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STATISTICAL PROPERTIES OF INFINITE DIMENSIONAL
SYSTEMS

CARLANGELO LIVERANI

1. first lecture

1.1. The problem. We have seen during the first workshop many attempts to
bring the theory of dynamical systems to bear on the issue of non-equilibrium
statistical mechanics.

In Dolgopyat’s lectures we have seen some techniques allowing to show how
the complicate behavior of the nonlinearities can give rise to effective noise at the
macroscopic level.

The main gap to close the circle is to learn how to treat system with many (say
1025) components. This is very hard and, at the moment, can be done only in the
very simple case of coupled map lattices.

1.2. CML. A couple map lattice is constructed a follows: given a dynamical system
(X,T ) we consider the space Ω := XZd (but more general sets than Zd can be
also considered) and the product map F0(x)i = T (xi). Next we consider a map
Φε : Ω→ Ω that is ε-close to the identity in a sense to be made precise. The CML
that we will consider are then given by Fε := Φε ◦ F0. Interesting cases are:

• T expanding map (either smooth or not)
• T uniformly hyperbolic (either smooth or not)
• T partially hyperbolic (either smooth or not)

The typical approach, going back to Bunimovich-Sinai, is to conjugate Fε to F0

and use Markov partitions (see the papers in the references for more details).
A more direct approach, and more dynamical in nature, is desirable (also because

in the non-smooth case conjugation fails).

1.3. Super-brief history of the transfer operator approach. The possibility
to investigate directly the transfer operator for a CML was first investigated by
Keller and Künzle [24]. They were able to prove spectral gap in finitely many di-
mensions and existence of a measure with absolutely continuos marginals in infinite
dimensions. Then Fischer, Rugh [8] and Rugh [33] managed to prove space-time
decay of correlations in infinite dimensions in the analytic case. Then in Baladi,
Degli Esposti, Järvenpää, Kupiainen [1] and Baladi, Rugh [2] the spectrum in the
analytic case is precisely investigated. Finally, in [27] it was proved the spectral
gap for piecewise expanding CML. The latter paper is what I will explain in the
following.
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1.4. Expanding CML. Consider the case in which X = [0, 1] and the map is
piecewise C2 and |DT | ≥ λ > 2. While

Φε(x)i = xi + ε
∑
|z|=1

αz(τ ix)(xi+z − xi),

with τ i(x)j = xi+j and αz ∈ C1 with ∂xjαz = 0 if |j| ≥ 1. Moreover, we assume
• αz ≥ 0. Which, for ε small, insures xi ≥ 0 =⇒ Φε(x)i ≥ 0.
•
∑
i αi = 1. Which for ε small, insures xi ≤ 1 =⇒ Φε(x)i ≤ 1.

The goal is show existence and uniqueness of the SRB measure for
small ε. For large, but still less than one, ε uniqueness may fail [3].

1.5. Transfer operator and Lasota-Yorke inequality. As we want to deal with
infinite systems, it is convenient to first define the transfer operator on the set of
Borel measures M(Ω): for each measurable set A, let Lµ(A) := µ(F−1

ε (A)).
Obviously M(Ω) is too big to be useful, to restrict it we define two norms:

|µ| := sup
|ϕ|C0≤1

µ(ϕ)

‖µ‖ := sup
i∈Zd

sup
‖ϕ‖C0≤1

ϕ∈C1

µ(∂xiϕ).

Clearly |µ| ≤ ‖µ‖. Let B := {µ ∈M(ω) : ‖µ‖ <∞}.

Theorem 1.1 (Keller et al.). For ε small enough there exists θ ∈ (0, 1) such that,
for all n ∈ N,

‖Lnµ‖ ≤ Aθn‖µ‖+B|µ|.

That is nice but compactness is missing. In fact, compactness does not hold,
thus we need a way to establish directly the existence of a gap.
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2. second lecture

2.1. spectral gap. To deal with this fix a ∈ [0, 1] and given x ∈ Ω let (xp)q = xq
for q 6= p and (xp)p = a. Then define Φε,p to be the map

Φε,p(x)q =

{
Φε(xq)q if q 6= p

xp if q = p .

One can easily verify that

|(L − Lp)µ| ≤ Cε‖µ‖,

where Lp is the operator associated to the coupling Φε,p. Indeed, letting Φt :=
(1− t)Φε − tΦε,p, holds

µ(ϕ ◦ Φε − ϕ ◦ Φε,p) =
∫ 1

0

µ(
d

dt
ϕ ◦ Φt) =

∫ 1

0

∑
|i−p|≤1

µ(∂xiϕ · [Φε − Φε,p]i)

=
∫ 1

0

∑
|i−p|≤1

µ(∂xi [ϕ(Φε − Φε,p)i])− µ(ϕ∂xi(Φε − Φε,p)i])

≤ Cε‖µ‖ · |ϕ|∞.

