation single does
this conversion.

Example 3. The query “find the point where highway A1 crosses the river Rhine”
can be expressed as:

SELECT single(crossings(R.route, H.route))

FROM river R, highway H

WHERE R.name = "Rhine" and H.name = "A1"

and R.route intersects H.route

Numeric Properties of Sets For sets of points, a number of well-known numeric
properties may be computed (Table 4.8). For example, the number of components
(no components) is the number of disjoint maximal connected subsets, i.e., the
number of faces for a region, connected components for a line graph, and intervals for
a 1D point set. The size is defined for all continuous set types (i.e., for range(real),
periods, line, and region). For 1D types, the size is the sum of the lengths of
component intervals; for line, it is the length, and for region, it is the area.

Example 4. “List for each country its total size and the number of disjoint land
areas.”

SELECT name, area(area), no components(area) FROM country
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Operation Signature Semantics

no components σ → int [1D] |intvls(U)|
no components points → int |U |
no components line → int |blocks(U)|
no components region → int |faces(U )|
size[duration] σ → real [1Dcont]

∑
T∈intvls(U) sup (T ) − inf (T )

size[length] line → real ‖U‖
size[area] region → real

∫
U

dA

perimeter region → real flength(∂U)

Table 4.8. Numeric Operations

Distance and Direction A distance measure exists for all continuous types. The
distance function determines the distance between the closest pair of a point from
the first and the second argument.

The direction between points is sometimes of interest. The direction function
returns the angle of the line from the first to the second point, measured in degrees
(0 ≤ angle < 360). Hence, if q is exactly north of p then direction(p, q) = 90. If
p = q then the undefined value ⊥ is returned.

Example 5. “Find all cities north of and within 200 kms of Munich!”

LET Munich = ELEMENT(SELECT center FROM city

WHERE name = "Munich");

SELECT name FROM city

WHERE distance(center, Munich) < 200

and direction(Munich, center) >= 45

and direction(Munich, center) <= 135

Specific Operations for Base Types The operations and, or, and not on base
types are also needed, although they are not related to the point vs. point set view.
We mention them because they will be subject to lifting described below and so
become applicable to temporal types.

4.3.5 Operations on Temporal Types

Values of temporal types (i.e., types moving(α)) are partial functions of the form
f : Ainstant → Āα. There are four classes of operations on such functions.

Projection to Domain and Range For values of all moving types—which are
functions—operations are provided that yield the domain and range of these func-
tions. The domain function deftime : moving(α) → periods returns the times for
which a function is defined.

In 1D space, operation rangevalues : moving(α) → range(α) returns values
assumed over time as a set of intervals. For the 2D types, operations are offered to
return the parts of the projections corresponding to our data types. For example,
the projection of a moving point into the plane may consist of points and lines;
these can be obtained by operations locations and trajectory respectively.

For intime types, the two trivial projection operations, inst : intime(α) →
instant and val : intime(α) → α, are offered.

All the infinite point sets that result from domain and range projections are
represented in collapsed form by the corresponding point set types. For example,
a set of instants is represented as a periods value, and an infinite set of regions is
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represented by the union of the points of the regions, which is represented in turn
as a region value. This finite representation is enabled by the continuity condition
required for types moving(α) (see Section 4.3.1).

The resulting design is complete in that all projection values in domain and
range can be obtained.

Example 6. For illustration of operations on temporal types, we use the following
relations (a slight variation of those of Section 4.2).

flight(airline:string, no:int, from:string, to:string, route:mpoint)
weather(name:string, kind:string, area:mregion)
site(name:string, pos:point)

In the first, attributes airline and no identify a flight, and the names of the
departure and destination cities and the route taken for each flight are also recorded.
A route is defined only for the times the plane is in flight and not when it is on
the ground. Relation weather records named weather phenomena. Attribute kind
gives the type of phenomenon, such as, “snow-cloud” or “tornado,” and attribute
area provides the phenomenon’s evolving extent. Relation site contains positions
of well-known sites.

Example 7. “How far does flight LH 257 travel in French air space?”

LET route257 = ELEMENT(SELECT route FROM flight

WHERE airline = "LH" and no = 257);

length(intersection(France, trajectory(route257)))

“What are the departure and arrival times of flight LH 257?”

min(deftime(route257)); max(deftime(route257))

Example 8. “When and at distance does flight 257 pass the Eiffel tower?”
We assume a closest operator with signature mpoint × point → intime(point),

which returns the time and position when a moving point is closest to a given fixed
point in the plane. In [21] it is shown how such an operator can be derived from
others.

LET EiffelTower =

ELEMENT(SELECT pos FROM site WHERE name = "Eiffel Tower");

LET pass = closest(route257, EiffelTower);

inst(pass); distance(EiffelTower, val(pass))

Interaction With Points and Point Sets in Domain and Range Some op-
erations relate the functional values of moving types with values either in their
(time) domain or their range. For example, such functions allow us to determine
whether a moving point passes a given point or region. With these, one may also
restrict a moving entity to given domain or range values. As an example, one may
determine the value(s) of a moving real at time t or in time interval [t1, t2]. The first
and second groups of operations in Table 4.9 concern interactions with the (time)
domain and range values, respectively.

In the first group, operations atinstant and atperiods restrict a moving entity
to a given instant, resulting in an (instant, value) pair, or to a given set of time
intervals, respectively. The atinstant operation is similar to the timeslice operator
found in many temporal relational algebras. Operations initial and final return the
first and last (instant, value) pair, respectively. Operation present allows one to
check whether the moving value exists at a given instant, or is ever present during
a given set of time intervals.
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Operation Signature

atinstant moving(α) × instant → intime(α)
atperiods moving(α) × periods → moving(α)
initial moving(α) → intime(α)
final moving(α) → intime(α)
present moving(α) × instant → bool
present moving(α) × periods → bool

at moving(α) × α → moving(α) [1D]
at moving(α) × range(α) → moving(α) [1D]
at moving(α) × point → mpoint [2D]
at moving(α) × β → moving(min(α, β))[2D]
atmin moving(α) → moving(α) [1D]
atmax moving(α) → moving(α) [1D]
passes moving(α) × β → bool

Table 4.9. Interaction of Temporal Values With Values in Domain and Range

In the second group, the purpose of at is again restriction (like atinstant,
atperiods), here to values in the range. For 1D space, restriction to a point or
a point-set value returns a value of the given moving type. For example, we can
restrict a moving real to the times when its value was between 3 and 4. In 2D, the
resulting moving type is obtained by taking the minimum of the two argument types
α and β with respect to the order point < points < line < region. For example,
the restriction of a moving(region) by a point will result in a moving(point). This
is analogous to the definitions intersection in 2D in Section 4.3.4.

In one-dimensional spaces, operations atmin and atmax restrict the moving
value to the times when it was minimal or maximal with respect to the total order
on this space. Operation passes determine whether the moving value ever assumed
(one of) the value(s) in the second argument.

All of these operations are of interest from a language design point of view. Some
of them may also be expressed in terms of other operations in the framework. For
example, we have present(f, t) = not(isempty(val(atinstant(f, t)))).

Example 9. “When and where did flight 257 enter French air space?”

LET entry = initial(at(route257, France));

inst(entry); val(entry)

Example 10. “When was the Eiffel Tower within snow storm ‘Lizzy’?”

LET Lizzy = ELEMENT(SELECT area FROM weather

WHERE name = "Lizzy" and kind = "snow storm");

deftime(at(Lizzy, EiffelTower))

Lifting Operations to Time-Dependent Operations Section 4.3.4 systemat-
ically defines operations on non-temporal types. This section uniformly lifts these
operations to apply to the corresponding moving (temporal) types. The idea is
to allow any argument of a non-temporal operation to be made temporal and to
return a temporal type. More specifically, the lifted version of an operation with
signature α1 × . . . × αk → β has signatures α′

1 × . . . × α′
k → moving(β) with

α′
i ∈ {αi,moving(αi)}.

So, each argument type may be changed into a time-dependent type, which will
then transform the result type into a time-dependent type. The new operations
are given the same name as the operation they originate from. As an example of
lifting, the intersection operation with signature region × point → point is lifted



4 Models and Languages: Data Types 119

to the signatures mregion × point → mpoint, region × mpoint → mpoint, and
mregion × mpoint → mpoint.

To define the semantics of lifting, we note that an operation op : α1×. . .×αk → β
can be lifted with respect to any combination of argument types. The set of lifted
parameters may be described by a set L ⊆ {1, . . . , k}, and we define:

αL
i =

{
moving(αi) if i ∈ L
αi otherwise

Thus, the signature of any lifted version of op can be written as op : αL
1 ×. . .×αL

k →
moving(β). If fop is the semantics of op, we now have to define the semantics of
fL
op for each possible lifting L. For this we define what it means to apply a possibly

lifted value to an instant-value:

xL
i (t) =

{
xi(t) if i ∈ L
xi otherwise

This enables a point-wise definition of the functions fL
op .

fL
op(x1, . . . , xk) = {(t, fop(xL

1 (t), . . . , xL
k (t))) | t ∈ Ainstant}

This lifting generalizes existing operations, which perhaps did not appear to be
of great utility, to new and quite useful operations. For example, an operator that
determines the intersection of a region with a point may not be of great interest,
but the operation that determines the intersection between a region and an mpoint
(“get the part of the mpoint within the region”) is quite useful. This explains why
Section 4.3.4 defined the set operations for all argument types, including single
points.

Time-dependent operations enable a powerful query language. Examples follow.

Example 11. We can formulate involved queries such as “For how long did the
moving point mp move along the boundary of region r?”

duration(deftime(at(on border(mp, r), TRUE)))

Predicate on border yields a result of type mbool, which is defined for all times
when mp is defined and has value TRUE or FALSE. Operation at restricts this
mbool to the times when it has value TRUE.

Example 12. “When did snow storm ‘Lizzy’ consist of exactly three separate areas.”

deftime(at(no components(Lizzy) = 3, TRUE))

Here, ‘Lizzy’ is of type mregion, and the lifted versions of no components and
equality apply.

