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1. First Topic: expanding maps

1.1. What are we talking about? The qualitative description of the statisti-
cal properties of dynamical systems is very well studies. The possible behavior go
from extremely regular motion (for example as in completely integrable dynamical
systems), to systems in which the times averages are constant (ergodicity), to sys-
tems in which a large class of initial measures converge under the dynamic to the
invariant measure (mixing) till systems that are isomorphic to a Bernoulli shift.

This is a very useful classification, widely used in the field of Dynamical Systems
and its application. Yet, it turns out that for many applications it is necessary to
have a more quantitative understanding.

The purpose of the first part of this minicourse is to discuss some of these issue,
and show how the relevant properties can be established in various systems from
few degree of freedom (mainly Anosov Systems or flows) to infinitely many degree of
freedom (Coupled Map Lattices). In the second part of the minicourse D.Dolgopyat
will show how such understanding and techniques can be applied to a manifold of
interesting problems at the boundary between Dynamical Systems and Probability.

Let me start by being a bit more precise on the type of properties we are inter-
ested in

(1) Decay of correlations Given a Dynamical System1 (X, f,Σ) with a class
of measures M, the system is mixing with respect to such a class if there
exists only one invariant measure µ∗ in the weak closure of M, and if
fn∗ µ converges weakly to such a measure for each µ ∈ M.2 The question
here is to estimate or compute the speed of convergence. Typically, this
question does not make sense (i.e. often the speed can be arbitrarily small
depending on the element of M or the test function). To understand how
to restrict the class of measures and obervables, while keeping them as large
as possible, is part of the problem.

Date: August 14, 2009.
1In the following X will be a Riemannian manifold, possibly with boundaries, f a smooth or

piecewise smooth map and Σ the Borel σ-algebra.
2Of course f∗µ(A) := µ(f−1A) for each A ∈ Σ.
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(2) Central limit Theorem If we consider a mixing system (X, f,Σ, µ∗), then
by ergodicity for each L1 function ϕ

lim
n→∞

1
n

n−1∑
k=0

ϕ ◦ fk = µ∗(ϕ) µ∗-a.s..

This is very nice, yet in reality one cannot perform an infinite time average.
Hence it becomes of extreme practical importance to answer the question:
if n is large but finite, how will fluctuate the average around the mean?
In many cases (but not all!) the answer is that the difference will behave
like a Gaussian random variable of size n−

1
2 , i.e. it satisfies a CLT. Here

also it is necessary to restrict to class of observable in a meaningful way
in order to establish such type of results. Actually, in practice, even more
precise results are often needed (such as local CLT, Berry-Essen estimates,
invariance principles etc.)

(3) Large deviation Theorems This is related to the previous situation,
only the question is a bit different: is it possible to observe deviations from
the average of size one? If the system satisfies the CLT such a possibility
must be extremely rare, yet it is well know that rare events can have a
catastrophic effect.

(4) Perturbation Theorems If we are interested in applications, then the
models that we study mathematically are always approximations of the real
phenomena. It is then natural to ask what happens of the above properties
if one changes a bit the system. This changes can be of many types, here
are the most commonly considered
• Determinist change: one considers a system (X, fε) where fε is close,

in an appropriate sense, to f .
• Random change: here one considers a random system close to the

original one, for example one can iterate maps close to f chosen at
random independently at each time, one can add at each time a small
random variable, etc.

• Open systems: one can also consider the possibility to open a small
hole in the system. That is, consider a small set A ⊂ X and stop the
dynamics when fn(x) ∈ A. The problem is to study the dynamics
conditioned to the fact that it has not been stopped.

(5) Linear Response This is similar to the above but the emphasis is on
more refined results and explicit formulae: considers a smooth (in some
technical sense) one parameter family of systems (X, fε) where each fε has
a unique invariant measure, in some class M, νε. This can be thought
as a model of a situation in which one can act on a system by tuning an
external parameter (e.g. an electric field). Physicist are interested in the
changes of a measurement for small changes of the parameter and have
a (mostly heuristic) theory to describe this called linear response theory.
Mathematically the problem reduces to show that dνε

dε exists and to find
explicit formulae for it.

(6) Computability Again for applications is important to be able to actually
compute the relevant quantities (e.g. the invariant measure, the rate of
decay of correlations, the variance in the CLT, the rate function in the Large
deviations, etc.). Since computers use rational numbers, any computation
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entails an approximation. Thus the problem of computing is closely related
to the problem of perturbing the system, although it comes with its peculiar
difficulties.

(7) Zeta functions In 1975, Ruelle proposed to study the function

ζRuelle(s) =
∏
τ

(
1− e−sλ(τ)

)−1

where λ(τ) denotes the least period of a closed orbit τ . This definition is
analogous to that of the famous Riemann zeta function and its knowledge
can be used to estimate the number of closed orbits of the system, in analogy
with the well known prime number theorems. The study of the ζ function
can be carried out by first studying the so called dynamical determinant

d(s) = exp

(
−
∑
τ

e−sλ(τ)

det(I −Dλ(τ)φ(τ))

)
were Dλ(τ)φ(τ) is the derivative of the map (or of the Poincaré map in the
case of flows). Amazingly enough it turns out that the analytic properties
of d depend on the topological pressure, and the rates of decay of correla-
tions. We have then that the statistical properties of the systems are closely
related to the behavior of the periodic orbits that, naively, seem to have
little to do with it. The zeta function is very popular among physicists [19]
because it is possible to implement efficient algorithms to compute periodic
orbits and thus one can use this theory to effectively estimate interesting
properties of the system [65].

In the following I will present two techniques to investigate such problems, the
first more robust but less powerful, the second more powerful but also more limited:
coupling and spectral methods. In case people never saw them I will present them
first in the easiest setting (expanding maps), sorry for the others.

Remark 1.1. In this lectures I will always talk about the uniformly hyperbolic (or
partially hyperbolic) case. This seems to be at odd with the title of this Conference
but it is not really so: the typical strategy to deal with a non-uniform system is to
transform it (usually by some inducing procedure) in a uniform one. Also, it is
now well understood that when discontinuities in a uniformly hyperbolic system are
present, the techniques used to attack the problem are often very similar to the ones
used for non uniform systems.

If one want to know much more about the transfer operator see [1].

1.2. Smooth expanding maps. This is the simplest possible case: a dynamical
system (Td, f) where f ∈ C2 and ‖Df−1‖∞ =: σ < 1.

The basic idea is to study the dynamics on measures: letM(Td) be the space of
signed Borel measures on Td, then, for each Borel set A and measure µ ∈ M(Td),
define

f∗µ(A) := µ(f−1(A)).
We have now the new dynamical system (M(Td), f∗). This is too big to be studied
meaningfully, as already said the idea is to restrict to a smaller class of measures.
The class to be chosen depends on the question we want to address, for example:
find the SRB measures, or the maximal entropy measure, or find an invariant
measure supported on some Cantor set, ....
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Here, for simplicity, we will restrict to the first question and we will then chose
M := {µ ∈M(Td) : µ� Lebesgue}. Calling m the Lebesgue measure, an explicit
computation (change of variable) shows that if h ∈ L1(Td,m) and dµ := hdm, then
for each ϕ ∈ C0,

f∗µ(ϕ) = m(ϕ · Lh)

Lh(x) :=
∑

y∈f−1(x)

|det(Dyf)|−1h(y)

in particular f∗(M) ⊂ M. The operator L is called in many way (essentially
any arbitrary permutation of a sub-set of the words Transfer , Perron-Frobenious,
Ruelle + operator will do) and is the main object of our discussion. Its key property,
that make it possible to study it, is that it has some smoothing properties. To see
it assume h ∈ C1, then, for each vector v ∈ Rd,

〈∇Lh, v〉 =
∑

y∈f−1(x)

〈|det(Dyf)|−1 · ∇h(y), (Dyf)−1v〉

−
∑

y∈f−1(x)

〈|det(Dyf)|−2∇|det(Dyf)| · h(y), (Dyf)−1v〉

= L(〈D, v〉h) + L(〈∇h, (Dyf)−1v〉),

(1.1)

where the quantity D = |det(Dyf)|−1[(Dyf)−1]t|∇[det(Dyf)]| is called distortion.
Note that for f ∈ C2, ‖D‖∞ = M <∞.

