Esercizi di

Analisi Matematica I

Università degli Studi di Tor Vergata - Roma

Facoltà di Ingegneria

Corsi di Laurea: Ingegneria Civile, Medica, dei Modelli e dei Sistemi

a cura di Ciolli Fabio

I testi di esonero e d'esame sono riferiti ai corsi

della Prof.ssa R. Dal Passo

(ogni suggerimento e correzione a: ciolli@mat.uniroma2.it)

Indice

1	Ele	Elementi di base					
	1.1	Disequazioni razionali intere	3				
	1.2	Disequazioni razionali fratte	3				
	1.3	Disequazioni irrazionali	3				
	1.4	Disequazioni con valori assoluti	4				
	1.5	Disequazioni esponenziali e logaritmiche	4				
	1.6	Disequazioni goniometriche	5				
	1.7	Limitatezza di insiemi numerici	5				
2	Fun	zioni di una variabile	9				
	2.1	Insieme di definizione di funzioni	9				
	2.2	Invertibilità di funzioni	12				
	2.3	Composizione qualitativa di funzioni	13				
3	Lim	niti di funzioni di una variabile	15				
	3.1	Verifiche della definizione di limite	15				
	3.2	Calcolo di limiti	16				
4	Stu	dio di funzioni di una variabile	23				
	4.1	Asintoti	23				
	4.2	Continuità e derivabilità	24				
	4.3	Invertibilità e derivata dell'inversa	25				

INDICE 1

	4.4	Punti critici	26							
	4.5	Monotonia	27							
	4.6	Polinomi di Taylor e Mac Laurin	27							
	4.7	Uso dei polinomi di Taylor per il calcolo dei limiti	27							
	4.8	Continuità uniforme	29							
5	Pro	rove scritte Analisi matematica 1/I								
	5.1	Primo Esonero Analisi matematica 1/I	32							
		5.1.1 Altri esercizi	36							
	5.2	Prova finale Analisi matematica 1/I $$	39							
		5.2.1 Altri esercizi	50							
6	Inte	egrali di funzioni di una variabile e Serie numeriche	53							
	6.1	Integrali indefiniti immediati	53							
	6.2	Integrali indefiniti per sostituzione	54							
	6.3	Integrali indefiniti per parti	55							
	6.4	Integrali definiti	58							
	6.5	Integrali impropri	60							
	6.6	Serie numeriche	62							
7	Fun	zioni di più variabili	65							
	7.1	Insiemi in più dimensioni	65							
	7.2	Limiti in più dimensioni	66							
	7.3	Funzioni di più variabili	67							
	7.4	Sviluppi di Taylor di funzioni di più variabili	72							
	7.5	Concavità/convessità	72							
	7.6	Primo Esonero Analisi matematica I/2	75							
	7 7	Prove finale Analisi metematica I/2	78							

2 INDICE

Capitolo 1

Elementi di base

1.1 Disequazioni razionali intere

E.I.1. Determinare la soluzione delle seguenti disequazioni per $x \in \mathbb{R}$

1.
$$(x^3 - 3x + 2)(x - 4) > 0$$
. $[x < -2, x > 4]$

2.
$$(1-x)(x-3)(x+2) < 0$$
. $[-2 < x < 1, x > 3]$

1.2 Disequazioni razionali fratte

E.I.2. Determinare la soluzione delle seguenti disequazioni per $x \in \mathbb{R}$

3.
$$\frac{x^2 + x - 2}{x^2 - 10x + 21} < \frac{x - 1}{x - 3} + 3\frac{x + 1}{x - 7}$$
. [$x < 0, 3 < x < 5, x > 7$]

4.
$$\frac{x+12}{x+8} - \frac{x-6}{x^2+2x-48} \ge \frac{3x-3}{x-6}$$
. $[-8 < x < 6]$

5.
$$\frac{-9x^2 - 12x - 4}{2x^2 - 5x + 2} < 0.$$
 $\left[x < -\frac{2}{3}, -\frac{2}{3} < x < \frac{1}{2}, x > 2 \right]$

6.
$$\frac{(x-a)(x-b)}{x^2-a^2} \ge 0$$
, $a > b > 0$. $[x < -a, b \le x < a, x > a]$