Rate of Change An important property of any time-dependent value is its rate of
change, i.e., its derivative. This concept is applicable to types mreal and mpoint.
For the latter, we include three operators, namely speed, based on Euclidean dis-
tance, turn, based on the direction between two points, and velocity, based on
the vector difference (viewing points as 2D vectors). The acceleration of a moving
point mp may be obtained as a number by derivative(speed(mp)) and as a vector,
or moving point, by velocity(velocity(mp)).

Example 13. One can observe the growth rate of a moving region: “When did ‘Lizzy’
expand the most?”
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Operation Signature Semantics

derivative mreal → mreal µ′ where µ′(t) = limδ→0(f(t + δ) − f(t))/δ
speed mpoint → mreal µ′ where

µ′(t) = limδ→0 fdistance(f(t + δ), f(t))/δ
turn mpoint → mreal µ′ where

µ′(t) = limδ→0 fdirection(f(t + δ), f(t))/δ

velocity mpoint → mpoint µ′ where µ′(t) = limδ→0(
−−−−−→
f(t + δ) −−−→

f(t))/δ

Table 4.10. Derivative Operations

inst(initial(atmax(derivative(area(Lizzy)))))

Example 14. “Show on a map the parts of the route of flight 257 when the plane’s
speed exceeds 800 km/h.”

trajectory(atperiods(route257,
deftime(at(speed(route257) > 800, TRUE))))

The background of the map has to be produced by a different tool or query.

4.3.6 Application Example

To illustrate the use of the data types in querying, we consider an example appli-
cation that concerns forest fire analysis and which allows us to explore advanced
aspects of moving point and region objects.

In a number of countries, fire is one of the main agents of forest damage. Forest
fire control management mainly pursues the two goals of learning from past fires
and their evolution and of preventing fires in the future, by studying weather and
other factors such as cover type, elevation, slope, distance to roads, and distance
to human settlements. In a very simplified manner, this example considers the first
goal of learning from past fires and their evolution in space and time. We assume a
database containing relations with schemas

forest(forestname:string, territory:mregion)
forest fire(firename:string, extent:mregion)
fire fighter(fightername:string, location:mpoint)

Relation forest records the extents of forests, which grow and shrink over time
due to, e.g., clearing, cultivation, and destruction processes. Relation forest fire
captures the evolution of fires, from ignition to extinction. Relation fire fighter
describes the motions of fire fighters on duty, from their start at the fire station
up to their return. The following four queries illustrate enhanced spatio-temporal
database functionality.

Example 15. “When and where did the fire called ‘The Big Fire’ have its largest
extent?”

LET TheBigFire = ELEMENT(SELECT extent FROM forest fire

WHERE firename = "The Big Fire");

LET max area = initial(atmax(area(TheBigFire)));
atinstant(TheBigFire, inst(max area));

val(max area)

The second argument of atinstant computes the time when the area of the fire was
at its maximum. The area operator is used in its lifted version.

Example 16. “Determine the size of all forest areas destroyed by ‘The Big Fire’.”
We assume that a fire may reach several, perhaps adjacent, forests.
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LET ever = FUN (mb:mbool) passes(mb, TRUE);

LET burnt =

SELECT size AS area(traversed(intersection(territory, extent)))

FROM forest fire, forest

WHERE firename = "The Big Fire"

and ever(intersects(territory, extent));

SELECT SUM(size)

FROM burnt

The intersects predicate of the join condition is lifted. Since the join condition
expects a Boolean value, the ever predicate checks whether there is at least one
intersection between the two mregion values just considered.

Example 17. “When and where was the spread of fires larger than 500 km2?”

LET big_part =

SELECT big area AS extent when[FUN (r:region) area(r) > 500]

FROM forest fire;

SELECT *

FROM big part

WHERE not(isempty(deftime(big area)))

The first subquery reduces the moving region of each fire to the parts when it was
large. For some fires, this may never be the case; for them, bigarea may be empty
(always undefined). These are eliminated in the second subquery.

Example 18. “ How long was fire fighter Th. Miller enclosed by ‘The Big Fire’ and
which distance did the fire fighter cover there?

SELECT time AS

duration(deftime(intersection(location, TheBigFire))),

distance AS

length(trajectory(intersection(location, TheBigFire)))

FROM fire fighter

WHERE fightername = "Th. Miller"

We assume that the value ‘TheBigFire’ has already been determined as in Exam-
ple 15, and that we know that Th. Miller was in this fire (otherwise, time and
distance will be returned as zero).

4.3.7 Summary

This section offers an integrated, comprehensive design of abstract data types in-
volving base types, spatial types, time types, as well as consistent temporal and
spatio-temporal versions of these. Embedding this in a DBMS query language, one
obtains a query language for spatio-temporal data, and moving objects in particular.

The strong points are several. The framework emphasizes genericity, closure,
and consistency. An abstract level of modeling is adopted, with the design including
the first comprehensive model of spatial data types (going beyond the study of just
topological relationships) formulated entirely at the abstract, infinite point-set level.
To our knowledge, the framework is the first to systematically and coherently use
continuous functions as values of attribute data types. Finally, the idea of defining
operations over non-temporal types and then uniformly lift these to operations over
temporal types seems to be a new and important concept that achieves consistency
between non-temporal and temporal operations.
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4.4 A Discrete Model: Data Structures for Moving Objects
Databases

4.4.1 Overview

In this section, which is based on [16], we define data types that can represent
values of corresponding types of the abstract model just presented in Section 4.3.
Of course, the discrete types can in general only represent a subset of the values of
the corresponding abstract type.

All type constructors of the abstract model will have direct counterparts in the
discrete model except for the moving constructor. This is, because it is impossible
to introduce at the discrete level a type constructor that automatically transforms
types into corresponding temporal types. The type system for the discrete model
therefore looks quite the same as the abstract type system shown in Table 4.2 up
to the intime constructor, but then introduces a number of new type constructors
to implement the moving constructor, as shown in Table 4.11.

→ BASE int, real, string, bool
→ SPATIAL point, points, line, region
→ TIME instant

BASE ∪ TIME → RANGE range
BASE ∪ SPATIAL → TEMPORAL intime
BASE ∪ SPATIAL → UNIT const

→ UNIT ureal, upoint,
upoints, uline, uregion

UNIT → MAPPING mapping

Table 4.11. Signature describing the discrete type system

Let us give a brief overview of the meaning of the discrete type constructors.
The base types int, real, string, bool can be implemented directly in terms of cor-
responding programming language types. The spatial types point and points also
have direct discrete representations whereas for the types line and region linear
approximations (i.e., polylines and polygons) are introduced. Type instant is also
represented directly in terms of programming language real numbers. The range
and intime types represent sets of intervals, or pairs of time instants and values,
respectively. These representations are also straightforward.

The interesting part of the model is how temporal (“moving”) types are rep-
resented. We here describe the so-called sliced representation. The basic idea is to
decompose the temporal development of a value into fragments called “slices” such
that within the slice this development can be described by some kind of “simple”
function. This is illustrated in Figure 4.5.

v

t x

y

t

Fig. 4.5. Sliced representation of moving real and moving points value
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The sliced representation is built by a type constructor mapping parameterized
by the type describing a single slice which we call a unit type. A value of a unit
type is a pair (i, v) where i is a time interval and v is some representation of
a simple function defined within that time interval. We define unit types ureal,
upoint, upoints, uline, and uregion. For values that can only change discretely,
there is a trivial “simple” function, namely the constant function. It is provided by
a const type constructor which produces units whose second component is just a
constant of the argument type. This is in particular needed to represent moving int,
string, and bool values. The mapping data structure basically just assembles a set
of units and makes sure that their time intervals are disjoint.

In summary, we obtain the correspondence between abstract and discrete tem-
poral types shown in Table 4.12.

Abstract Type Discrete Type

moving(int) mapping(const(int))
moving(string) mapping(const(string))
moving(bool) mapping(const(bool))
moving(real) mapping(ureal)
moving(point) mapping(upoint)
moving(points) mapping(upoints)
moving(line) mapping(uline)
moving(region) mapping(uregion)

Table 4.12. Correspondence between abstract and discrete temporal types

In Table 4.12 we have omitted the representations mapping(const(real)), etc.
which can be used to represent discretely changing real values and so forth, but are
not so interesting for us.

In the remainder of this section we formally define the data types of the discrete
model. That means, for each type we define its domain of values in terms of some
finite representation. From an algebraic point of view, we define for each sort (type)
a carrier set. For a type α we denote its carrier set as Dα.

Of course, each value in Dα is supposed to represent some value of the cor-
responding abstract domain, that is, the carrier set of the corresponding abstract
type. For a type α of the abstract model, let Aα denote its carrier set. We can view
the value a ∈ Aα that is represented by d ∈ Dα as the semantics of d. We will
always make clear which value from Aα is meant by a value from Dα. Often this is
obvious, or an informal description is sufficient. Otherwise we provide a definition
of the form σ(d) = a where σ denotes the “semantics” function.

The following Section 4.4.2 contains definitions for all non-temporal types and
for the temporal types in the sliced representation. For the spatial temporal data
types moving(points), moving(line), and moving(region) one can also define direct
three-dimensional representations in terms of polyhedra etc.; these representations
will be treated elsewhere.

In Chapter 6 of this book we will present some examples of how this high level
specification translates into physical data structures and algorithms.

4.4.2 Definition of Discrete Data Types

Base Types and Time Type The carrier sets of the discrete base types and the
type for time rest on available programming language types. Let Instant = real.

Dint = int ∪ {⊥} Dreal = real ∪ {⊥} Dstring = string ∪ {⊥}
Dbool = bool ∪ {⊥} Dinstant = Instant ∪ {⊥}
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The only special thing about these types is that they always include the undefined
value ⊥ as required by the abstract model. Since we are interested in continuous
evolutions of values, type instant is defined in terms of the programming language
type real.

We sometimes need to speak about only the defined values of some carrier set
and therefore introduce a notation for it: Let D′

α = Dα\{⊥}. We will later introduce
carrier sets whose elements are sets themselves; for them we extend this notation
to mean D′

α = Dα \ {∅}.