The question is: how can we exploit the above smoothing property?

1.3. Coupling. One way to use (1.1) is to notice that if h ∈ C1 and ah(x) ≥
‖∇h(x)‖, then

‖∇Lh(x)‖ ≤ |D|∞Lh(x) + σ(L‖∇h‖)(x) ≤ [|D|∞ + σa]Lh(x).

In other words, for each σ1 ∈ (0, σ), if we define the cone of function Ca := {h ∈
C1(Td,R) : ah(x) ≥ ‖∇h(x)‖}, with a > D(σ − σ1)−1, we have LCa ⊂ Cσ1a.

The above cone contraction can be used directly by using Hilbert metrics3 but
here we are more interested in the, more flexible, coupling techniques.4

Given two probability measures µ1, µ2 on Td a coupling Q is simply a probability
measure on T2d such that the marginal are exactly µ1, µ2, i.e.∫

T2d
g(x)Q(dx, dy) = µ1(g) ;

∫
T2d

g(y)Q(dx, dy) = µ2(g).

An interesting fact about coupling is that if it has the form

(1.2) Q(g) = (1− δ)
∫

Td
g(x, x)µ(dx) + δQ1(g),

for some probability measures µ,Q,Q1 and δ ∈ [0, 1], then

|µ1(g)−µ2(g)| =
∫
|g(x)− g(y)|Q(dx, dy) ≤ δ

∫
|g(x)− g(y)|Q1(dx, dy) ≤ 2δ|g|∞.

3This approach has been introduced in the field of Dynamical Systems by Ferrero [23] and
further developed by many people starting with [53].

4This approach was present for quite some time in the field of Dynamical System (more pre-
cisely abstract ergodic theory) under the name of joining, but it has been introduced in this
context by Young [77], following the use in probability.
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Thus coupling can be used to estimate the distance of two measures (in the present
case the total variation distance).

Given two different measures dµi = hidm, the idea is to construct iteratively
better and better couplings among the measures with densities Lnhi. This can
be easily done since if one has a coupling of the form (1.2), then, by definition,
µi(g) = (1− δ)µ(g) + δνi(g). On the other hand if the measures have such a form
one can always consider the coupling Q(g) = (1− δ)

∫
g(x, x)µ(dx) + δν1 ⊗ ν2(g).

Now, let us assume we have h ∈ Ca. Note that this implies: (a) h > 0;5 (b) given
two points x, y ∈ Td, let γ ∈ C1([0, 1],Td) be a reparametrization of the straight
segment joining the two points, then hi ◦ γ > 0 and

h(x)
h(y)

= elnh(x)−lnh(y) = e
R 1
0
〈∇h◦γ(t),γ′(t)〉

h◦γ(t) dt ≤ ea|x−y|.

Thus, if h is a smooth probability density, hence its integral is one, it must have
value one somewhere, thus h ≥ e−a

√
d.

Finally, given two densities of probability measures hi ∈ Cσ1a and setting r =
(1 − σ1)e−a

√
d we can write hi = r + (1 − r)h1,i, moreover one can easily check

that h1,i ∈ Ca. We are thus in a situation of the above type. Moreover, Lhi =
rL1 + (1− r)Lh1,i, but then Lh1,i ∈ Cσ1a and we can keep coupling. After n steps
we will have

Lnhi =
n−1∑
k=0

r(1− r)kLn−k1 + (1− r)nhn,i.

The above means that the total variation distance between Lnh1 and Lnh2 is
bounded by (1 − r)n, i.e. the sequences Lnh are Cauchy sequences that converge
exponentially fast. In other words there exits a unique µ � Lebesgue such that,
for all f ∈ C0, h ∈ C1,∣∣∣∣∫ h · ϕ ◦ fn − µ(ϕ)

∫
h

∣∣∣∣ ≤ C|ϕ|∞|h|C1e−αn.
1.4. Spectral methods. A different method to extract information from (1.1) is
to notice that it implies the following inequalities

|Lh|L1 = sup
|ϕ|∞≤1

m(ϕLh) = sup
|ϕ|∞≤1

m(ϕ ◦ fh) ≤ |h|L1

|∇Lh|L1 ≤ σ|∇h|L1 +M |h|L1 .
(1.3)

The above inequalities are the first example of a general class of inequalities com-
monly called Lasota-Yorke or Doeblin-Fortet and they will play a fundamental role
in our discussion. The reason lies in the following theorem6

5Indeed, if h(x) = 0, then for each y consider a smooth curve γ such that γ(0) = x, γ(1) = y,

then
d

dt
h ◦ γ = 〈∇h ◦ γ, γ′〉 ≤ |γ′|ah ◦ γ

and then it would follow h ≡ 0 by Gronwald inequality and the arbitrariness of y.
6This results has a long history starting from Ionescu-Tulcea and Marinescu, Ruelle, Keller

and so on. In the form given here is due to Hennion [32]. But see the proof of Lemma 1.10 in the
Appendix B for a simple proof of a slightly less general statment.
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Theorem 1.2. Consider two Banach spaces B ⊂ Bw, ‖·‖ ≥ ‖·‖w, and an operator
L : Bw → Bw such that, L(B) ⊂ B. In addition, assume that for some L > θ > 0,
A,B,C > 0, and for each n ∈ N, holds true

‖Lnf‖w ≤ CLn‖f‖w; ‖Lnf‖ ≤ Aθn‖f‖+BLn‖f‖w
Then the spectral radius of L is bounded by L. If, in addition, L is compact as an
operator from B to Bw, then L : B → B is quasi compact and its essential spectral
radius7 is bounded by θ.

Note that considering the Sobolev spaces Bw = L1,B = W 1,1 and iterating (1.3)
we have exactly the above with C = L = A = 1, θ = σ and B = M(1 − σ)−1.
It follows immediately that there can be at most finitely many invariant measures
absolutely continuos with respect to Lebesgue. But we have just seen that there
is only one! The simplest way to obtain such a result in the present setting it to
remember the Gagliardo-Niremberg-Sobolev inequalities: for each p ∈ [1, d) and
smooth function g

‖g‖Lp∗ ≤ C‖g‖W 1,p ,

where 1
p∗ = 1

p −
1
d . An Morrey inequality: for each p > d exists α > 0 such that

‖g‖Cα ≤ C‖g‖W 1,p .

In addition, by iterating (1.1) we have ‖∇Ln1(x)‖ ≤ (1−σ)−1|D|∞|Ln1(x)|. Thus
|Ln1|Lp∗ ≤ C‖Ln1‖W 1,p ≤ C|Ln1|Lp and since p∗ = p(1 + p

d−p ), after a finite
number of iterations we will be able to apply Morrey inequality, thus |Ln1|∞ ≤ C.
But this implies∫
|Lnh|p ≤

∫
|Lnh|p−1◦f |h| ≤

[∫
|Lnh|pLn1

] p−1
p

|h|Lp ≤ |Ln1|
p−1
p
∞ |Lnh|p−1

Lp |h|Lp .

This means that ‖Lnh‖Lp ≤ C‖h‖Lp for each p ≥ 1 and, from (1.1) again,
yields the Lasota-Yorke inequality for Lp,W 1,p. But this means that all absolutely
continuos invariant measures must have continuos density.8 This implies that the
support of any invariant measure contains a ball. Since the expansion implies that
volume of the image of a ball keeps growing until it covers an invertibility domain for
the map the support must be all Td. But then any two invariant measures would be
absolutely continuous with respect to each other, including the ergodic ones, which
is impossible, hence there must be only one invariant measure absolutely continuos
with respect to Lebesgue.

1.5. Linear response. Since the relevant topics are too many to be all discussed
here, let us just say two words on linear response. Suppose that we have a smooth
one parameter family {fε} of smooth expanding maps of the type just discussed.
Let µε be the associates unique invariant measure associated to fε and let hε be
the relative density. Finally, let Lε be the transfer operator associated to fε. Then

(Ln0 −Lnε )hε =
n−1∑
k=0

Lk0(L0−Lε)Ln−k−1
ε hε =

∞∑
k=0

Lk0(L0−Lε)hε−
∞∑
k=n

Lk0(L0−Lε)hε.