Hence

|(Ln − Lnp )µ| ≤
n−1∑
k=0

|Ln−k−1(L − Lp)Lkpµ| ≤ Cεn‖µ‖.

Next, suppose that µ(ϕ) = 0 for each function ϕ that does not depend on xp,
then

‖Ln+mµ‖ ≤ Aθn‖Lmµ‖+B|Lmµ| ≤ C(θn +mε)‖µ‖+B|Lmp µ|.
Then, if h is the invariant density of the single site map,

Lmp µ(ϕ) = µ(ϕ ◦ (Φε,p ◦ F0)m)

=
∫

Ω

[
ϕ((Φε,p ◦ F0)m(x))−

∫ 1

0

dxph(xp)ϕ((Φε,p ◦ F0)m(x))
]
µ(dx)

=
∫

Ω

∂xp

∫ xp

0

dxp

[
ϕ((Φε,p ◦ F0)m(x))−

∫ 1

0

dxph(xp)ϕ((Φε,p ◦ F0)m(x))
]
µ(dx)

≤ ‖µ‖ sup
x 6=p

∫ 1

0

dy1[0,xp](y)
[
ϕ(x 6=p, Tmy)−

∫ 1

0

dzh(z)ϕ(x 6=p, z)
]

≤ Cνn‖µ‖ · |ϕ|∞,

where ν is the rate of decay for the single site map. Putting the above estimates
together yields

‖Ln+mµ‖ ≤ C(θn +mε+ νm)‖µ‖ ≤ σn+m‖µ‖,

for some σ ∈ (0, 1), provided we choose n,m, ε appropriately.
So, let Bp = {µ ∈ B : µ(ϕ) = 0 for all ϕ independent of p}. The situation looks

good but there are two problem

(1) in general µ ∈ B does not belong to Bp for any p.
(2) µ ∈ Bp 6=⇒ Lµ ∈ Bp.
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No problem: first show that each µ ∈ B can be decomposed as

µ = cm+
∑
p∈Zd

µp

where m ∈ B is a fixed probability measure and µp ∈ Bp. Then, for each µp ∈ Bp,
write

Lµp = Lpµp + ε
∑
|q−p|≤1

Lq,pµp

where LpBp ⊂ Bp and Lq,pBp ⊂ Bq and the operators have all uniformly bounded
norm. Only a seemingly catastrophic problem is left: the decomposition sum does
not converge in the | · | topology (let alone the ‖ · ‖ one).

No problem: let us associate to each measure µ the vector (c, µp) given by the
terms of its decomposition (this means that one introduces the new super-abstract
Banach space B̄ = C × (×p∈ZdBp) with norm ‖(c, µp)‖ := max{|c|, supp∈Zd ‖µ‖p})
and the operator

L(c, µp) = (c,Lpµp + ε
∑
|q−p|≤1

Lp,qµq + ζp) =: (c,L∗(µp) + ζ̄),

where ζp is the decomposition of Lm−m. By applying the previous estimates one
has that ‖L∗‖ < 1. Is that good for something?

Well, (1, µ̄) = (1,L∗µ̄+ ζ̄) has the unique solution µ̄∗ := (1−L∗)−1ζ̄. Let ϕ be
a local function that depends only the variables in the finite set Λ ⊂ Zd and µ ∈ B
a probability measure with decomposition (1, µ̄), then

µ(ϕ ◦ Fnε ) = m(ϕ) +
∑
p∈Λ

(
Ln∗ µ̄+

n−1∑
k=0

Lk∗ ζ̄

)
p

(ϕ) =
∑
p∈Λ

µ∗p(ϕ) +O(|Λ|‖L∗‖n).

By weak compactness and the Lasota-Yorke inequality we know that 1
n

∑n−1
k=0 Lkµ

has accumulation points in B, let µ∗ be one such accumulation point, then

µ∗(ϕ) =
∑
p∈Λ

µ∗p(ϕ)

Invariance, uniqueness and spatio-temporal decay of correlation for µ∗ readily fol-
low.

2.2. Coupled Anosov maps. Let X = Tm and T be a smooth Anosov map.

Φε(x)i = xi + ε
∑
|z|=1

αz(τ ix) sin (2π(xi+z − xi)) mod 1,

note that, contrary to the previous case Φε is a diffeomorphism of Ω. The transfer
operator is defined as before on M(Ω). To restrict the space we again have to
introduce norms. This are in the spirit of Baladi’s lectures. Yet there is an abun-
dance of spaces that can be used, I would like a space that reduces to BV in the
expanding case, this is what I am going to describe. I will describe it in the case of
one Anosov map, its application to the coupled system is work in progress.
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2.3. Norms.