Spatial Data Types Next, we define finite representations for single points, point
collections, lines, and regions in two-dimensional (2D) Euclidean space. A point is,
as usual, given by a pair (x, y) of coordinates. Let Point = real× real and

Dpoint = Point ∪ {⊥}
The semantics of an element of Dpoint is obviously an element of Apoint. We assume
lexicographical order on points, that is, given any two points p, q ∈ Point , we define:
p < q ⇔ (p.x < q.x) ∨ (p.x = q.x ∧ p.y < q.y).

A value of type points is simply a set of points.

Dpoints = 2Point

Again it is clear that a value of Dpoints represents a value of the abstract domain
Apoints.

The definition of discrete representations for the types line and region is based
on linear approximations. A value of type line is essentially just a finite set of line
segments in the plane. Figure 4.6 shows the correspondence between the abstract

(a) (b)
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Fig. 4.6. (a) line value of the abstract model (b) line value of the discrete model (c) any
set of line segments is also a line value

type for line and the discrete type. The abstract type is a set of curves in the plane
which was viewed in Section 4.3 as a planar graph whose nodes are intersections of
curves and whose edges are intersection-free pieces of curves. The discrete line type
represents curves by polylines. However, one can assume a less structured view and
consider the same shape to be just a collection of line segments. At the same time,
any collection of line segments in the plane defines a valid collection of curves (or
planar graph) of the abstract model (see Figure 4.6 (c)). Hence, modeling line as a
set of line segments is no less expressive than the polyline view. It has the advantage
that computing the projection of a (discrete representation) moving point into the
plane can be done very efficiently as it is not necessary to compute the polyline or
graph structure. Hence we prefer to use this unstructured view. Let

Seg = {(u, v) |u, v ∈ Point , u < v}
be the set of all line segments.

Dline = {S ⊂ Seg | ∀s, t ∈ Seg : s �= t ∧ collinear(s, t) ⇒ disjoint(s, t)}
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The predicate collinear means that two line segments lie on the same infinite line
in 2D space. Hence for a set of line segments to be a line value we only require
that there are no collinear, overlapping segments. This condition ensures unique
representation, as collinear overlapping segments could be merged into a single
segment. The semantics of a line value is, of course, the union of the points on all
of its segments.

A region value at the discrete level is essentially a collection of polygons with
polygonal holes (Figure 4.7). Formal definitions are based on the notions of cycles

(a) (b)
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Fig. 4.7. (a) region value of the abstract model (b) region value of the discrete model

and faces. These definitions are similar to those of the ROSE algebra [22]. We need
to reconsider such definitions here for two reasons: (i) They have to be modified a
bit because here we have no “realm-based” [22] environment any more, and (ii) we
are going to extend them to the “moving” case in the following sections.

A cycle is a simple polygon, defined as follows:

Cycle = {S ⊂ Seg | |S| = n, n ≥ 3, such that
(i) ∀s, t ∈ S : s �= t ⇒ ¬p-intersect(s, t) ∧ ¬touch(s, t)
(ii) ∀p ∈ points(S) : card(p, S) = 2
(iii) ∃〈s0, . . . , sn−1〉 : {s0, . . . , sn−1} = S

∧(∀i ∈ {0, . . . , n − 1} : meet(si, s(i+1) mod n))}
Two segments p-intersect (“properly intersect”) if they intersect in their interior (a
point other than an end point); they touch if one end point lies in the interior of
the other segment. Two segments meet if they have a common end point. The set
points(S) contains all end points of segments, hence is points(S) = {p ∈ Point | ∃s ∈
S : s = (p, q) ∨ s = (q, p)}. The function card(p, S) tells how often point p occurs
in S and is defined as card(p, S) = |{s ∈ S | s = (p, q) ∨ s = (q, p)}|. Hence a
collection of segments is a cycle, if (i) no segments intersect properly, (ii) each end
point occurs in exactly two segments, and (iii) segments can be arranged into a
single cycle rather than several disjoint ones (the notation 〈s0, . . . , sn−1〉 refers to
an ordered list of segments).

A face is a pair consisting of an outer cycle and a possibly empty set of hole
cycles.

Face = {(c,H) | c ∈ Cycle,H ⊂ Cycle, such that
(i) ∀h ∈ H : edge-inside(h, c)
(ii) ∀h1, h2 ∈ H : h1 �= h2 ⇒ edge-disjoint(h1, h2)
(iii) any cycle that can be formed from the segments of c or H is either

c or one of the cycles of H

A cycle c is edge-inside another cycle d if its interior is a subset of the interior of d
and no edges of c and d overlap. They are edge-disjoint if their interiors are disjoint
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and none of their edges overlap. Note that it is allowed that a segment of one cycle
touches a segment of another cycle. Overlapping segments are not allowed, since
then one could remove the overlapping parts entirely (e.g. two hole cycles could be
merged into one hole). The last condition (iii) ensures unique representation, that
is, there are no two different interpretations of a set of segments as sets of faces.
This implies that a face cannot be decomposed into two or more edge-disjoint faces.

A region is then basically a set of disjoint faces.

Dregion = {F ⊂ Face | f1, f2 ∈ F ∧ f1 �= f2 ⇒ edge-disjoint(f1, f2)}

More precisely, faces have to be edge-disjoint . Two faces (c1,H1) and (c2,H2) are
edge-disjoint if either their outer cycles c1 and c2 are edge-disjoint, or one of the
outer cycles, e.g. c1, is edge-inside one of the holes of the other face (some h ∈ H2).
Hence faces may also touch each other in an isolated point, but must not have
overlapping boundary segments.

The semantics of a region value should be clear: A cycle c represents all points of
the plane enclosed by it as well as the points on the boundary. Given σ(c), we have
for a face σ((c,H)) = closure(σ(c) \ ⋃

h∈H σ(h)), that is, hole areas are subtracted
from the outer cycle area, but then the resulting point set is closed again in the
abstract domain. The area of a region is then obviously the union of the area of its
faces.

Sets of Intervals In this subsection, we introduce the non-constant range type
constructor which converts a given type α ∈ BASE ∪ TIME into a type whose
values are finite sets of intervals over α. Note that on all such types α a total
order exists. Range types are needed, for example, to represent collections of time
intervals, or the values taken by a moving real.

Let (S,<) be a set with a total order. The representation of an interval over S
is given by the following definition.

Interval(S) = {(s, e, lc, rc)|s, e ∈ S, lc, rc ∈ bool,

s ≤ e, (s = e) ⇒ (lc = rc = true)}.
Hence an interval is represented by its end points s and e and two flags lc and rc
indicating whether it is left-closed and/or right-closed. The meaning of an interval
representation (s, e, lc, rc) is

σ((s, e, lc, rc)) = {u ∈ S|s < u < e} ∪ LC ∪ RC

where the two sets LC and RC are defined as

LC =

{
{s} if lc
∅ otherwise

and RC =

{
{e} if rc
∅ otherwise

Given an interval i, we denote with σ′(i) the semantics expressed by σ(i) restricted
to the open part of the interval.

Whether intervals u = (su, eu, lcu, rcu) and v = (sv, ev, lcv, rcv) ∈ Interval(S )
are disjoint or adjacent is defined as follows:

r-disjoint(u, v) ⇔ eu < sv ∨ (eu = sv ∧ ¬(rcu ∧ lcv))
disjoint(u, v) ⇔ r-disjoint(u, v) ∨ r-disjoint(v, u)

r-adjacent(u, v) ⇔ disjoint(u, v) ∧ (eu = sv ∧ (rcu ∨ lcv)) ∨
((eu < sv ∧ rcu ∧ lcv) ∧ ¬(∃w ∈ S | eu < w < sv))

adjacent(u, v) ⇔ r-adjacent(u, v) ∨ r-adjacent(v, u)
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The last condition for r-adjacent is important for discrete domains such as int.
Representations of finite sets of intervals over S can now be defined as

IntervalSet(S) = {V ⊆ Interval(S) |
(u, v ∈ S ∧ u �= v) ⇒ disjoint(u, v) ∧ ¬adjacent(u, v)}

The conditions ensure that a set of intervals has a unique and minimal representa-
tion. The range type constructor can then be defined as:

Drange(α) = IntervalSet(D′
α) ∀α ∈ BASE ∪ TIME

We also define the intime type constructor in this subsection which yields types
whose values consist of a time instant and a value, as in the abstract model.

Dintime(α) = Dinstant × Dα ∀α ∈ BASE ∪ SPATIAL

Sliced Representation for Moving Objects In this subsection we introduce and
formalize the sliced representation for moving objects. The sliced representation is
provided by the mapping type constructor which represents a moving object as a
set of so-called temporal units (slices). Informally speaking, a temporal unit for a
moving data type α is a maximal interval of time where values taken by an instance
of α can be described by a “simple” function. A temporal unit therefore records the
evolution of a value v of some type α in a given time interval i, while ensuring the
maintenance of type-specific constraints during such an evolution.

For a set of temporal units representing a moving object their time intervals
are mutually disjoint, and if they are adjacent, their values are distinct. These
requirements ensure unique and minimal representations.

Temporal units are described as a generic concept in this subsection. Their
specialization to various data types is given in the next two subsections. Let S be
a set. The concept of temporal unit is defined by:

Unit(S) = Interval(Instant) × S

A pair (i, v) of Unit(S) is called a temporal unit or simply a unit. Its first component
is called the unit interval, its second component the unit function.

The mapping type constructor allows one to build sets of units with the required
constraints. Let

Mapping(S) = {U ⊆ Unit(S) | ∀(i1, v1) ∈ U,∀(i2, v2) ∈ U :
(i) i1 = i2 ⇒ v1 = v2

(ii) i1 �= i2 ⇒ (disjoint(i1, i2) ∧ (adjacent(i1, i2) ⇒ v1 �= v2))}
The mapping type constructor is defined for any type α ∈ UNIT as:

Dmapping(α) = Mapping(Dα) ∀α ∈ UNIT .

In the next subsections we will define the types ureal, upoint, upoints, uline, and
uregion. Since all of them will have the structure of a unit, the just introduced type
constructor mapping(α) can be applied to all of them.