7By essential spectrum I mean the complement of the point spectrum with finite multiplicity.
8Just approximate the density by a smooth function in the L1 and iterate by the dynamics:

the Lasota-Yorke inequality for p > d implies that one has an equicontinuos sequence, by the L1

contractions of L the accumulation points (which exists by Ascoli-Arzelá) are L1 arbitrarily close
to the invariant measure and are still equicontinous, hence the claim.
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Since (L0 − Lε)hε has zero average, |hε|C1 is uniformly bounded and the map f0

enjoys exponential decay of correlations, taking the limit n→∞ yields

h0 − hε =
∞∑
k=0

Lk0(L0 − Lε)hε.

This implies that for all ϕ ∈ C0

µ0(ϕ)− µε(ϕ) =
∞∑
k=0

∫
(ϕ ◦ fk+1

0 − ϕ ◦ fk0 ◦ fε)hε.

The above immediately implies weak convergence of µε to µ0. In fact, more can be
proven.

|h0 − hε|∞ ≤ C|L0 − Lε|C1→C0 |hε|C1 .

Which implies that limε→0 hε = h0. In fact, stronger results follow immediately
from the Lasota-Yorke inequality and the perturbation theory in [42]. Yet, this is
far from establishing that µε is differentiable in ε.9

To see that let ϕ ∈ C1, note that ft = tf0 + (1− t)fε is also a map of Td to itself,
and write

µ0(ϕ)− µε(ϕ) =
∞∑
k=0

∫ 1

0

dt

∫
Td

d

dt
(ϕ ◦ fk0 ◦ ft)hε

=
∞∑
k=0

∫ 1

0

dt

∫
Td

[∇(ϕ ◦ fk0 )] ◦ ft · (f0 − fε)hε

= −
∞∑
k=0

∫ 1

0

dt

∫
Td
ϕ · Lk0div [Lt(f0 − fε)hε] .

Now, by hypothesis there exists ω ∈ C2(Td,Rd) such that ‖f0 − fε − εω‖C1 ≤ Cε2,
thus ∣∣∣∣∣ε−1

∞∑
k=0

∫ 1

0

dt

∫
Td
ϕ · Lk0div [Lt(f0 − fε − εω)hε]

∣∣∣∣∣
≤

∣∣∣∣∣∣ε−1
c ln ε−1∑
k=0

∫ 1

0

dt

∫
Td
ϕ · Lk0div [Lt(f0 − fε − εω)hε]

∣∣∣∣∣∣+O(ε)

≤ ε−1
c ln ε−1∑
k=0

|ϕ|∞‖Lt(f0 − fε − εω)hε‖C1 +O(ε) ≤ Cε ln ε−1.

Which means that

∂εµε(ϕ)|ε=0 = − lim
ε→0

∞∑
k=0

∫ 1

0

dt

∫
Td
ϕ · Lk0div [Ltωhε] .

To take the limit we need some uniform converge in the series and to insure that it
is need div [Ltωhε] ∈ Cα for some α > 0. In other words we need a uniform bound

9Indeed, the general theorem in [42] implies |h0 − hε|∞ ≤ Cε ln ε−1 if |L0 − Lε|C1→C0 ≤ ε.
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on |hε|C1+α .10 This can easily be obtained by (1.1) by differentiating once more.
We have finally the formula

(1.4) ∂εµε(ϕ)|ε=0 = −
∞∑
k=0

∫
Td
ϕ · Lk0div [L0ωh0] =

∞∑
k=0

µ0([∇(ϕ ◦ fk0 )] ◦ f0 · ω).

Remark 1.3. In the above argument we have only used a bound of the decay of
correlations and some a priori estimates on the regularity of the measures. If we
use the full force of the spectral methods much stronger results can be obtained.
For example one can prove that the spectral data of Lε are differentiable and this
implies, for example, that the rate of decay of correlations is differentiable [26].

1.6. Other measures. Can one use the above methods to construct different in-
variant measures? It turns out that the spectral method is particularly well suited
for that. The idea is to consider the operator

Lgh(x) =
∑

y∈f−1(x)

g(y)h(y).

for some smooth function g. Then one can argue as before and obtain the inequality

‖∇Lngh‖∞ ≤ σn‖Lng∇h‖∞ +B‖Lngh‖∞.

Now the spectral radius of Lg : C0 → C0 is eP (g) where P (g) is called pressure.
Accordingly for each ρ > eP (g) we can apply Lemma 1.2 which implies that Lg :
C1 → C1 has spectral radius eP (g) and essential spectral radius σeP (g). This means
that there exists h ∈ C1 such that Lgh = eP (g)h. But what does has this to do with
invariant measures?

The point is that one can consider the dual operator L′g acting on the distribu-
tions of order one. Since L can be written as a finite rank operator plus a small
part, the same hold for the dual operator, hence there exists ν ∈ (C1)′ such that
L′gν = eP (g)ν. The existence of such a conformal distribution does not seem of
much interest but, by the Lasota-Yorke inequality

ν(ϕ) = e−nP (g)(L′g)nν(ϕ) = e−nP (g)(L′g)nν(Lngϕ) ≤ C‖ν‖‖ϕ‖C1σn + C‖ν‖‖ϕ‖C0 .

Taking the limit n → ∞ yields |ν(ϕ) ≤ C‖ϕ‖C0 , i.e. ν is a measure! We can then
define the new measure µ(ϕ) := ν(ϕh). Then

µ(ϕ ◦ f) = e−P (g)ν(Lg(ϕ ◦ fh)) = e−P (g)ν(ϕLg(h)) = ν(ϕh) = µ(ϕ),

that is, we have an invariant measure. What is the relation between such an
invariant measure and the operator Lg?

ν(ψϕ ◦ f) = e−P (g)ν(ϕLg(ψ))

So e−P (g)Lg describes the evolution of the densities with respect to the measure ν
exactly like L describes the evolution with respect tot he Lebesgue measure. Note
that one can in this way study a manifold of invariant measures by using exactly
the same functional setting used for the measures absolutely continuos with respect

10Note that the only property of hε used so far is a uniform bound on |hε|C1 , in particular we

have not used the decay of correlations for the measure µε. Since it this case it holds true it would

have been simpler to use it and interchange the roles of hε and h0 in the formulae above. But it
is an interesting fact, pointing to important possible extensions of the above argument, the fact

that such an information can be substituted by a uniform bound on some norm of the measure.
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to Lebesgue. In particular the above can be applied to the study of the measure of
maximal entropy (which corresponds to choosing g ≡ 1).

1.7. Discontinuities. To conclude I would like to comment on the case of piece-
wise expanding maps.

More precisely, let X := [0, 1]d together with a finite collection of disjoint open
sets {∆i}i∈I⊂N. Assume that ∂∆i consists of the union of finitely many smooth
manifolds {Si,j} and that

• ∪i∈I∆i = X;
• There exists ε0 > 0, L ∈ N such that each ball of radius ε0 intersects at

most L manifolds {Si,j}.
Next, let T : X → X be such that, for each i ∈ I, T |∆j

is a C2 invertible map.
Finally, we ask that the map be sufficiently expanding: setting ‖(DxT )−1‖∞ =
λ−1,11

(L+ 1)λ−1 < 1 for all x ∈ ∪j∆j ;

|∇(DxT )−1|∞ <∞.
(1.5)

Here the two strategy (coupling and spectral methods) start to differ a bit: the
coupling strives to achieve a local control of the dynamics, on the contrary in the
spectral approach one wants more global estimates. We will see that the coupling
approach is conceptually simpler, yet the spectral method yield much stronger
results.

1.7.1. Coupling. The starting idea is to consider absolutely continuous measures
supported on a ball of radius δ < ε0 with a density as in the smooth case. If we
iterate such a measure with the dynamics, we will have that the ball will split in at
most L sets Wi on which T is smooth, hence the image measure is supported on the
sets TWi. Such sets are not necessarily disjoint. Clearly we can write the image
measure as a convex combination of at most L measures each with density nicely
under control. The problem is that now the measures are not supported in a ball
anymore, it is then necessary to define a class of sets that can serve as invariant
supports for the dynamically generated measures.

