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1 Skeleton (dyadic) decomposition for matrices

and Tucker decomposition for tensors

As everybody knows, a matrix of rank r can be expressed as a sum of r rank-one matrices
and can be approximated by a sum of k rank-one matrices with k < r. The best possible
approximation of rank k is obtained by a suitable truncation of the Singular Value Decom-
position (SVD). We assume that the students are aware of the basic properties of the SVD
and the corresponding best approximation results. Recommended reference could be Matrix

Computations by Gene Golub and Charles van Loan or A brief introduction to numerical

analysis by Eugene Tyrtyshnikov.
If instead of a matrix we are given a d-tensor (d-dimensional matrix), then it is natural

to investigate possible generalizations of skeleton decompositions to tensors. First of all,
we introduce a convenient formalism for multiplication of tensors and consider the so called
general Tucker decomposition, minimal Tucker decompostion and orthogonal Tucker decom-
position. Many important properties of the SVD will be lost. However, the study of tensors
can be reduced to the study of matrices associated with a given tensor. Using the SVD of
these matrices, we will be able to produce best approximation estimates for tensors. Note
that Tucker decomposition is widely used in statistics and various branches of data analysis.

2 Tensor trains and structured decompositions

of associated matrices

Tensor train is a special decomposition of a d-tensor using d other tensors of smaller dimen-
sionality. More precisely, two of them are 2-dimensional and others are 3-dimensional. If there
are n points at each dimension, then the total number of entries of such a tensor is equal to nd

and, in contrast, the number of representation parameters in the tensor-train decomposition
is bounded by dnr2, where r is the so-called tensor-train rank. Multi-dimensional problems
are abundant with the cases where the value of r is reasonably small. Fortunately, this value
is small for typical applications. Tensor trains implement the general idea of the reduction of
dimensionality and have everything to do with a sequence of matrices associated with a given
tensor. These matrices are wonderfully structured and classical matrix decompositionis, e.g.
the SVD, can be computed for them simultaneously in a very fast way. The complexity of
basic tensor-train algorithms depend on d just linearly, in the worst case polynomially. The
idea of tensorization allows us to use tensor-train algorithms in the work with large-scale
vectors and matrices.



3 Tensor ranks and relation with algebraic geometry

By definition, a rank-one tensor in three indices is a nonzero tensor of the form a(i, j, k) =
u(i)v(j)w(k). Any tensor can be represented as a sum of rank-one tensors (this is the so called
trilinear decomposition or canonical polyadic decompostion) and the minimal possible number
of summands is called the tensor rank of this tensor. If we fix the number of summands, then
the possibility for a tensor to be of rank bounded by this number means the solvability of
a certain system of algebraic equations. Here we step on the grounds of algebraic geometry.
Due to Hilbert’s Nullstellensatz, the tensor rank can be computed in finitely many arithmetic
operations. However, the number of those operations may be and usually is prohibitively high.
Thus, the case of three and more indices differs crucially from the case of two indices. One of
most important discrepances is the so called uncloseness, which still needs a better theoretical
understanding. The same applies to estimates of maximal possible ranks depending on the
sizes and Friedland’s conjecture about generic ranks, still open.
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