Units describe certain simple functions of time. We will define a generic function
ι on units which evaluates the unit function at a given time instant. More precisely,
let α be a non-temporal type (e.g. real) and uα the corresponding unit type (e.g.
ureal) with Duα

= Interval(Instant)×Sα, where Sα is a suitably defined set. Then
ια is a function

ια : Sα × Instant → Dα
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Usually we will omit the index α and just denote the function by ι. Hence, ι maps a
discrete representation of a unit function for a given instant of time into a discrete
representation of the function value at that time. The ι function serves three pur-
poses: (i) It allows us to express constraints on the structure of a unit in terms of
constraints on the structure of the corresponding non-temporal value. (ii) It allows
us to express the semantics of a unit by reusing the semantics definition of the cor-
responding non-temporal value. (iii) It can serve as a basis for the implementation
of the atinstant operation on the unit.

The use of ι will become clear in the next subsections when we instantiate it for
the different unit types.

Temporal Units for Base Types For a type α ∈ BASE∪SPATIAL, we introduce
the type constructor const that produces a temporal unit for α. Its carrier set is
defined as:

Dconst(α) = Interval(Instant) × D′
α

Recall that the notation D′
α refers to the carrier set of α without undefined elements

or empty sets. A unit containing an undefined or empty value makes no sense as for
such time intervals we can simply let no unit exist (within a mapping).

Note that, even if we introduce the type constructor const with the explicit
purpose of defining temporal units for int, string, and bool, it can nevertheless be
applied also to other types. This may be useful for applications where values of such
types change only in discrete steps.

The trivial temporal function described by such a unit can be defined as

ι(v, t) = v

Note that in defining ι for a specific unit type we automatically define the semantics
of the unit which should be a temporal function in the abstract model. For example,
for a value u of a unit type const(int) the semantics σ(u) should be a partial function
f : A′

instant → A′
int. This is covered by a generic definition of the semantics of unit

types: Let u = (i, v) be a value of a unit type uα. Then

σ(u) = fu : A′
instant ∩ σ(i) → A′

α where
fu(t) = σ(ι(v, t)) ∀t ∈ σ(i)

Hence we reuse the semantics defined for the discrete value ι(v, t) ∈ D′
α.

This semantics definition will in most cases be sufficient. However, for some unit
types (namely, uline and uregion) the discrete value obtained in the end points
of the time interval by ι may be an incorrect one due to degeneracies: in such a
case it has to be “cleaned up.” We will below slightly extend the generic semantics
definition to accommodate this. For all other units, this semantics definition suffices
so that we will only define the ι function in each case.

For the representation of moving reals we introduce a unit type ureal. The
“simple” function we use for the sliced representation of moving reals is either a
polynomial of degree not higher than two or a square root of such a polynomial.
The motivation for this choice is a trade-off between richness of the representation
(e.g. square roots of degree two polynomials are needed to express time-dependent
distance functions in the Euclidean metric) and simplicity of the representation of
the discrete type and of its operations. With this particular choice one can imple-
ment (i.e., the discrete model is closed under) the lifted versions of size, perimeter,
and distance operations; one cannot implement the derivative operation of the
abstract model. The carrier set for type ureal is

Dureal = Interval(Instant) × {(a, b, c, r) | a, b, c ∈ real, r ∈ bool}
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and evaluation at time t is defined by:

ι((a, b, c, r), t) =

{
at2 + bt + c if ¬r√

at2 + bt + c if r

Temporal Units for Spatial Data Types In this subsection we specialize the
concept of unit to moving instances of spatial data types.

Similar to moving reals, the temporal evolution of moving spatial objects is char-
acterized by continuity and smoothness and can be approximated in various ways.
Again we have to find the balance between richness and simplicity of representa-
tion. As indicated before, in this chapter we make the design decision to base our
approximations of the temporal behavior of moving spatial objects on linear func-
tions. Linear approximations ensure simple and efficient representations for the data
types and a manageable complexity of the algorithms. Nevertheless, more complex
functions like polynomials of a degree higher than one are conceivable as the basis
of representation but are not considered in this paper.

Due to the concept of sliced representation, also for moving spatial objects we
have to specify constraints in order to describe the permitted behavior of a value of
such a type within a temporal unit. Since the end points of a time interval mark a
change in the description of the data type, we require that constraints are satisfied
only for the respective open interval. In the end points of the time interval a collapse
of components of the moving object can happen. This is completely acceptable, since
one of the reasons to introduce the sliced representation is exactly to have “simple”
and “continuous” description of the moving value within each time interval and to
limit “discontinuities” in the description to a finite set of instants.

Moving Points and Point Sets. The structurally simplest spatial object that can
move is a single point. Hence, we start with the definition of the spatial unit type
upoint. First we introduce a set MPoint which defines 3D lines that describe un-
limited temporal evolution of 2D points.

MPoint = {(x0, x1, y0, y1) |x0, x1, y0, y1 ∈ real}
This describes a linearly moving point for which evaluation at time t is given by:

ι((x0, x1, y0, y1), t) = (x0 + x1 · t, y0 + y1 · t) ∀t ∈ Instant

The carrier set of upoint can then be very simply defined as:

Dupoint = Interval(Instant) × MPoint

We pass now to describe a set of moving points. The carrier set of upoints can
be defined as:

Dupoints = {(i,M) | i ∈ Interval(Instant),M ⊂ MPoint , |M | ≥ 1, and
(i) ∀t ∈ σ′(i),∀l, k ∈ M : l �= k ⇒ ι(l, t) �= ι(k, t)
(ii) i = (s, e, lc, rc) ∧ s = e ⇒ (∀l, k ∈ M : l �= k ⇒ ι(l, s) �= ι(k, s))}

Here we encounter for the first time a constraint valid during the open time interval
of the unit (condition (i)). Namely, a upoints unit is a collection of linearly moving
points that do not intersect within the open unit interval. Condition (ii) concerns
units defined only in a single time instant; for them all points have to be distinct
at that instant.

For (i,M) ∈ Dupoints, evaluation at time t is given by

ι(M, t) =
⋃

m∈M

{ι(m)} ∀t ∈ σ(i)
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which is clearly a set of points in D′
points. We will generally assume that ι distributes

through sets and tuples so that ι(M, t) is defined for any set M as above, and for a
tuple r = (r1, . . . , rn), we have ι(r, t) = (ι(r1), . . . , ι(rn)).

Moving Lines. We now introduce the unit type for line called uline. Here we restrict
movements of segments so that in the time interval associated to a value of uline
each segment maintains its direction in the 2-dimensional space. That is, segments
which rotate during their movement are not admitted. See in Figure 4.8 an example
of a valid uline value. This constraint derives from the need of keeping a balance

Fig. 4.8. An instance of uline

between ease of representation and manipulation of the data type and its expressive
power. Rotating segments define curved surfaces in the 3D space that, even if they
constitute a more accurate description, can always be approximated by a sequence
of plane surfaces.

The carrier set of uline is therefore based on a set of moving segments with the
above restriction and which never overlaps at any instant internal to the associated
open time interval. Overlapping has a meaning equivalent to the one used for line
values: to be collinear and to have a non-empty intersection.

To prepare the definition of uline we introduce the set of all pairs of lines in a
3D space that are coplanar, which will be used to represent moving segments:

MSeg = {(s, e) | s, e ∈ MPoint , s �= e, s is coplanar with e}.

The carrier set for uline can now be defined as:

Duline = {(i,M) | i ∈ Interval(Instant),M ⊂ MSeg , |M | ≥ 1, such that
(i) ∀t ∈ σ′(i) : ι(M, t) ∈ D′

line

(ii) i = (s, e, lc, rc) ∧ s = e ⇒ ι(M, s) ∈ D′
line}

Here again the first condition defines constraints for the open time interval and the
second treats the case of units defined only at a single instant. Note that ι(M, t)
is defined due to the fact that ι distributes through sets and tuples. A uline value
therefore inherits the structural conditions on line values and segments. For exam-
ple, condition (i) requires that

(s, e) ∈ M ⇒ (ι(s, t), ι(e, t)) ∈ Seg ∀t ∈ σ′(i)

and therefore ι(s, t) < ι(e, t) ∀t ∈ σ′(i).
The semantics defined for uline via ι according to the generic definition given

earlier needs to be slightly changed to cope with degeneracies in the end points of a
unit time interval, as we anticipated. In these points, in fact, moving segments can
degenerate into points and different moving segments can overlap. We accommodate
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this by defining separate ι functions for the start time and the end time of the time
interval, called ιs and ιe, respectively. Let ((s, e, lc, rc),M) ∈ Duline. Then

ιs(M, t) = ιe(M, t) = merge-segs({(p, q) ∈ ι(M, t) | p < q}
This definition removes pairs of points returned by ι(M, t) that are not segments
(i.e., segments degenerated into a single point); it also merges overlapping segments
into maximal ones (this is the meaning of the merge-segs function). The generic
semantics definition is then extended as follows:

σ(u) = fu : A′
instant ∩ σ(i) → A′

α

where for u = (i, v) and i = (s, e, lc, rc)

fu(t) =

⎧⎪⎨
⎪⎩

σ(ι(v, t)) if t ∈ σ′(i)
σ(ιs(v, t)) if t = s ∧ lc
σ(ιe(v, t)) if t = e ∧ rc

A final remark on the design decisions for the discrete type for moving lines
is the following. Assume we choose instance u1 (resp., u2) of uline as the discrete
representation at the initial (resp., final) time t1 (t2) of a unit for the (continuously)
moving line l. Then the constraint that segments making up the discrete representa-
tion of l cannot rotate during the unit does not restrict too much the fidelity of the
discrete representation. Indeed, since members of MSeg in a unit can be triangles,
this leaves the possibility of choosing among many possible mappings between end-
points of their segments in t1 and those in t2, as long as the non-rotation constraint
is satisfied. In Figure 4.9 an example of a discrete representation of a continuously
moving line by means of an instance of uline is shown. If this approach causes a too

Fig. 4.9. A discrete representation of a moving line

rough approximation internally to the time unit, then possibly an additional instant,
internal to the unit, has to be chosen and an additional discrete representation of
l at that instant has to be introduced so that a better approximation is obtained.
It can be easily seen that in the limit this sequence of discrete representations can
reach an arbitrary precision in representing l.