Let (W,h) where W is an open set contained in a ball of radius ε0 and h ∈
C1(W,R), ‖∇h‖ ≤ ah(x),

∫
W
h = 1, is called a standard pair.

A standard family G is given by a (for simplicity say countable) set of indexes A,
a probability measure νG on A and a collection of standard pairs {(Wα, hα)}α∈A.
Clearly to each family of standard pairs is associated the probability measure

EG(ϕ) :=
∫
A

dνG(α)
∫
Wα

ϕhα.

What we want to avoid is that the sets Wα have crazy boundaries, so we introduce
the following condition: Given a standard pair family G for each ε > 0 we define
∂εWα = {x,∈ Wα : dist(x, ∂Wα)}. Let us define a measure of the boundary of a
standard pair family

Bε(G) :=
∫
A

dνG(α)
∫
∂εWα

hα.

11If the first condition below is optimal or not it is an issue that remains open to debate,
certainly some condition is needed [70] but it in certain cases it can be replace by a smoothness

assumption [68, 69, 14].
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We then consider the class of measuresMa,B,ε0 = {G : Bε(G) ≤ Bε, ∀ε ≤ ε0}.

Lemma 1.4. For a,B large enough and ε0 small enough, T∗Ma,B,ε0 ⊂Ma,B,ε0 .

Proof. Let us see how the measures under consideration evolve. Given G let Wα ∈
G, then let {Wα,β,γ} be the connected components of Wα ∩ ∆β and call fβ the
inverse of T restricted to ∆β , then∫

Wα

hαϕ ◦ T =
∑
β,γ

∫
TWα,β,γ

ϕhα ◦ fβ |det(DT ) ◦ fβ |−1

We can then define the new family TG := {(TWα,β,γ , hα◦fβ |det(DT )◦fβ |−1z−1
α,β,γ}

where

zα,β,γ =
∫
TWα,β,γ

hα ◦ fβ |det(DT ) ◦ fβ |−1.

The associated measure is given by νTG({(α, β, γ)}) = νG({α})zα,β,γ . It is easy to
verify that EG(ϕ◦T ) = ETG(ϕ). The proof that the new densities satisfy the bound
‖∇hα,β,γ‖ ≤ ahα,β,γ for a large enough is exactly the same as in the smooth case.
So we just need to verify that TG satisfies Bε(TG) ≤ Bε.

First of all notice that if a point is at a distance less than ε form the boundary of
TWα,β,γ then its preimage must be at a distance less than λ−1 form the boundary
of Wα or from the boundary of ∆β . Hence

Bε(TG) ≤
∫
A

dνG(α)
∑
β,γ

∫
∂λ−1εWα,β,γ

hα

≤
∫
A

dνG(α)

∫
∂λ−1εWα

hα +
∑
β

∫
(∂λ−1ε∆β)∩Wα

hα

 .
Since, by hypotheses, the boundaries of the {∆i} in a ball of radius ε0 consist of at
most L smooth manifolds {Si}, it follows that the last term in the above equation
is the ε-neighborhood of at most L smooth manifolds. Also the d− 1 dimensional
manifold of ∆β ∩ Si must be smaller that 1+cε0

2 the measure of ∂Wα.12 Thus the
same holds for the measure of an ε neighborhood. Hence

Bε(TG) ≤ (L+ 1)(1 + cε0)Bλ−1ε(G) ≤ λ−1(L+ 1)(1 + cε0)Bε.

It seems that we are done but unfortunately there is a last issue to take care of:
some of the sets Wα,β,γ could have a diameter larger than ε0. In this case we
further split such sets in sets of diameter smaller then ε0. Clearly this increase the
boundary of the standard pair family. On the other hand if W has radius larger
than ε0, then one can chose a direction in which the projection is larger than ε0 and
cut it by a perpendicular hyperplane Π. Let ` be the the volume of Π ∩W . Since
the position of Π is arbitrary, one can chose the minimal volume in an interval cε0.
But then the volume of W must be larger than cε0` while the extra ε-boundary will
have volume 2`ε. Thus the boundary that we add by further refining the family is
bounded by

C

∫
dν(α)

cdλ∑
i=1

`iε

|Wα|
≤ Cε−1

0 ε.

12The constant c depends on the curvature of Si.
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The above yields the inequality

Bε(TG) ≤ (L+ 1)(1 + cε0)Bλ−1ε(G) ≤ λ−1(L+ 1)(1 + cε0)Bε+ Cε,

which proves the Lemma when choosing B large enough. �

The above means that if we take a standard pair family then half of the point
will belong to an open set of inner radius 1

2B
−1. Hence, given two standard pair

families Gi there are nice open sets on which they can be coupled, provided they
coincide. Yet, there is not reason why this must happen, to ensure this we need
some topological condition (e.g. topological mixing). Here let us assume that for
each ball B̃ of size 1

2b
−1 there exists m ∈ N such that TmB̃ = X almost surely.

This mean that TMGi will have manifold that overlap over an open set U of fixed
size. On U we can couple the measure exactly as we did in the smooth case. It is
then clear that at each time step we can couple a fixed (rather small to be honest)
percentage of the mass, hence the exponential decay of correlations follows.

1.7.2. Spectral approach. Just not to get too bored let us consider a slightly more
general setting (it is an interesting exercise to adapt the previous argument to the
present setting). Let X := [0, 1]d together with a (possibly countable) collection of
disjoint open sets {∆i}i∈I⊂N such that

• ∪i∈I∆i = X;
• For each orthogonal basis E := {ei} letLk(x, j, E) be the number of con-

nected components of {x + tek}t∈[−1,1] ∩ ∆j . Then we assume that Lj =
infE supx∈∆j

supk Lk(x, j, E) <∞.

Next, let T : X → X be such that, for each i ∈ I, T |∆j
is a C2 invertible map.

Finally we ask that the map be expanding and not too singular

‖(DxT )−1‖ ≤ λ−1
j < 1 for all x ∈ ∆j ;

|∇(DxT )−1|Ld <∞.
(1.6)

Let us define the following two norms on M(X):

|µ| := sup
ϕ∈C0(X,R)

µ(ϕ)
|ϕ|∞

‖µ‖ := sup
k∈{1,...,d}

sup
ϕ∈C1(X,R)

µ(∂xkϕ)
|ϕ|∞

.

(1.7)

Note that, for each ϕ ∈ C0(X,R) and ε > 0 one can find ϕε ∈ C1(X,R) such that
|ϕ− ϕε| ≤ ε|ϕ|∞, hence

µ(ϕ) ≤ |µ|ε|ϕ|∞ + µ(ϕε) = |µ|ε|ϕ|∞ + µ(∂x1

∫ x1

0

ϕε) ≤ (|µ|ε+ ‖µ‖(1 + ε))|ϕ|∞.

Taking the sup on ϕ and by the arbitrariness of ε, follows

(1.8) |µ| ≤ ‖µ‖.
The proofs of Lemma 1.5 and 1.7 can be found in Appendix A.

Lemma 1.5. Let B := {µ ∈ M(X) : ‖µ‖ < ∞}. If µ ∈ B then it is absolutely
continuos with respect to the Lebesgue measure m. Moreover

dµ

dm
∈ Lp(X,m) for all p <

d

d− 1
.
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Remark 1.6. In fact it follows from the Gagliardo-Nirenberg-Sobolev inequality
that the above Lemma holds also for p = d

d−1 .

Exercize 1. Show that, for all µ ∈ B, setting h = dµ
dm , holds |µ| = |h|L1 and

‖µ‖ = |h|BV .

The following characterization will be useful in the following: given h ∈ L1(X,m)
we define

Vark(h)(x) = sup
ϕ∈C1([0,1],R)

∫ 1

0
h(x1, . . . , xk−1, z, xk+1, . . . , xd)ϕ′(z)dz

|ϕ|∞
.

Lemma 1.7. For each µ ∈ B, setting h = dµ
dm ,

‖µ‖ = sup
k∈{1,...,n}

|Vark(h)|L1 .

Lemma 1.8. B = {µ ∈ B : ‖µ‖ ≤ 1} is relatively compact in (M(X), | · |).