1.3 Disequazioni irrazionali

E.I.3. Determinare la soluzione delle seguenti disequazioni per $x \in \mathbb{R}$

7.
$$2x - 3 > \sqrt{4x^2 - 13x + 3}$$
. $[x \ge 3]$

1. Elementi di base

8.
$$x - 8 < \sqrt{x^2 - 9x + 14}$$
. $[x \le 2, x \ge 7]$

9.
$$\sqrt{x-1} - \sqrt{x-2} < 2$$
. $[x \ge 2]$

10.
$$\sqrt{x+2} < 8 + \sqrt{x-6}$$
. $[x \ge 6]$

11.
$$\sqrt{3x-8} > \sqrt{5x+3} + \sqrt{x+6}$$
. [nessuna soluzione]

12.
$$\sqrt{x-1} \le x-2$$
. $\left[x \ge \frac{5+\sqrt{5}}{2}\right]$

13.
$$\sqrt{x-1} \ge -100 - x$$
. $[x \ge 1]$

14.
$$\frac{\sqrt{x-2}}{\sqrt{x-4}} < 1$$
. $[2 \le x < 16]$

15.
$$\sqrt[3]{|x+8|} > 1$$
. $[x < -9, x > -7]$

16.
$$\sqrt{4-|x+3|} < 2$$
. $[-7 \le x \le 1]$

17.
$$\sqrt[3]{4-|x+3|} < 2$$
.

18.
$$\sqrt{4-|x+2|} < 2-|x|$$
. $\left[\frac{-5+\sqrt{17}}{2} < x < 1\right]$

19.
$$\sqrt{3 - |4x + 2|} < 1 - 2|x|$$
. $[0 < x \le \frac{1}{4}]$

1.4 Disequazioni con valori assoluti

E.I.4. Determinare la soluzione delle seguenti disequazioni per $x \in \mathbb{R}$

20.
$$||x-1|-1| \ge 2$$
. $[\{x \le -2\} \cup \{x \ge 4\}]$

21.
$$|x-2|-|x|<3$$
.

22.
$$||x-2|-|x|| \le 3$$
.

23.
$$|x^2 - 2x - 4| \ge |x| + 2$$
. $[\{x \le -2\} \cup \{x \ge \frac{3 + \sqrt{33}}{2}\} \cup \{\frac{3 - \sqrt{17}}{2} \le x \le 2\}]$

24.
$$|x-2| + |x| < 3$$
. $\left[\left\{-\frac{1}{2} < x < \frac{5}{2}\right\}\right]$

25.
$$\left| \frac{x-2}{x-3} \right| - |x-2| < 2.$$
 $\left[\left\{ x < 1 + \sqrt{3} \right\} \cup \left\{ x > 2 + \sqrt{2} \right\} \right]$

1.5 Disequazioni esponenziali e logaritmiche

E.I.5. Determinare la soluzione delle seguenti disequazioni per $x \in \mathbb{R}$

26.
$$4^{x+1}6^{3x-2} < 8^x$$
. $\left[x < \frac{2\log 3}{\log 108}\right]$

27.
$$3 \cdot 5^{2(2x-7)} - 4 \cdot 5^{(2x-7)} + 1 > 0$$
. $\left[x < \frac{7}{2} - \frac{\log 3}{2 \log 5}, x > \frac{7}{2} \right]$

28.
$$\log_3(2x^2 - 7x + 103) > 2$$
. [R]

29.
$$\log_5(x^2 - 7x + 11) < 0$$
. $[2 < x < \frac{7 - \sqrt{5}}{2}, \frac{7 + \sqrt{5}}{2} < x < 5]$

30.
$$\log_{10}(x+4)^2 > \log_{10}(13x+10)$$
. $\left[-\frac{10}{13} < x < 2, x > 3\right]$

31.
$$2^{2x} - 5 \cdot 2^x + 4 < 0$$
. $[0 < x < 2]$

32.
$$\frac{6}{2^x - 1} + \frac{3}{2^x + 1} > \frac{2}{2^x - 1} + 5.$$
 [0 < x < 1]