Moving Regions. We now introduce the moving counterpart for region, namely the
uregion data type. We adopt the same restriction used for moving lines, i.e., that
rotation of segments in the 3-dimensional space is not admitted. We therefore base
the definition of uregion on the same set of all pairs of lines in a 3D space that are
coplanar, namely MSeg, with additional constraints ensuring that throughout the
whole unit we always obtain a valid instance of the region data type. Figure 4.10
shows an example of a valid uregion value. (It also shows the degeneracies that can
occur in the end points of a unit interval.)
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Fig. 4.10. An instance of uregion.

As for a region value, we can have moving regions with (moving) holes, hence the
basic building blocks are given by the concepts of cycle and face already introduced
in the definition of region.

The carrier set of uregion is therefore based, informally speaking, on a set of
(possibly nested) faces which never intersect at any instant internal to the associated
time interval. For the formal definition of uregion, we first introduce a set intended
to describe the moving version of a cycle, without restriction on time:

MCycle = {{s0, . . . , sn−1} |n ≥ 3,∀i ∈ {0, . . . , n − 1} : si ∈ MSeg}
We then introduce a set for the description of the moving version of a face, without
restriction on time:

MFace = {(c,H) | c ∈ MCycle,H ⊂ MCycle}.
Note that in the definitions of MCycle and MFace we have not given the constraints
to impose on the sets the semantics of cycles and faces because this will be done
directly in the moving region definition. The carrier set for uregion is now defined
as

Duregion = {(i, F ) | i ∈ Interval(Instant), F ⊂ MFace, such that
(i) ∀t ∈ σ′(i) : ι(F, t) ∈ D′

region

(ii) i = (s, e, lc, rc) ∧ s = e ⇒ ι(F, s) ∈ D′
region}

For the end points of the time interval again we have to provide separate functions ιs

and ιe. Essentially these work as follows. From the pairs of points (p, q) (segments)
obtained by evaluating ι(F, s) or ι(F, e), remove all pairs that are no proper segments
(as for uline). Next, for all collections of overlapping segments on a single line,
partition the line into fragments belonging to the same set of segments (e.g. if
segment (p, q) overlaps (r, s) such that points are ordered on the line as 〈p, r, q, s〉
then there are fragments (p, r), (r, q), and (q, s)). For each fragment, count the
number of segments containing it. If this number is even, remove the fragment; if it
is odd, put the fragment as a new segment into the result. A complete formalization
of this is lengthy and omitted.

We have now concluded the formal definition of data types of the discrete model.
In Chapter 6 we will show some examples of translation into physical data struc-
tures of the above specifications and we will provide some examples of algorithms
implementing operations on discrete data types.

4.5 Outlook

This section presents two extensions of the approach presented so far in this chapter,
and two other approaches to spatio-temporal modeling with a different focus of
interest.
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Section 4.5.1 addresses the problem of defining spatio-temporal predicates and
their composition, in order to describe developments of relationships between (mov-
ing) objects. For example, one might want to ask in a query for moving region objects
that were first disjoint, then overlapped, and finally were disjoint again. Section 4.5.2
considers time-varying partitions of the plane, for example the countries of Europe
over the last centuries, and operations on such dynamic partitions.

Section 4.5.3 presents a data model based on “quanta” where space is rasterized.
Consider a chess board. Atomic spatial entities or “quanta” would be all corners of
fields (point quanta), horizontal or vertical edges of fields (line quanta), and fields
themselves (surface quanta). Spatial data types are defined as unions of such quanta
and relational algebra is extended to allow grouping (“fold”) or decomposition of
spatial values. By adding time intervals, this model can also describe (discretely
changing) spatio-temporal data.

The final subsection Section 4.5.4 adresses the treatment of legacy databases and
their applications when a “dimension”, which could be a time or a space dimension,
is added. For example, a static table is extended by a valid time attribute. The goal
is that applications that did not know about the time attribute can run unchanged,
and will yield the same results as before.

4.5.1 Spatio-Temporal Predicates and Developments

Spatio-temporal predicates characterize temporal changes of relationships between
spatio-temporal objects. In the following we briefly discuss some of the design issues
that arise with spatio-temporal predicates.

What Are Spatio-Temporal Predicates? A basic spatio-temporal predicate
can be thought of as a lifted spatial predicate yielding a temporal boolean, which
is aggregated by determining whether that temporal boolean was sometimes or
always true. In general, a spatio-temporal predicate can be viewed as a function
that aggregates the values of a (possibly changing) spatial predicate as it evolves
over time. Thus, a spatio-temporal predicate is a function of type τ(α)× τ(β) → IB
for α, β ∈ {point , region}.

Consider the definition of inside from Section 4.3. We can define two spatio-
temporal predicates sometimes-inside and always-inside that yield true if inside
yields true at some time, respectively, at all times.

Whereas the definition for sometimes-inside is certainly reasonable, the defi-
nition for always-inside is questionable since it yields false whenever the point or
the region is undefined. This is not what we would expect. For example, when the
moving point has a shorter lifetime than the evolving region but is always inside
the region, we would expect always-inside to yield true. In fact, we can distinguish
different kinds of universal quantification that result from different time intervals
over which aggregation can be defined to range. In the case of inside the expected
behavior is obtained if the aggregation ranges over the lifetime of the first argument,
the moving point. This is not true for all spatial predicates; actually, it depends on
the nature and use of each individual predicate. For example, two spatio-temporal
objects are considered as being equal only if they are equal on both objects’ life-
times, that is, the objects must have the same lifespans and must be always equal
during these.

We denote different kinds of ∀-aggregation by parameterized quantifiers ∀γ

where γ ∈ {∪,∩, π1, π2} and where πi(x1, . . . , xi, . . . , xn) = xi. These quantifiers
are defined as follows.

∀γp := λ(S1, S2).∀t ∈ γ(dom(S1), dom(S2)) : p(S1(t), S2(t))
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This means that, for example, ∀π1 .inside denotes the spatio-temporal predicate

λ(S1, S2).∀ t ∈ dom(S1).inside(S1(t), S2(t))

In general, λ(x1, x2, . . .).e denotes a function that takes arguments x1, x2, . . . and
returns a value determined by the expression e.

With this aggregation notation we can give the definitions for the spatio-temporal
versions of the eight basic spatial predicates (for two regions).

Disjoint := ∀∩.disjoint
Meet := ∀∪.meet
Overlap := ∀∪.overlap
Equal := ∀∪.equal
Covers := ∀π2 .covers
CoveredBy := ∀π1 .coveredBy
Contains := ∀π2 .contains
Inside := ∀π1 .inside

For a moving point and a moving region we have just the three basic predicates
Disjoint , Meet , and Inside, which are defined as above.

The chosen aggregations (and possible variations) are motivated and discussed
in great detail in [11].

Developments: Sequences of Spatio-Temporal Predicates Consider a plane
entering a storm. This scenario is abstractly characterized by a moving point that
initially is disjoint from an evolving region for some period of time, then touches its
border, and finally remains inside of it. In other words, the described development
is characterized by a sequence of spatio-temporal (and spatial) predicates: Disjoint ,
meet, and Inside. In order to define such predicate sequences we need a way of
restricting the temporal scope of basic spatio-temporal predicates. This becomes
possible by predicate constrictions: let P be a spatio-temporal predicate, and let I
be a (half-) open or closed interval. Then

PI := λ(S1, S2).P (S1|I , S2|I)
Here S|I denotes the partial function that yields S(t) for all t ∈ I and is undefined
otherwise.

When we now consider more closely how spatial situations can change over time,
we observe that certain relationships can be observed only for a period of time and
not for only a single time point (given that the participating objects do exist for
a period of time) while other relationships can hold at instants as well as on time
intervals. Predicates that can hold at time points and intervals are: equal, meet,
covers, coveredBy ; these are called instant predicates. Predicates that, in general,
can only hold on intervals are: disjoint, overlap, inside, contains ; these are called
period predicates.

It is interesting to note that (in satisfiable developments for continuously moving
objects) instant and period predicates always occur in alternating patterns, for ex-
ample, there cannot be two spatio-temporal objects that satisfy Inside immediately
followed by Disjoint . In contrast, Inside first followed by meet (or Meet) and then
followed by Disjoint can be satisfied.

Next we define three operations for combining spatio-temporal and spatial pred-
icates: p � P (from) defines a spatio-temporal predicate that for some time t checks
p and then enforces P for all times after t; P � p (until) is defined dually, that is, P
must hold until p is true at some time t. Finally, P � p � Q (then) is true if there is
some time point t when p is true so that P holds before and Q holds after t. Below
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we abbreviate open intervals ]t,∞[ and ]∞, t[ by simply writing >t and <t. (Note
that variable t ranges over time.) Let p be a spatial predicate, and let P and Q be
spatio-temporal predicates. Then

p � P := λ(S1, S2).∃t : p(S1(t), S2(t)) ∧ P>t(S1, S2)
P � p := λ(S1, S2).∃t : p(S1(t), S2(t)) ∧ P<t(S1, S2)
P � p � Q := λ(S1, S2).∃t : p(S1(t), S2(t)) ∧ P<t(S1, S2) ∧ Q>t(S1, S2)

These combinators obey several interesting laws; these and others are presented in
[11]. In particular, the composition of predicate sequencing is associative, that is,

P � p � (Q � q � R) = (P � p � Q) � q � R

This enables us to use a succinct sequencing syntax for developments, that is, we
can simply write P � p � Q for P � p � Q. For example, we can define predicates for
capturing the scenario of a point entering or crossing a region by:

Enter := Disjoint � meet � Inside
Cross := Disjoint � meet � Inside � meet � Disjoint

Sequential temporal composition is just one possibility to build new spatio-temporal
predicates. Temporal alternative, negation, and reflection provide further powerful
means to specify developments. These and many other combinators are defined and
investigated in [11].