1.8. Dynamical inequalities (Lasota-Yorke). There exists C > 0 such that for
each α ∈ (0, 1), ε > 0 and i ∈ I, there are smooth functions φεi supported in a
α−iλ−1

i Liε-neighborhood of ∆i and such that |φεi |∞ = 1, |φεi |C1 ≤ Cαiε−1λiL−1
i

and φi(x) = 1 for all x ∈ ∆i. Let us define

σ′ := lim
ε→0

∣∣∣∣∣∑
i∈I

φεiλjLj

∣∣∣∣∣
∞

.

Note that, in the simple case in which the partition {∆i} is finite and can be chosen
(eventually by refining it), such that Lj = 1, and if λ = λi, then σ′ = C∆λ

−1 where
C∆ is the complexity of the partition:

C∆ := sup
x∈X

#{i ∈ I : x ∈ ∆i}.

Lemma 1.9 (Lasota-Yorke inequality). For each σ ∈ (σ′, 1) there exists a constant
B > 0 such that, for each µ ∈ B, holds

|T ′µ| ≤ |µ|
‖T ′µ‖ ≤ σ‖µ‖+B|µ|.

Proof. First of all notice that, if µ ∈ B, then (Remembering Lemma 1.5 and Exercise
1)

|T ′µ| = sup
|ϕ|C0≤1

µ(ϕ ◦ T ) ≤ |µ|.

Next, for all ϕ ∈ C1, |ϕ|∞ ≤ 1 and k ∈ {1, . . . , d} we have

T ′µ(∂xkϕ) =
∑
i∈I

µ(1∆i
(∂xkϕ) ◦ T )

=
∑
i∈I

d∑
j=1

µ(1∆i
∂xj ((DT )−1

kj ϕ ◦ T ))−
∑
i∈I

d∑
j=1

µ(1∆i
ϕ ◦ T∂xj ((DT )−1

kj )).
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Setting h = dµ
dm and ψkj = (DT )−1

kj ϕ ◦ T , note that
∑
j |ψkj |∞ ≤ λ

−1
i , moreover we

can rotate the coordinates as is most convenient (by redefining ψkj as well)

µ(1∆i
∂xjψkj) = µ(φεi1∆i

∂xjψkj)

≤
∫
h(x)∂xj

[
φεi

∫ xj

0

[1∆i
∂xjψkj ](x1, . . . , xj−1, z, xj+1, . . . , xd)dz

]
+ λ−1

i Li|µ||φi|C1 .

Hence, remembering the hypotheses on T ,

T ′µ(∂xkϕ) =
∫

Vark h

∣∣∣∣∣∑
i∈I

φεiλ
−1
i Li

∣∣∣∣∣
∞

+
∑
i∈I

λ−1
i Li|µ||φi|C1 + Cµ(‖∇(DT )−1‖)

≤ ‖µ‖σ +B|µ|+ (σ − σ′)‖µ‖.

�

Lemma 1.10. The operator T ′ has spectral radius equal one and essential spectral
radius smaller than σ.

This follows from Lemma 1.2, but see Appendix B for a direct proof based on
the Analitic Fredholm alternative.

In fact, one can have a much more deep understanding of the structure of the
spectrum and of its dynamical meaning, see Appendix C.

2. Second Topic: Hyperbolic Systems

The issue is to extend the previous results to the case of hyperbolic systems: i.e.
when a contracting direction is present. Given a Riemannian manifold M we will
consider f ∈ Diff2(M,M), f Anosov.

The first problem is to consider a class of measures that take the place of the
ones absolutely continuos with respect to Lebesgue, clearly a to restrictive class
given the the SRB measure may not belong to it. The idea is a follows: Consider a
manifold W close to the unstable direction and ϕ ∈ C∞(W,T) and for each function
g ∈ C0(M,R) define the measure

µW,ϕ(g) =
∫
W

gf

where the integral is made with respect to the restriction of the Riemannian measure
to W . The above are again standard pairs. The dynamics restricted to manifolds
close to the unstable one is expanding, hence all what we have said about family
of standard pairs for discontinuous expanding can be used here almost verbatim.
Then M is the set of of measures obtained by families of standard pairs.

It looks quite good but there is a problem: if we want to imitate what we did
for expanding maps then given two standard pairs we want to couple the measure
when they are at the same place, but the dynamics is invertible now, different
points will never coincide in the future! So we need to modify our coupling
scheme. The basic idea is to notice the following: suppose we have two near by
manifolds W,W ′ and the map Ψ : W → W ′ defined by {Ψ(x)} = W ′ ∩W s

δ (x).13

13By W s
δ (x) we mean the stable manifold at x of inner size δ.
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and define the measure on M2 by

(2.1) µ(ϕ) :=
∫
W

ϕ(x,Ψ(x))h(x).

Then ν is a coupling of the measures defined by two standard pairs: (W,h) and
(W ′, h ◦ Ψ−1JΨ), where JΨ is the Jacobian of the Holonomy. Also calling νi the
measures associated to the two standard pairs, we have, for each ϕ ∈
cC1(M),

|ν1(ϕ)−ν2(ϕ)| ≤
∫
M2
|ϕ(x)−ϕ(y)|µ(dx, dy) =

∫
W

|ϕ(x)−ϕ(Ψ(x))|h(x) ≤ |ϕ|C1d(W,W ′).

Even more, it is an easy exercise to prove that

|fn∗ ν1(ϕ)− fn∗ ν2(ϕ)| ≤ |ϕ|C1d(fnW, fnW ′) ≤ Cλ−n|ϕ|C1 .
This means that the iterates of the two measures get exponentially close when
viewed as distributions of order one. The idea is then to take a two standard
families and wait that some manifold of the first gets close to a manifold of the
second and then couple a little part of the mass as in (2.1) and, by the same
reasoning as in the previous discussions it exponential decay of correlations follows,
namely, there exists a unique measure µ such that for each h, ϕ ∈ C1,

(2.2)
∣∣∣∣∫
M

h · ϕ ◦ fn −
∫
M

hµ(ϕ)
∣∣∣∣ ≤ C|ϕ|C1 |h|C1e−cn.

Remark 2.1. In fact, a moment of thought shows that, calling |h|u = |h|∞ +
|Duh|∞, where Du is the derivative in the unstable direction and the analogous for
|h|s, ∣∣∣∣∫

M

h · ϕ ◦ fn −
∫
M

hµ(ϕ)
∣∣∣∣ ≤ C|ϕ|s|h|ue−cn.

This is not an irrelevant observation because the form of the constant in from of
the exponential plays a crucial role in many applications. In particular the above
formula immediately imply decay of multiple correlations which does non follows
from (2.2).

The above strategy can be applies to many different systems such as some par-
tially hyperbolic systems [21] and billiards [16].

2.0.1. Spectral approach. It is not immediately clear how to apply the spectral
method to the present situation. Indeed the realization that this is possible has been
very recent [10] and since than a considerable amount of work has been carried out
in order to extend this approach to an ever large class of systems [2, 26, 6, 57, 59, 7,
27, 20] and references therein. This work is not completed, indeed the applicability
of this method to partially hyperbolic systems is still not complete, in spite of
considerable progresses [58, 71] not is the application to billiard (but see [8]).

The logical obstacle to develop this theory was that one has to leave the space
of measures and consider distributions. Indeed, if at first sight strange in reality
it is very natural: we have already seen that the convergence of measures takes
place only in the topology of distributions (i.e. limited to test function with some
smoothness). Moreover the distributions must be regular in the unstable direction
and wild in stable.

One this concept is clear one can realize “good” Banach spaces in many different
ways, here I’ll present briefly one closely connected with the present point of view.
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The basic idea is to consider the set of standard pairs Ω for the map f−1 (this are
just constructed with manifolds close to the stable one rather than to the unstable
one). Let Ωr be the standard pairs where W is a Cr manifold (with uniformly
bounded derivatives) and |ϕ|Cr ≤ C. Then define

‖h‖p,q := sup
(W,ϕ)∈Ωp+q

∫
ϕ∂ph

Let Bp,q be the closure of C∞ with respect to the above norms. Then one can prove
• L is bounded in each Bp,q.
• L satisfies a Lasota-Yorke inequality with respect to the spaces Bp,q,Bp−1,q+1.
• The unit ball of Bp,q is compact in Bp−1,q+1.