Definition 1. A Ck t-dimensional foliation W is a collection {Wα}α∈A, for some
set A, such that the Wα are pairwise disjoint, ∪α∈AWα = M and for each ξ ∈
Wα there exists a neighborhood B(ξ) such that the connected component W (ξ) of
Wα ∩B(ξ) containing ξ is a Ck t-dimensional open submanifold of M . We will call
Fk the set of Ck ds-dimensional foliations.

Definition 2. A foliation W is adapted to the cone filed C if, for each ξ ∈M , holds
TξW (ξ) ⊂ C(ξ). We will call FkC the set of Ck ds-dimensional foliations adapted to
C.

Given a ds-foliation adapted to C we can associate to it a system of local co-
ordinates as follows. For each point ξ ∈ M choose a chart (Vi, φi), ξ ∈ φi(Vi),
and a neighborhood Uξ ⊂ Vi of (xξ, yξ) := φ−1

i (ξ). Next, for each z ∈ Uξ, let
W (z) be the connected component of φ−1

i (W ) containing z. Finally, let U0
ξ :=

{z ∈ Rdu × Rds : z + (xξ, yξ) ∈ Uξ} and define the function Fξ : U0
ξ → Rdu by

{Fξ(x, y)} = {(w, y + yξ)}w∈Rdu ∩W (x + xξ, yξ). In other words the graph of the
function Fξ(x, ·) is exactly W (x+ xξ, yξ), moreover F (0, 0) = (xξ, yξ).

Note that this construction defines the local triangular coordinates Fξ(x, y) =
(Fξ(x, y), y) which describe locally the foliation. Also let rξ such that Drξ =
{(x, y) ∈ Rd : ‖(x, y)‖ ≤ rξ} ⊂ U0

ξ .

Definition 3. For each ξ ∈M and r ≤ rξ, ‖ · ‖Cps (Dr,Rl) is a semi-norm defined as
follows: For any function ψ ∈ Cp(Dr,Rl), consider the function ψ̂(y) = ψ ◦Fξ(0, y)
and let Ds

r = {y ∈ Rds : ‖y‖ < r} be its domain of definition, then

‖ψ‖Cps (Dr,Rl) := ‖ψ̂‖Cp(Dsr,Rl).

Definition 4. For each D > 0, k ∈ N, we define

FkC :=
{
W ∈ FkC : Fξ ∈ Ck(U0

ξ ,Rd) ∀ ξ ∈M
}

Wk
D :=

{
W ∈ FkC : sup

ξ∈M

[
‖Fξ(0, ·)‖Ck(Dsrξ

,Rdu ) + ‖HF
ξ ‖Ck−1

s (Drξ ,Rds )

]
≤ D

}
,

where HF
ξ (x, y) =

∑du
j=1 ∂xj

(
[∂y(Fξ)j ] ◦ F−1

ξ

)
(x, y).

(2.1) ΩD,q,l =
{

(W,ϕ) ∈ WD × Cq(M,Rl) : ‖ϕ‖Wq ≤ 1
}

It is now time to define the norms. Given a function h ∈ C1(M,R) we define

‖h‖0,q := sup
(W,ϕ)∈ΩD,q,1

∫
M

hϕ

‖h‖1,q := ‖h‖0,q + sup
(W,ϕ)∈ΩD,q+1,d

∫
M

hdivϕ
(2.2)

Let us call B0,q,B1,q, respectively, the Banach spaces obtained by completing C1(M,R)
in the above norms.

Lemma 2.1. For all h ∈ C1(M,R) holds true
‖Lh‖0,q ≤ ‖h‖0,q
‖Lnh‖1,q ≤ Aσn‖h‖1,q +B‖h‖0,q.
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Moreover the unit ball of B1,q is relatively compact in B0,q+1.

Lemma 2.2. For q ∈ R+ large enough, the essential spectrum of L on B1,q is
contained in the disc {z ∈ C : |z| ≤ λ−1}.