Further Work Spatio-temporal predicates lay the foundation for further research
in spatio-temporal query languages. Two aspects have already been investigated:

First, it is, in fact, fairly simple to integrate spatio-temporal predicates into ex-
isting query languages. For example, we have shown in [10] how extending SQL by
(i) the set of eight basic spatio-temporal predicates and (ii) by a macro facility to
compose new predicates leads to a powerful spatio-temporal query language. Let us
reconsider the example query of finding out all planes that ran into a storm. We
assume having defined two relations flights and weather containing, respectively,
a moving point attribute Route representing the flights’ movements and an evolv-
ing region attribute Extent describing the developments of weather areas. With a
predicate combinator >> that has the semantics of temporal composition � we can
formulate the query simply as:

SELECT id FROM flights, weather

WHERE kind = "storm"

AND Route Disjoint>>meet>>Inside Extent

A second line of future work is motivated by the fact that the number of different
spatio-temporal predicates is actually unlimited due to the sequencing possibility to
generate new developments. Since we cannot invent names for all possible predicates
we need some kind of language for specifying developments. Now an (additional)
textual language for predicate specifications is not very convenient for the (end) user.
Moreover, the specification of predicates can become quite longish. Hence, visual
notations can be very useful to keep the specification of developments manageable
by the user. Consider, for example, the predicate Cross which is defined for two
evolving regions as follows:

Cross := Disjoint � meet � Overlap � coveredBy � Inside �
coveredBy � Overlap � meet � Disjoint
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Fig. 4.11. Visual Specification of the Cross Predicate

In contrast, this can be specified very easily and intuitively by a simple two-
dimensional picture as shown in Figure 4.11.

The rationale behind this visual notation is described in more detail in [13,14].
The key idea is to infer from the intersections of two-dimensional traces of mov-
ing/evolving objects the temporal changes of their relationships. The visual nota-
tion is mainly intended to be used as a supplement to textual languages and can be
integrated, for example, along the lines described in [8].

4.5.2 Spatio-Temporal Partitions

While we have so far in this chapter dealt with the temporal evolution of single
spatial entities, we now study the temporal evolution of spatial partitions as an
important example of a collection of spatial entities satisfying specific constraints.
This leads to a concept of spatio-temporal partitions.

Spatial Partitions The metaphor of a map has turned out to be a fundamen-
tal and ubiquitous spatial concept in geography, cartography, and other related
disciplines as well as in computer-assisted systems like GIS and spatial database
systems. The central element of a map is a spatial partition which is a subdivision
of the plane into pairwise disjoint regions where regions are separated from each
other by boundaries and where each region is associated with an attribute or la-
bel having simple or even complex structure. That is, a region (possibly composed
of several disconnected parts) with an attribute incorporates all points of a spa-
tial partition having this attribute. Examples are the subdivision of the world map
into countries, classification of rural areas according to their agricultural use, ar-
eas of different degrees of air pollution, etc. A spatial partition implicitly models
topological relationships between the participating regions which can be regarded
as integrity constraints. First, it expresses neighborhood relationships for different
regions that have common boundaries. Second, different regions of a partition are
always disjoint (except for common boundaries). Both topological properties are
denoted as partition constraints. As a purely geometric structure, a map yields only
a static description of spatial entities and required constraints between them.

A rigorous and thorough formal definition of spatial partitions and of application-
specific operations defined on them has been given in [9]. The basic idea is that a
spatial partition is a mapping from the Euclidean space IR2 to some label type, that
is, regions of a partition are assigned single labels. Adjacent regions have different
labels in their interior, and a boundary is assigned the pair of labels of both adjacent
regions.

Many application-specific operations on spatial partitions like overlay, reclassify,
fusion, cover, clipping, difference, superimposition, window, and variations of them
have been described in the literature (see for example, [1,23,29,33]). In [9] all these
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operations have been reduced to the three fundamental and powerful operations
intersection, relabel, and refine. Intersecting two spatial partitions means to compute
the geometric intersection of all regions and to produce a new spatial partition; each
resulting region is labeled with the pair of labels of the original two intersecting
regions, and the values on the boundaries are derived from these. Relabeling a
spatial partition has the effect of changing the labels of its regions. This can happen
by simply renaming the label of each region. Or, in particular, distinct labels of two
or more regions are mapped to the same new label. If some of these regions are
adjacent in the partition, the border between them disappears, and the regions are
fused in the result partition. Relabeling has then a coarsening effect. Refining a
partition means to look with a finer granularity on regions and to reveal and to
enumerate the connected components of regions.

Spatio-Temporal Partitions Spatio-temporal partitions [12] or “temporal maps”
describe the temporal development of spatial partitions and have a wide range of
interesting applications. They represent collections of evolving regions satisfying the
partition constraints for each time of their lifespan and maintaining these constraints
over time. That is, for each time of their lifespan we obtain a stationary, two-
dimensional spatial partition which changes over time due to altering shapes, sizes,
or attribute values of regions. This corresponds to our temporal object view which is
based on the observation that everything that changes over time can be considered
as a function over time. Spatio-temporal partitions can then be viewed as functions
from time to a two-dimensional spatial partition.

Temporal changes of spatial partitions can occur either in discrete and stepwise
constant steps or continuously and smoothly. Examples of the first category are
the reunification of West and East Germany, the splitting of Yugoslavia, the tem-
poral development of any hierarchical decomposition of space into administrative
or cadastral units like the world map into countries or districts into land parcels,
or the classification of rural areas according to their agricultural use over time. A
characteristic feature of these applications is that the number of discrete temporal
changes is finite and that there is no change between any two subsequent temporal
change points which is a special form of continuity.

The open issue now is what happens at temporal change points with their abrupt
transition from one spatial partition to another. If we consider the time point when
West and East Germany were reunified, did the spatial partition before or after
the reunification belong to this time point? Since we cannot come to an objective
decision, we have to decide arbitrarily and to assign one of both spatial partitions
to it. This, in particular, maintains the functional character of our temporal object
view. We have chosen to ascribe the temporally later spatial partition to a temporal
change point. Mathematically this means that we permit a finite set of time points
where the temporal function is not continuous. The application examples reveal
that after a temporal change point the continuity of the temporal function proceeds
for some time interval up to the next temporal change point; there are no “thin,
isolated slices” containing single spatial partitions at temporal change points. Hence,
we have to tighten our requirement in the sense that mathematically the temporal
function has to be upper semicontinuous at each time.

Examples of the second category are the temporal evolution of climatic phe-
nomena like temperature zones or high/low pressure areas, areas of air pollution
with distinct degrees of intensity, or developments of forest fires in space and time.
They all show a very dynamic and attribute-varying behavior over time. Applica-
tion examples which have by far slower temporal changes are the increasing spread
of ethnic or religious groups, the decreasing extent of mineral resources like oil fields
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during the course of time due to exploitation, or the subdivision of space into areas
with different sets of spoken languages over time.

Application-specific spatio-temporal operations rest on the transfer of the two
basic spatial partition operations intersection and relabel to the spatio-temporal
case. They are temporally lifted and generalized versions of the application-specific
operations on spatial partitions. The overlay operation is based on a spatio-temporal
intersection operation and can be used to analyze the temporal evolution of two
(or more) different attribute categories. Consider a temporal map indicating the
extent of mineral resources like oil fields or coal deposits and another temporal map
showing the country map over time. Then an overlay of both temporal maps can,
for instance, reveal the countries that had or still have the richest mineral resources,
it can show the grade of decline of mineral deposits in the different countries, and
it can expose the countries which most exploited their mineral resources.

The clipping operation is a special case of the spatio-temporal intersection op-
eration and works as a spatio-temporal filter. An application is a temporal map
about the development of diseases. As a clipping window we use a temporal map of
urban areas developing in space over time. The task is to analyze whether there is
a connection between the increase or decrease of urban space and the development
of certain diseases. Hence, all areas of disease outside of urban regions are excluded
from consideration.

The reclassification operation is a special case of a spatio-temporal relabel op-
eration. Consider a temporal map marking all countries of the world with their
population numbers. A query can now ask for the proportion of each country’s
population on the world population over time, a task that can be performed by
temporal relabeling. This corresponds to a reclassification of attribute categories
over time without changing geometry.

The fusion operation is a kind of grouping operation with subsequent geometric
union over time. Assume that a temporal map of districts with their land use is
given. The task is to identify regions with the same land use over time. At each time
neighboring districts with the same land use are replaced by a single region, that is,
their common boundary line is erased. We obtain a temporal fusion operator which is
based on relabeling. Reclassification and fusion are examples of static relabeling since
the relabeling function does not change over time. We generalize this to dynamic
relabeling. Consider the classification of income to show poor and rich areas over
time. Due to the changing value of money, due to inflation, and due to social changes,
the understanding of wealth and poorness varies over time. Hence, we need different
and appropriate relabeling functions that are applied to distinct time intervals.

Additionally, some new operations are introduced that are more directed to the
time dimension. The operation dom determines the domain of a temporal map, that
is, all times where the map does not yield the completely undefined partition. An
example is a temporal map of earthquakes and volcanic eruptions in the world as
they are interesting for seismological investigations. Applying the operation dom on
this map returns the time periods of earthquake and volcanic activity in the world.

The operation restrict realizes a function restriction on spatio-temporal par-
titions and computes a new partition. As parameters it obtains a temporal map
and a set of (right half-open) time intervals describing the time periods of interest.
Imagine that we have a temporal map of birth rates, and we are only interested in
the birth rates between 1989 and 1991 and between 1999 and 2001 (“millennium
baby”). Then we can exclude all the other time periods and compare the change of
birth rates in these two time intervals.

The operation select allows one to scan spatio-temporal partitions over time and
to check for each time whether a specified predicate is fulfilled or not. Consider a
map showing the spread of fires. We could be interested in when and where the
spread of fires occupied an area larger than 300 km2.
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The operation aggregate collects all labels of a point over time and combines
them with the aid of a binary function into one label. The result is a two-dimensional
spatial partition. For example, if the population numbers, the birth rates, the death
rates, the population density, the average income, etc. of the countries in the world
are available, we can aggregate over them and compute the maximum or minimum
value each country ever had for one of these attributes.