The above ingredients imply that L is quasi-compact on each Bp,q, p ≤ 1, that the
spectral radius is one and that the essential spectral radius is rp,q tending to zero
when p, q →∞.

One interesting consequence of this facts is that, for C∞ Anosov diffeos the zeta
function is meromorphic on all C, [57].

3. Third Topic: Coupled Map lattices

3.1. CML. A couple map lattice is constructed a follows: given a dynamical system
(X,T ) we consider the space Ω := XZd (but more general sets than Zd can be
also considered) and the product map F0(x)i = T (xi). Next we consider a map
Φε : Ω→ Ω that is ε-close to the identity in a sense to be made precise. The CML
that we will consider are then given by Fε := Φε ◦ F0. Interesting cases are:

• T expanding map (either smooth or not)
• T uniformly hyperbolic (either smooth or not)
• T partially hyperbolic (either smooth or not)

The typical approach, going back to Bunimovich-Sinai, is to conjugate Fε to F0

and use Markov partitions (see the papers in the references for more details).
A more direct approach, and more dynamical in nature, is desirable (also because

in the non-smooth case conjugation fails).

3.2. Super-brief history of the transfer operator approach. The possibility
to investigate directly the transfer operator for a CML was first investigated by
Keller and Künzle [46]. They were able to prove spectral gap in finitely many di-
mensions and existence of a measure with absolutely continuos marginals in infinite
dimensions. Then Fischer, Rugh [24] and Rugh [64] managed to prove space-time
decay of correlations in infinite dimensions in the analytic case. Then in Baladi,
Degli Esposti, Järvenpää, Kupiainen [3] and Baladi, Rugh [4] the spectrum in the
analytic case is precisely investigated. Finally, in [49] it was proved the spectral
gap for piecewise expanding CML. The latter paper is what I will explain in the
following.

3.3. Expanding CML. Consider the case in which X = [0, 1] and the map is
piecewise C2 and |DT | ≥ λ > 2. While

Φε(x)i = xi + ε
∑
|z|=1

αz(τ ix)(xi+z − xi),

with τ i(x)j = xi+j and αz ∈ C1 with ∂xjαz = 0 if |j| ≥ 1. Moreover, we assume
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• αz ≥ 0. Which, for ε small, insures xi ≥ 0 =⇒ Φε(x)i ≥ 0.
•
∑
i αi = 1. Which for ε small, insures xi ≤ 1 =⇒ Φε(x)i ≤ 1.

The goal is show existence and uniqueness of the SRB measure for
small ε. For large, but still less than one, ε uniqueness may fail [9].

3.4. Transfer operator and Lasota-Yorke inequality. As we want to deal with
infinite systems, it is convenient to first define the transfer operator on the set of
Borel measures M(Ω): for each measurable set A, let Lµ(A) := µ(F−1

ε (A)).
Obviously M(Ω) is too big to be useful, to restrict it we define two norms:

|µ| := sup
|ϕ|C0≤1

µ(ϕ)

‖µ‖ := sup
i∈Zd

sup
‖ϕ‖C0≤1

ϕ∈C1

µ(∂xiϕ).

Clearly |µ| ≤ ‖µ‖. Let B := {µ ∈M(ω) : ‖µ‖ <∞}.

Theorem 3.1 (Keller et al.). For ε small enough there exists θ ∈ (0, 1) such that,
for all n ∈ N,

‖Lnµ‖ ≤ Aθn‖µ‖+B|µ|.

That is nice but compactness is missing. In fact, compactness does not hold,
thus we need a way to establish directly the existence of a gap.

3.5. spectral gap. To deal with this fix a ∈ [0, 1] and given x ∈ Ω let (xp)q = xq
for q 6= p and (xp)p = a. Then define Φε,p to be the map

Φε,p(x)q =

{
Φε(xq)q if q 6= p

xp if q = p .

One can easily verify that

|(L − Lp)µ| ≤ Cε‖µ‖,

where Lp is the operator associated to the coupling Φε,p. Indeed, letting Φt :=
(1− t)Φε − tΦε,p, holds

µ(ϕ ◦ Φε − ϕ ◦ Φε,p) =
∫ 1

0

µ(
d

dt
ϕ ◦ Φt) =

∫ 1

0

∑
|i−p|≤1

µ(∂xiϕ · [Φε − Φε,p]i)

=
∫ 1

0

∑
|i−p|≤1

µ(∂xi [ϕ(Φε − Φε,p)i])− µ(ϕ∂xi(Φε − Φε,p)i])

≤ Cε‖µ‖ · |ϕ|∞.

Hence

|(Ln − Lnp )µ| ≤
n−1∑
k=0

|Ln−k−1(L − Lp)Lkpµ| ≤ Cεn‖µ‖.

Next, suppose that µ(ϕ) = 0 for each function ϕ that does not depend on xp,
then

‖Ln+mµ‖ ≤ Aθn‖Lmµ‖+B|Lmµ| ≤ C(θn +mε)‖µ‖+B|Lmp µ|.
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Then, if h is the invariant density of the single site map,

Lmp µ(ϕ) = µ(ϕ ◦ (Φε,p ◦ F0)m)

=
∫

Ω

[
ϕ((Φε,p ◦ F0)m(x))−

∫ 1

0

dxph(xp)ϕ((Φε,p ◦ F0)m(x))
]
µ(dx)

=
∫

Ω

∂xp

∫ xp

0

dxp

[
ϕ((Φε,p ◦ F0)m(x))−

∫ 1

0

dxph(xp)ϕ((Φε,p ◦ F0)m(x))
]
µ(dx)

≤ ‖µ‖ sup
x6=p

∫ 1

0

dy1[0,xp](y)
[
ϕ(x 6=p, Tmy)−

∫ 1

0

dzh(z)ϕ(x 6=p, z)
]

≤ Cνn‖µ‖ · |ϕ|∞,

where ν is the rate of decay for the single site map. Putting the above estimates
together yields

‖Ln+mµ‖ ≤ C(θn +mε+ νm)‖µ‖ ≤ σn+m‖µ‖,

for some σ ∈ (0, 1), provided we choose n,m, ε appropriately.
So, let Bp = {µ ∈ B : µ(ϕ) = 0 for all ϕ independent of p}. The situation looks

good but there are two problem

(1) in general µ ∈ B does not belong to Bp for any p.
(2) µ ∈ Bp 6=⇒ Lµ ∈ Bp.

No problem: first show that each µ ∈ B can be decomposed as

µ = cm+
∑
p∈Zd

µp

where m ∈ B is a fixed probability measure and µp ∈ Bp. Then, for each µp ∈ Bp,
write

Lµp = Lpµp + ε
∑
|q−p|≤1

Lq,pµp

where LpBp ⊂ Bp and Lq,pBp ⊂ Bq and the operators have all uniformly bounded
norm. Only a seemingly catastrophic problem is left: the decomposition sum does
not converge in the | · | topology (let alone the ‖ · ‖ one).

No problem: let us associate to each measure µ the vector (c, µp) given by the
terms of its decomposition (this means that one introduces the new super-abstract
Banach space B̄ = C × (×p∈ZdBp) with norm ‖(c, µp)‖ := max{|c|, supp∈Zd ‖µ‖p})
and the operator

L(c, µp) = (c,Lpµp + ε
∑
|q−p|≤1

Lp,qµq + ζp) =: (c,L∗(µp) + ζ̄),

where ζp is the decomposition of Lm−m. By applying the previous estimates one
has that ‖L∗‖ < 1. Is that good for something?

Well, (1, µ̄) = (1,L∗µ̄+ ζ̄) has the unique solution µ̄∗ := (1−L∗)−1ζ̄. Let ϕ be
a local function that depends only the variables in the finite set Λ ⊂ Zd and µ ∈ B
a probability measure with decomposition (1, µ̄), then

µ(ϕ ◦ Fnε ) = m(ϕ) +
∑
p∈Λ

(
Ln∗ µ̄+

n−1∑
k=0

Lk∗ ζ̄

)
p

(ϕ) =
∑
p∈Λ

µ∗p(ϕ) +O(|Λ|‖L∗‖n).
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By weak compactness and the Lasota-Yorke inequality we know that 1
n

∑n−1
k=0 Lkµ

has accumulation points in B, let µ∗ be one such accumulation point, then

µ∗(ϕ) =
∑
p∈Λ

µ∗p(ϕ)

Invariance, uniqueness and spatio-temporal decay of correlation for µ∗ readily fol-
low.