The above proves exponential mixing for any smooth Anosov map in any dimen-
sion but gives no information on how the spectral gap depends on the dimension.
In general the dependence can be arbitrarily bad, to get some meaningful estimates
we need to use the product structure as we did in the expanding case. This is the
issue under scrutiny at this moment.
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3. third lecture

3.1. Partially hyperbolic systems. Let X = [0, 1]2, and T be a piecewise ex-
panding map, then

(3.1) Fε(x,E)i =
(
Txi + ε

∑
|z|=1 αz(τ

i(x,E))(xi+z − xi)
Ei + ε

∑
|z|=1 πz(τ

i(x,E))(Ei+z − Ei)

)
where αz, πz are smooth and αz, πz ≥ 0 and

∑
z αz =

∑
z πz = 1. As explained by

Dolgopyat this is a very hard case even if one has only two maps. So we need some
simplifying assumptions. Let us start with a very drastic one that has recently been
treated in [7].

3.2. Cocycles and random walks. Assume that αz = 0 (in fact, the case ∂Eαz =
0 can be treated in the same way) and ∂Eπz = 0. Then the above system can be
treated as a random walk in random environment. Indeed the if we take an initial
condition such that

∑
iEi = 1, such a condition will be preserved by the dynamics.

But then we can interpret the Ei as the probability of an imaginary particle (a
ghost particle) to be at site i. Looking at the dynamics we see that if we interpret
the πz as environment dependent transition probability, then the dynamics specify
exactly the evolution of the probability distribution of the ghost particle if such a
particle performs a random walk with transition probabilities πz. Let Xn ∈ Zd be
the position of the ghost particle at time n.

3.3. The egocentric point of view. Consider the process ω =: (ωn)n∈N ∈ ΩN

described by the action of the Markov operator S : L∞(Ω)→ L∞(Ω) defined by

(3.2) Sf(ω) :=
∑
z∈Λ

πz(ω)f ◦ F (τzω) =:
∑
z∈Λ

Szf.

Remark 3.1. It is easy to verify that the process ω, ω0 = x, has the same distri-
bution as the process (τXnTnx)n∈N.

We can use the same techniques used to study CML to study the operator S
and prove that it has a unique invariant measure µ∗ ∈ B. We can then consider
the measure P on ΩN of the associated Markov process started with a measure µ∗.

3.4. Annealed statistical properties.

Lemma 3.2. There exists a vector v ∈ Rd and a matrix Σ ≥ 0 such that, for each
probability measure ν ∈ B we have

1
N

E(XN )→ v

XN − vN√
N

⇒ N (0,Σ) under Pν .

Note that if v = 0 (which can be insured by a symmetry assumption) and ϕ ∈
C0(Rd), then we have (essentially)

lim
N→∞

∑
q∈Zd

µ∗(ϕ(N−
1
2 q)Eq(Nt)) = lim

N→∞

∑
q∈Zd

E(ϕ(N−
1
2XNt)) =

∫
Rd

Ψ(y, t)ϕ(x)dy

where
∂tΨ =

∑
ij

Σ2
ij∂yiyjΨ.
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In other words, the local average of the E is described by the function Ψ which
satisfy the heat equation. Since

E
(
e

i√
N
〈t,∆k−v〉 ∣∣ Fk) =

∑
z∈Λ

πz(τXkθk)e
i√
N
〈t,z−v〉

,

it is natural to introduce the operators, for all t ∈ Cd,

(3.3) Mth(θ) :=
∑
z∈Λ

πz(θ)e〈t,z−v〉h(τzF (θ)) =
∑
z∈Λ

e〈t,z−v〉Szh.

Then,

(3.4) E
(
e

i√
N
〈t,X̃N 〉

)
= ν(MN

it/
√
N

1).

The operatorM′t acting on the space B is an analytic perturbation of the operator
S′ = M′0. Unfortunately, S′ does not have a nice spectrum on B, but if we lift it
to our covering space B then it has a simple maximal eigenvalue and we can apply
standard perturbation theory to prove that the maximal eigenvalue is of the form
1−N−1〈t,Σ2t〉 which implies the result.

3.5. Kinetic limit. The idea is to consider the system described by (3.1) and look
at E(ε−2t) in the limit ε→ 0. This is very similar to the work of Gaspard-Gilbert
and Bricmont-Kupiainen that we heard in the previous weeks. The goal is to show
that, in the limit, we have a limiting stochastic process e(t) that satisfy the SDE

(3.5) dei =
∑
|i−k|=1

α(ei, ek)dt+
∑
|i−k|=1

σγ(ei, ek)dB{i,k}

with B{i,k} = −B{k,i} independent standard Brownian motions. This is an open
problem at the moment but similar results have been obtained for different model
by Liverani-Olla (in preparation).

The above equation looks very similar to the non-gradient Ginzburg-Landau
equation studied by Varadhan in [35]. So it is conceivable that it may be possible
to take diffusive scaling limit (like in the previous example) and obtain a non-linear
heat-equation.

This is the current research plan of several people.
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