A special kind of aggregation is realized by the project operation which computes
the projection of a spatio-temporal partition onto the Euclidean space and which
yields a spatial partition. For each point in space, all labels, except for the undefined
label denoting the outside, are collected over time. That is, if a point has always had
the same single label over its lifetime, this single label will appear in the resulting
partition and indicate a place that has never changed. On the other hand, points
of the resulting partition with a collection of labels describe places where changes
occurred. An example is the projection of a temporal map illustrating the water
levels of lakes onto the Euclidean plane. The result shows those parts of lakes that
have always, sometimes, and never been covered with water.

For a much more detailed description and, in particular, formal definition of
spatio-temporal partitions, the reader is referred to [12]. There as well as in [15]
especially a concept of “spatial continuity” and a “difference measure” for regions
are defined.

4.5.3 On a Spatio-temporal Relational Model Based on
Quanta

In this section an outline is given of a formalism for the definition of a spatio-
temporal extension to the relational model. The formalism considers temporal and
spatial quanta and, based on them, defines relevant data types. This way, a series of
relational algebra operations can be defined, that are closed and enable the uniform
management of either conventional or spatial or spatio-temporal data.

Quanta and Data Types of Time A generic data type for time is defined as
the set In = {1, 2, . . . , n}, n > 0 [25]. The elements of In are called quanta of time
or (time) instants. Based on this data type, another generic data type is defined,
PERIOD(In), with elements of the form [p, q] ≡ {i | i ∈ In, p ≤ i ≤ q} that are
called periods (of time). If the elements of In are replaced by n consecutive dates,
then the respective data types for time are DATE and PERIOD(DATE). In a similar
manner, a variety of data types can be defined like TIME and TIMESTAMP, which
are supported in SQL.

Spatial Quanta and Spatial Data Types If Im = {1, 2, . . . ,m},m > 0, is a
subset of the integers, then I2

m is finite. Each element of I2
m is a 2D point that can

be identified uniquely by an integer (see Figure 4.12 for m = 15). If p ≡ (i, j) is
such a point, then pN ≡ (i, j + 1) and pE ≡ (i + 1, j) are the neighbors of p. Points
p, pE , pNE ≡ {(i + 1, j + 1)} and pN are corner points. In Figure 4.12, 193 and 207
are neighbors of 192, whereas 192, 193, 208 and 207 are corner points. Based on
this terminology, the following spatial quanta are defined [26].

Quantum Point : It is any set {p}, where p is a 2D point (see {192}, {193}, {208}
in Figure 4.12). The set of all the quantum points is denoted by QPOINT.

Quantum Line: It is either a line segment qlp,q with edges two neighbor 2D
points, p and q, or a quantum point {p} (see ql184,185, ql188,203 and {184} in Fig-
ure 4.12). Clearly, qlp,q consists of an infinite number of R2 elements. The set of all
the quantum lines is denoted by QLINE.
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Points
{184}, {185}

Lines
Pure: (a), (b), (d), (e)
Degenerate: {184}, {185}

Surfaces
Pure: (c), (f), (g)
Hybrid: (h)
Degenerated to pure line:

(a), (b), (d), (e)
Degenerated to point: {184}, {185}

Fig. 4.12. Spatial quanta and spatial objects

Quantum Surface: It is either the surface of a square qsp,q,r,s, where p, q, r and
s are corner 2D points or a quantum line (see qs192,193,208,207, ql184,185 and {184}
in Figure 4.12). Clearly, qsp,q,r,s consists of infinitely many elements of R2. The set
of all these surfaces is denoted by QSURFACE.

Assuming now that the concept of a connected set is known, it is defined that a
non-empty connected subset S =

⋃
i qi of R2 is of a (2D)

• POINT data type if qi ∈ QPOINT

• LINE data type if qi ∈ QLINE

• SURFACE data type if qi ∈ QSURFACE

Given that QPOINT ⊂ QLINE ⊂ QSURFACE, it follows that POINT ⊂ LINE ⊂
SURFACE. Examples of elements of the above data types are given in Figure 4.12.
A point or line or surface element is called a geo or spatial object.

Modeling of Spatio-temporal Data Based on the above data types, Figure 4.13
illustrates the evolution of a spatial object, Morpheas, with respect to time. As can

LAKES

Name Time Shape

Morpheas [11,20] g1

Morpheas [21,40] g2

Morpheas [41,90] g3

Fig. 4.13. Representation of spatio-temporal data

be seen on the relevant plots, during the periods [11, 20], [21, 40] [41, 90], Morpheas
was just a spring, a river and an actual lake, respectively. Relation LAKES, in the
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same figure, is used to record this evolution. The domain of attribute Shape is SUR-
FACE and each of g1, g2 and g3 is a shorthand of the description of the geometry
of Morpheas. In this model therefore, a map matches the geometric interpretation
of the content of a relation that contains spatial data.

In [25] it has been shown that period is a special case of a more generic data
type, interval. Functions and predicates for such data have been defined. A set of
relational algebra operations has also been defined. It includes the well-known prim-
itive operations, Union, Except, Project, Cartesian Product, Select. It also includes
Fold, Unfold and some derived operations, whose formalism and functionality can
also be found in [25]. Hence, only the application of Fold and Unfold on spatial
data is illustrated below.

Fold : Consider a table R(A, G), where A is a (possibly empty) list of attributes
and G is an attribute of some geo data type. Assume also that (a, gi), i = 1, 2, . . . , n
are all those tuples of R which satisfy the property that the spatial union of all
gi yields a new spatial object g. Then all these tuples result in one tuple, (a, g),
in relation F = Fold[G](R). Consider for example the plane in Figure 4.12 and
assume that R = {(x, {2}), (x, l2,3l3,4), (x, s3,4,19,18), (y, s6,7,22,21s7,8,23,22), (y, l6,7)}.
Then F = {(x, l2,3s3,4,19,18), (y, s6,7,22,21s7,8,23,22)}.

Unfold : Consider R(A, G) as before and let g be a geo object. Consider also any
geo object gi, i = 1, 2, . . . , n, of one quantum, which is a subset of g. Then a tuple
(a, g) of R yields in U = Unfold[G](R) the tuples (a, gi), i = 1, 2, . . . , n. Assuming for
example that R is the previous relation, U = {(x, {2}), (x, {3}), (x, {4}), (x, {18}),
(x, {19}), (x, l2,3), (x, l3,4), (x, l4,19), (x, l19,18), (x, l18,3), (x, s3,4,19,18), (y, {6}),
(y, {7}), (y, {8}), (y, {21}), (y, {22}), (y, {23}), (y, l6,7), (y, l7,22), (y, l22,21), (y, l21,6),
(y, l7,8), (y, l8,23), (y, l23,22), (y, s6,7,22,21), (y, s7,8,23,22)}. Based on the above two op-
erations, a series of useful derived operations have also been defined [27], that enable
the management of spatial data and, in conjunction with [25], spatio-temporal data.
Regarding the management of spatial data, the functionality of these operations is
relevant to that of Spatial Union, Spatial Exception, Spatial Intersection, Overlay
etc that either have been defined by other researchers [5], [22], [34], [35], [29] or are
supported by commercial Geographic Information Systems.

Conclusions The advantages of the proposed model can be summarized as follows:
All the algebraic operations are closed and, in conjunction with [25], they can be ap-
plied uniformly for the management of either spatio-temporal or spatial or temporal
or conventional data. It has been identified, in particular, that certain operations,
originally defined solely for the management of spatial data, are also of practical
interest for the handling of temporal or conventional data. Hence, the algebra is
not many-sorted and enables the uniform treatment of any of the above types of
data. Regarding the case of spatial data, it has been identified that a map matches
the geometric representation of a relation that contains such data. The model is
also close to human intuition. By definition, for example, a line or a surface consists
of an infinite number of 2D points, a line is treated as a degenerate surface and a
point is treated as either a degenerate line or as a degenerate surface. Due to this,
it is estimated that the model is also user-friendly. Finally, it is very general. This
is not only because it can be applied to the previously mentioned types of data.
It can also handle relations with many attributes of some time data type [25] and
investigation results have shown that such relations may also contain n-dimensional
spatial objects. Relevant research concerns implementation issues and the definition
of an SQL extension.
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4.5.4 Spatio-Temporal Statement Modifiers

Data types and operators are generally embedded in some host language, which
makes them available for use during data management. The characteristics of this
language in large part determines the difficulty in migrating existing applications
to a new, spatio-temporal DBMS (STDBMS). The concept of a statement modifier
extended host language [2,31,30], largely orthogonal to the specific abstract data
types offered, enables he migration of legacy applications.

This section defines technical requirements to an STDBMS that provide a foun-
dation for making it economically feasible to migrate legacy applications to an
STDBMS. It proceeds to present the design of the core of a spatio-temporal, multi-
dimensional extension to SQL–92, called STSQL, that satisfies the requirements.
This is achieved by offering upward compatible, dimensional upward compatible, re-
ducible, and non-reducible query language statements.

A planning and scheduling system (termed Ecoplan), which is used for forest
management [28], serves to exemplify the new concepts. A stands table captures
regions that are homogeneous with respect to soil fertility, wood specie, and average
age. An estates table records the IDs of estates and their owners. An estate is a
legal entity covering a geographical region, possibly including one or more forests.
A plans table captures harvest plans, with each stand being associated with one
or more plans (and vise versa), an estimated harvest volume for each stand, and an
optimal harvest time (a so-called ripe year) of the stand.

Migration Requirements Let M = (DS,QL) be a data model with a data
structure and a query language component. For query s ∈ QL and database db ∈
DS, we define 〈〈s(db)〉〉M as the result of applying s to db in data model M . We
use the superscripts “ s” and “ d” to indicate snapshot and dimensional entities,
respectively. The dimensional slice operator, τMd,Ms

p , takes a dimensional database
dbd and returns a snapshot database dbs containing all tuples that are defined at
point p.