NOTES–BEIJING 08/2009 19

Appendix A. Measure with ‘densities’ of bounded variation

Proof of Lemma 1.5. Let ϕ ∈ C0(X,R), then for each ε ∈ (0, 1) there exists ϕε ∈
C1(Rd,R), supported in [−ε, 1+ε]d, such that |ϕ−ϕε|C0(X,R) ≤ ε, |ϕε|∞ ≤ |ϕ|∞(1+
ε). In addition, if we define

(A.1) Γ(ξ) :=


− 1

2‖ξ‖ if d = 1
− 1

2π ln ‖ξ‖ if d = 2
1

d(d−2)αd‖ξ‖d−2 if d ≥ 3,

where αd is the d-dimensional volume of the unit ball in Rd, we can define the
Newtonian potential wε(x) =

∫
Rd Γ(x − z)ϕε(z)dz. It is then well know from

potential theory that ∆wε = ϕε, thus

µ(ϕ) ≤ µ(ϕε) + |µ|ε =
d∑
k=1

µ(∂xk∂xkwε) + |µ|ε

≤
d∑
k=1

‖µ‖ sup
x∈X

∫
|∂xkΓ(x− z)ϕε(z)dz|+ |µ|ε

≤ C
d∑
k=1

‖µ‖ |ϕε|Lq
[∫

[−1,2]d

|xk − zk|p

‖x− z‖dp
dz

] 1
p

+ |µ|ε,

where q−1 + p−1 = 1. Since the integral in square brackets is finite for p < d
d−1 , we

have, be the arbitrariness of ε,

µ(ϕ) ≤ C(‖µ‖+ |µ|)|ϕ|Lq .

This means that the linear functional µ : C0 → R can be extended to a bounded
functional on Lq. Since the dual of Lq is Lp it follows that there exists h ∈ Lp such
that µ(ϕ) =

∫
X
h(x)ϕ(x)dx. �

Proof of Lemma 1.7. First,

‖µ‖ ≤ sup
k

sup
|ϕ|∞≤1

∫
h∂xkϕ = sup

k
sup
|ϕ|∞≤1

∫
Vark h sup

xk

|ϕ| ≤ sup
k
|Vark(h)|L1 .

For the opposite inequality one need a bit of preparation.
For each n ∈ N and function η ∈ C2

0([−1, 1]n,R+),
∫
η = 1, let us define ηε(x) =

ε−nη(ε−1x). Then, for each h ∈ L1([0, 1]n,m) and ϕ ∈ C1
0(Rn,R) let hε(x) =∫

dz h(z) ηε(x− z),∫
∂xkhε(x) · ϕ(x) =

∫
h(z)∂xkηε(x− z) · ϕ(x)

= −
∫
h(z)∂zkηε(x− z) · ϕ(x) ≤ |h|BV |ϕ|∞.

(A.2)

That is supk |∂xkhε|L1 ≤ |h|BV . On the other hand, for each δ > 0 and k ∈
{1, . . . , d} there exists φ ∈ C1, |φ|∞ = 1, such that |h|BV ≤

∫
h∂xkφ + δ. Next,

consider a compact support extension φ̃ ∈ C1
0 of φ on all Rn such that |φ̃|∞ ≤ 1 + δ

and choose ε0 > 0 such that, for all ε < ε0,

sup
x∈[0,1]n

∣∣∣∣∂xkφ(x)−
∫

Rn
ηε(x− z)∂zk φ̃(z)dz

∣∣∣∣ ≤ δ|µ|−1.



20 CARLANGELO LIVERANI

Hence,

|h|BV ≤
∫
hε∂xk φ̃+ 2δ = −

∫
∂xkhεφ̃+ 2δ ≤ |∂xkhε|L1(1 + δ) + 2δ.

Thus, by the arbitrariness of δ,

(A.3) lim inf
ε→0

sup
k
|∂xkhε|L1 = |h|BV .

Finally, let η̃ : R→ R+ and ηε(x) = ε−1η̃(ε−1xk), using first (A.3) for n = 1, then
Fatu and finally arguing as in (A.2),

|Vark(h)|L1 =
∫
dx1 · · · dxk−1dxk+1 · · · dxd Vark h(x)

=
∫
dx1 · · · dxk−1dxk+1 · · · dxn lim inf

ε→0

∫
dxk|∂xkhε(x)|

≤ lim inf
ε→0

|∂xkhε|L1 ≤ lim inf
ε→0

sup
ϕ∈C1
|ϕ|∞≤1

∫
h(x)∂xkϕε(x) ≤ |h|BV .

�

Proof of Lemma 1.8. For each t ∈ N, let us consider a partition {Aj} of [0, 1] in
intervals of size t−1 and, for each k ∈ {1, . . . , d}, define

Pt,kϕ(x) = t
∑
j

1Aj (xk)
∫
Aj

dzϕ(x1, . . . , xk−1, z, xk+1, . . . , xd)

Ptϕ = Pt,1 · · ·Pt,dϕ.
(A.4)

First of all note that

P ′t,kµ(ϕ) = µ(Pt,kϕ) =
∫
hPt,kϕ =

∫
Pt,kh · ϕ.

Next, if j 6= k

P ′t,kµ(∂xjϕ) =
∫
hPt,k∂xjϕ =

∫
h∂xjPt,kϕ ≤ ‖µ‖.

and

P ′t,kµ(∂xkϕ) =
∫
hPt,k∂xkϕ = ‖µ‖

∣∣∣∣∫ xk

0

dxkPt,k∂xkϕ

∣∣∣∣
∞
≤ 4‖µ‖.

In addition,

µ(Pi,kϕ− ϕ) = ‖µ‖
∣∣∣∣∫ xk

0

dxk(Pt,kϕ− ϕ)
∣∣∣∣
∞
.

If xk ∈ Aj = [jt−1, (j + 1)t−1], then∫ xk

0

dxk(Pt,kϕ− ϕ) =
∫ xk

jt−1
ϕ ≤ |ϕ|∞t−1.

Accordingly, ‖P ′tµ‖ ≤ 4d‖µ‖ and |P ′tµ − µ| ≤ 4d+1t−1. In addition, notice that
P ′tµ = td

∑
i1,...,id

µ(1Ai1 · · ·1Aid )mA1×···×Aid , where t−dmA1×···×Aid is the Lebesgue
measure restricted to the set A1 × · · · × Aid . In other words the range of P ′t is a
finite dimensional space. This implies that if {µj} ⊂ B, then {P ′tµj} lives in a
finite dimensional bounded set, hence it is compact. Thus there exists µt and nj
such that limj→∞ ‖P ′tµnj − µt‖ = 0. In addition, for t′ ≥ t,

|µt − µt′ | ≤ |µt − P ′tµnj |+ |µt − P ′t′µnj |+ |P ′tµnj − P ′t′µnj | ≤ Ct−1
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provided one choses j large enough. It follows that there exists a sequence tj and
a measure µ such that limj→∞ |µ− Ptjµnj | = 0. �

Appendix B. Some technical facts

The first assertion follows directly from Lemma 1.9. For the second we need a
well known result.

Theorem B.1 (Analytic Fredholm theorem–finite rank). Let D be an open con-
nected subset of C and B a Banach space. Let F : C → L(B,B) be an analytic
operator-valued function such that F (z) is finite rank for each z ∈ D. Then, one
of the following two alternatives holds true

• (1− F (z))−1 exists for no z ∈ D
• (1− F (z))−1 exists for all z ∈ D\S where S is a discrete subset of D (i.e.
S has no limit points in D). In addition, if z ∈ S, then 1 is an eigenvalue
for F (z) and the associated eigenspace has finite multiplicity.

The proof is the same as for the Analytic Fredholm alternative for compact
operators in Hilbert spaces given in [63, Theorem VI.14] (since compact operators
in Hilbert spaces can always be approximated by finite rank ones). In fact the
theorem holds also for compact operators in Banach spaces but the proof is a bit
more involved.

Let T ′n,t := (T ′)nPt, clearly such an operator is finite rank, in addition

‖(T ′)nµ− T ′n,tµ‖ ≤ σn‖(1− Pt)µ‖+B|(1− Pt)µ| ≤ (1 + 4)σnλ−n‖µ‖+Bt−1‖µ‖.

By choosing t = σn we have that there exists C1 > 0 such that

‖(T ′)n − T ′n,t‖ ≤ C1σ
n.

For each z ∈ C we can now write

1− z(T ′)n = (1− z((T ′)n − T ′n,t))− zT ′n,t.

Since

‖z((T ′)n − T ′n,t)‖ ≤ |z|C1σ
n <

1
2
,

provided that |z| ≤ 1
2C1

σ−n. Given any z in the disk Dn := {|z| < 1
2C1

σ−n} the
operator B(z) := 1− z((T ′)n − T ′n,t) is invertible.14 Hence

1− z(T ′)n =
(
1− zT ′n,tB(z)−1

)
B(z) =: (1− F (z))B(z).

By applying Theorem B.1 to F (z) we have that the operator is either never invert-
ible or not invertible only in finitely many points in the disk Dn. Since for |z| < 1
we have (1 − z(T ′)n)−1 =

∑∞
k=0 z

k(T ′)nk, the first alternative cannot hold hence
the Theorem follows.

14Clearly B(z)−1 =
P∞
k=0

h
z((T ′)n − T ′n,t)

ik
.
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Appendix C. On the peripheral spectrum of the transfer operator

It is then natural to start looking at the eigenvalues of modulus one. By Lemma
1.10 and the usual fact about the spectral decomposition of the operators [40],
follows that there exists a finite set Θ ⊂ [0, 2π) such that we can write15

T ′ =
∑
θ∈Θ

eiθΠθ +R

where Πθ are finite rank operators and the spectral radius of R is strictly smaller
than one. Moreover, ΠθΠθ′ = δθθ′Πθ, ΠθR = RΠθ = 0. It follows that, for each
θ ∈ R,

lim
n→∞

1
n

n−1∑
k=0

e−ikθ(T ′)k =

{
Πθ if θ ∈ Θ
0 otherwise.

Also, by Lemma 1.9 follows ‖Πθµ‖ ≤ C|µ|. Since Πθ is a finite rank projector,
there must exist µθ,l ∈ B, `θ,l ∈ B′ such that Πθ =

∑
l µθ,l⊗ `θ,l, moreover T ′µθ,l =

eiθµθ,l and `θ,l(T ′µ) = eiθ`θ,l(µ) for all µ ∈ B. Hence, it must be |`θ,l(µ)| ≤
C|µ| = C

∫
|hµ|dm. Since L∞(X,m) is the dual of L1, it follows that there exists

¯̀
θ,l ∈ L∞(X,m) such that

`θ,l(µ) =
∫

¯̀
θ,lhµ = µ(¯̀

θ,l).

Hence, for each µ ∈ B,

µ(¯̀
θ,l) = `θ,l(µ) = e−iθ`θ,l(T ′µ) = e−iθT ′µ(¯̀

θ,l) = e−iθµ(¯̀
θ,l ◦ T ).

The above implies that ¯̀
θ,l ◦ T = e−iθ ¯̀

θ,l Lebesgue a.s.. Let us set µ∗ := Π0m.

Lemma C.1. For each ` ∈ L∞(X,m) such that ` ◦ T = `, m-a.s., if we define the
measure µ(ϕ) := µ∗(`ϕ), then µ is invariant and µ ∈ B.

Proof. First of all notice that T ′µ(ϕ) = µ∗(`·ϕ◦T ) = µ∗((`ϕ)◦T ) = µ∗(`ϕ) = µ(ϕ),
that is µ is an invariant measure. Next, for each ε > 0 there exists `ε ∈ L∞ such
that |`ε|∞ ≤ 2|`|∞ and µ∗(|`−`ε|)+m(|`−`ε|) ≤ ε. Then, setting µε(ϕ) := µ∗(`εϕ)

|(T ′)nµ(ϕ)− (T ′)nµε(ϕ)| ≤ ε|ϕ|∞
implies

|Π0µε − µ| ≤ lim sup
n→∞

∣∣∣∣∣ 1n
n−1∑
k=0

e−ikθ(T ′)k(µε − µ)

∣∣∣∣∣ ≤ ε
Hence, for each ϕ ∈ C1, |ϕ|∞ ≤ 1,

µ(∂xkϕ) = lim
ε→0

Π0µε(∂xkϕ) ≤ lim
ε→0
‖Π0µε‖ ≤ C lim

ε→0
|µε| ≤ C.

�

Thus, for each p ∈ N and θ ∈ Θ, the measure µp,θ(ϕ) := µ∗(¯̀p
θ,iϕ) is in B and

T ′µp,θ = eipθµp,θ. But this implies that {pθ}p∈N ⊂ σB(T ′) ∩ {|z| = 1} and since
the latter is finite it must be θ = 2π st for some s, t ∈ N. We have just proven the
following

Lemma C.2. The peripheral spectrum of T ′, σB(T ′) ∩ {|z| = 1}, is the fine union
of cyclic groups.

15Remark that there cannot be Jordan blocks with eigenvector of modulus one, since this
would imply that ‖(T ′)n‖ grows polynomially, contrary to Lemma 1.9.
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C.1. Dynamical properties.

Lemma C.3. If the map T is topologically transitive then 1 is a simple eigen-
value for T ′. If all the powers of T are topologically transitive, then {1} is the all
peripheral spectrum.

Proof. We do the proof only for d = 1, as in higher dimension it is more complex
(see footnote below). If one it is not simple, then there exists an invariant set A,
µ∗(A) 6∈ {0, 1}. But then 1A ∈ BV which implies that A contains an open set,
the same applies to Ac (this is true only for d = 1).16 But then, by topological
transitivity, there is an orbit that visits such opens sets, hence the sets are not
invariant. The same argument applied to Tn concludes the Lemma. �

In conclusion, we have obtained conditions under which the system has a unique
invariant measure µ∗ absolutely continuos w.r.t. Lebesgue. In addition, there exists
ρ > 0 such that for each µ ∈ B we have

‖(T ′)nµ− µ∗‖ ≤ C‖µ‖e−ρn.

C.2. Birkhoff averages. From now on we assume that one is simple and is the
only eigenvalue of modulus one. Let f ∈ L∞(X,m), and let f̂ = f − µ∗(f), then

m(f̂2
n) =

1
n2

n−1∑
k=0

m(f̂2 ◦ T k) + 2
n−1∑
j>k=0

m(f̂ ◦ T j f̂ ◦ T k)

 ≤ Cn−1|f |∞.

By Chebyshev inequality, we have

m({x : |f̂n| ≤ L−1}) ≤ CL
2

n
.

The above, by Borel-Cantelli, implies17

lim
n→∞

1
n

n−1∑
k=0

f ◦ T k(x) = µ∗(f) m-almost surely.

That is µ∗ is a physical measure (also SRB) and the unique one. In fact one can
obtain much sharper results on the behavior of the f̂n (large deviaitons).

16In higher dimensions one can have a Cantor like set with characteristic function in BV.
Hence one must either use a different functional space (a convenient one in this respect has been
introduced in [66]) or use explicitly the dynamics: for example note the one can easily bound the
ε neighborhood of the boundary of the partition and that, by a commonly used argument, implies
that there is a large measure of point with an open neighborhood whose preimages are all away

from singularities. One can then proceed to prove that on such open sets the density must be
continuos showing that any invariant set must contain an open set.

17Actually one must apply Borel-Cantelli with some care (but this is a quite standard an
general strategy):

Consider the set N := {4k + j2k : k ∈ N j < 3 · 2k}, then

X
l∈N

m({x : |f̂l| ≤ L−1}) ≤ CL2
∞X
k=0

3·2kX
j=0

4−k ≤ CL2
∞X
k=0

3 · 2−k <∞.

Hence Borel-Cantelli imply that every infinite sequence in N converges. Next notice that

|f̂n − f̂n+m| ≤ |f |∞
m

n

which readily imply the wanted result.
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