Definition 5. (UC) Model M1 is upward compatible with model M2 iff

• ∀db2 ∈ DS2 (db2 ∈ DS1),
• ∀s2 ∈ QL2 (s2 ∈ QL1), and
• ∀db2 ∈ DS2 (∀s2 ∈ QL2 (〈〈s2(db2)〉〉M2 = 〈〈s2(db2)〉〉M1)).

The conditions imply that all existing databases and query expressions in the old
DBMS, captured by M2, are also legal in the new DBMS, captured by M1 and that
all existing queries compute the same results in the new and old DBMSs.

Definition 6. (DUC) Model Md is dimensional upward compatible with model
Ms iff

• Md is upward compatible with M s and
• ∀dbs ∈ DSs (∀ U (∀qs ∈ QLs (〈〈qs(U(dbs))〉〉Ms = 〈〈qs(U(D(dbs)))〉〉Md))).

DUC ensures that legacy applications remain operational even if the database is
rendered dimensional. Intuitively, a query qs must return the same result on an
associated snapshot database dbs as on the dimensional counterpart of the database,
D(dbs) (operator D adds dimensions to its argument). A sequence of modification
statements, U , may not affect this. To satisfy DUC, legacy queries ignore spatial
dimensions and are evaluated only on tuples with time periods that overlap now.

To illustrate the compatibility requirements, consider the following statements
issued in an STDBMS satisfying UC and DUC with respect to SQL-92.
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> SELECT * FROM plans;

> ALTER TABLE plans ADD harvest1 PERIOD AS VALID;

> SELECT * FROM plans;

The first statement is syntactically an SQL–92 query and is issued on the legacy
table, plans. Due to UC, it returns the same result as in the old DBMS. The next
statement alters plans, adding a valid-time dimension to indicate harvest periods
of stands. The last statement, now on a dimensional table, yields the same result
as the first due to DUC.

To generalize the relational model to a dimensional relational model, we adopt
the view that a dimensional table is a collection of snapshot tables, each of which
has an associated multi-dimensional point and contains all snapshot tuples with an
associated multi-dimensional region that contains the point.

Definition 7. (SR) Data model Md is snapshot reducible with respect to data
model Ms iff

∀qs ∈ QLs (∃qd ∈ QLd (∀dbd ∈ DSd (∀p (τMd,Ms

p (qd(dbd)) = qs(τMd,Ms

p (dbd))))))

In addition, it is desirable that qd be syntactically similar snapshot reducible to
qs [4].

Definition 8. (SSSR) Data model Md is a syntactically similar snapshot-reducible
extension of model M s iff

• data model Md is snapshot reducible with respect to data model M s, and
• there exist two (possibly empty) strings, S1 and S2, such that each query qd in

QLd that is snapshot reducible with respect to a query qs in QLs is syntactically
identical to S1q

sS2.

The SSSR requirement enables the SQL–92 programmer to easily formulate spatio-
temporal queries.

> ALTER TABLE estates ADD es_area 2D_REGION AS SPACE;

> ALTER TABLE stands ADD st_area 2D_REGION AS SPACE;

> REDUCIBLE (es_area) AS area SELECT * FROM estates;

> REDUCIBLE (es_area, st_area) AS area

SELECT es_ID, st_ID FROM estates, stands;

The first two statements render estates and stands dimensional. The two queries
have an SQL–92 core. The prepended string, REDUCIBLE, is a statement modifier that
determines the handling of the dimension attributes in the queries. The presence
of REDUCIBLE implies that, conceptually, the queries are computed point-by-point.
More specifically, for each point in space, the legacy SQL statement following the
statement modifier is evaluated on the snapshot database corresponding to that
point. The results for each point in space are integrated into a single dimensional
table.

Many useful dimensional queries cannot be specified as reducible generalizations
of snapshot queries, and there is a need for queries where no built-in processing
of the dimension attributes. The modifier NONREDUCIBLE specifies that dimension
attributes are to be considered as regular attributes. Together with the predicates
and functions offered by the dimensional data types, this yields full control over the
dimension attributes.

> NONREDUCIBLE (es_area, st_area)

SELECT s.st_ID, s.st_area FROM stands s WHERE NOT EXISTS (

SELECT * FROM estates e WHERE e.es_area CONTAINS s.st_area);
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This query retrieves each stand for which no single estate exists that covers the
stand’s area. We consider the regions of the stands as being non-decomposable and
constrain them with a spatial predicate. This contrasts the REDUCIBLE queries from
before, where regions are decomposed into their constituent points.

STSQL Design The first step in the design of STSQL is to introduce new, di-
mensional abstract data types. Time values are anchored time periods while spatial
values are unions of regions. The corresponding data types are PERIOD, 1D REGION,
2D REGION and 3D REGION, respectively [3]. The second step is to make tables di-
mensional, by enabling the designation of certain time or space valued attributes
as dimensional. In STSQL, a dimension attribute is specified as either a VALID, a
TRANSACTION, or a SPACE attribute.

STSQL permits a table to have any number of dimension attributes. This gener-
ality is useful for many purposes. Several VALID-type attributes may record different
temporal aspects of a tuple. For example, the plans table has a VALID attribute
harvest1 recording when a stand is supposed to be harvested. We add another
VALID attribute harvest2 that records an alternative harvest period. The two re-
sulting harvest attributes reflect different (possible) worlds. It is equally easy to
envision uses of multiple space dimension attributes: the multiple-worlds argument
applies equally well to space, and tuples may have several different kinds of spatial
aspects [6].

When formulating queries on dimensional tables, it is advantageous to proceed
in several steps. All dimensions are initially ignored, and the core STSQL query,
typically an SQL-92 query, is formulated. Next, the query’s statement modifier is
specified. For each dimension of each table in the query, it must be stated how
the dimension is used in the query. Specifically, each dimensions that should be
evaluated with reducible semantics is identified. Each occurrence of REDUCIBLE re-
quires the participation of exactly one dimension from each table. Following this,
each dimensions to be given NONREDUCIBLE semantics is identified. This semantics
is chosen if we want to formulate user-defined predicates (e.g., CONTAINS) on the
dimension attribute or if we want to override the DUC-consistent semantics, which
are given to dimension attributes not mentioned in the statement modifier.

We conclude by formulating the following query: for each stand that is ripe in
2000, determine its harvest periods. The stands and the plans tables are joined
using a reducible join over the valid times, to associate stands with relevant plans
only. Next, we are only interested in the current data on stands. Assuming that a
transaction-time dimension st tt has been added to stands, we want to consider
only tuples that overlap now. This is the semantics provided by DUC, so no modifier
is specified for st tt. The location of a stand is not relevant and, thus, must be
disregarded. This is again DUC semantics, so no modifier for st area is specified.
Finally, we want to retrieve (and handle) the harvest periods as regular attributes.
This is achieved by specifying a non-reducible modifier for these dimensions.

> REDUCIBLE (st_vt, pl_vt) AS vt AND NONREDUCIBLE (harvest1, harvest2)

SELECT st.st_ID, harvest1, harvest2

FROM stands st, plans pl

WHERE pl.st_ID = st.st_ID AND pl.ripe = 2000;

Conclusion and Future Research We formulated requirements to a new dimen-
sional DBMS aiming at addressing legacy-related concerns. The objectives are to
make it possible for legacy database applications using a conventional SQL-92-based
DBMS to be migrated to a dimensional DBMS without without affecting the legacy
applications, while also reusing programmer expertise. A spatio-temporal extension
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to SQL–92, termed STSQL, that provides built-in data management support for
spatio-temporal data has been designed to meet the above requirements.

Several directions for further explorations may be identified. First, we have only
described the initial design of the core of STSQL, and further formalizations of
the language are in order. Next, we have chosen one possible semantics for DUC
statements. Other semantics are possible; further studies are needed to identify
these and explore their utility.
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3. M. H. Böhlen, C. S. Jensen, and B. Skjellaug. Spatio-Temporal Database Support for
Legacy Applications. In Proceedings of the 1998 ACM Symposium on Applied Comput-
ing, pp. 226–234. Atlanta, Georgia, February 1998.

4. M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Evaluating the Completeness of
TSQL2. In Recent Advances in Temporal Databases, International Workshop on Tem-
poral Databases, pp. 153–172. Springer, Berlin, Zürich, Switzerland, September 1995.
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20. R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schnei-
der, and M.Vazirgiannis. A Foundation for Representing and Querying Moving Ob-
jects. Technical Report Informatik 238, FernUniversität Hagen, 1998. Available at
http://www.fernuni-hagen.de/inf/pi4/papers/Foundation.ps.gz.
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22. R.H. Güting and M. Schneider. Realm-Based Spatial Data Types: The ROSE Algebra.
VLDB Journal, 4(2):100–143, 1995.

23. Z. Huang, P. Svensson, and H. Hauska. Solving Spatial Analysis Problems with
GeoSAL, a Spatial Query Language. In 6th Int. Working Conf. on Scientific and
Statistical Database Management, 1992.

24. J. Loeckx, H. D. Ehrich, and M. Wolf. Specification of Abstract Data Types. John
Wiley & Sons, Inc. and B.G. Teubner Publishers, 1996.

25. N. A. Lorentzos and Y. G. Mitsopoulos. SQL Extension for Interval Data. IEEE
Transactions on Knowledge and Data Engineering, 9(3):480–499, 1997.

26. N. A. Lorentzos, N. Tryfona, and J. R. Rios Viqueira. Relational Algebra for Spa-
tial Data Management. In Proc. International Workshop Integrated Spatial Databases:
Digital Images and GIS. Portland, Maine, June 1999.

27. N. A. Lorentzos, J. R. Rios Viqueira, and N. Tryfona. Quantum-Based Spatial Data
Model. Technical Report, Informatics Laboratory, Agricultural University of Athens,
2000.

28. G. Misund, B. Johansen, G. Hasle, and J. Haukland. Integration of geographical infor-
mation technology and constraint reasoning—a promising approach to forest manage-
ment. Technical Report STF33A 95009, SINTEF Applied Mathematics, Oslo, Norway,
June 1995.

29. M. Scholl and A. Voisard. Thematic Map Modeling. In 1st Int. Symp. on Large Spatial
Databases, LNCS 409, pp. 167–190, 1989.
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