33.
$$|\log_{10}(3x+4) - \log_{10}7| < 1$$
. $[-\frac{11}{10} < x < 22]$

1.6 Disequazioni goniometriche

E.I.6. Determinare la soluzione delle seguenti disequazioni per $x \in \mathbb{R}$

34.
$$2\sin^2 x - \cos x - 1 > 0$$
. $\left[\frac{\pi}{3} + 2k\pi < x < \pi + 2k\pi, \, \pi + 2k\pi < x < \frac{5}{3}\pi + 2k\pi, \, k \in \mathbb{Z}\right]$

35.
$$\cos 2x + 3\sin x \ge 2$$
. $\left[\frac{\pi}{6} + 2k\pi \le x \le \frac{5}{6}\pi + 2k\pi, \ k \in \mathbb{Z}\right]$

36.
$$3\tan^2 x - 4\sqrt{3}\tan x + 3 > 0$$
. $\left[-\frac{\pi}{2} + k\pi < x < \frac{\pi}{6} + k\pi, \frac{\pi}{3} + k\pi < x < \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right]$

37.
$$\log_a(\frac{1}{2} - |\sin x|) < 0, \ a > 1.$$

$$\left[-\frac{1}{6}\pi + 2k\pi < x < \frac{1}{6}\pi + 2k\pi, \frac{5}{6}\pi + 2k\pi < x < \frac{7}{6}\pi + 2k\pi, k \in \mathbb{Z} \right]$$

38.
$$3\cos x + \sin^2 x - 3 > 0$$
. [impossibile]

39.
$$4\cos(x+\frac{\pi}{6})-2\sqrt{3}\cos x+1\geq 0.$$
 $\left[-\frac{7}{6}\pi+2k\pi\leq x\leq \frac{\pi}{6}+2k\pi,\ k\in\mathbb{Z}\right]$

40.
$$\left|\frac{\cos 2x}{\sin x}\right| \le 1$$
. $\left[\frac{\pi}{6} + 2k\pi \le x \le \frac{5}{6}\pi + 2k\pi, \frac{7}{6}\pi + 2k\pi \le x \le \frac{11}{6}\pi + 2k\pi, k \in \mathbb{Z}\right]$

41.
$$\left| \frac{\tan 2x}{\cot x} \right| < 1$$
. $\left[k\pi < x < \frac{\pi}{6} + k\pi, \frac{5}{6}\pi + k\pi < x < \pi + k\pi, k \in \mathbb{Z} \right]$

1.7 Limitatezza di insiemi numerici

E.I.7. Studiare la limitatezza dei seguenti insiemi numerici, determinando per ognuno di essi sup, inf, max, min ed eseguendo la verifica della definizione

42.
$$A = \{\frac{1}{n^2+1}, n \in \mathbb{N}\}.$$
 $[\inf A = 0, \max A = 1]$

1. Elementi di base

43.
$$A = \{\frac{(-1)^n}{n^2 + 2}, n \in \mathbb{N}\}.$$
 $[\min A = -\frac{1}{3}, \max A = \frac{1}{2}]$

44.
$$A = \{\frac{x+2}{x-3}, x \in \mathbb{R}, x > 3\}.$$
 $[\inf A = 1, \sup A = +\infty]$

45.
$$A = \{\frac{x+2}{x-2}, x \in \mathbb{R}, x < 2\}.$$
 [inf $A = -\infty$, sup $A = 1$]

46.
$$A = \{\frac{nm}{n^2 + m^2}, (n, m) \in \mathbb{N} \times \mathbb{N} \setminus \{(0, 0)\}\}.$$
 $[\min A = 0, \max A = \frac{1}{2}]$

47.
$$A = \{\frac{nm}{n^2 + m^2}, (n, m) \in \mathbb{N} \setminus \{0\}\}.$$
 [inf $A = 0$, $\max A = \frac{1}{2}$]

48.
$$A = \{\frac{n+m}{n-m}, n, m \in \mathbb{N}, n \neq m\}.$$
 $[\inf A = -\infty, \sup A = +\infty]$

49.
$$A = \{\frac{n}{m} + \frac{m}{n}, n, m \in \mathbb{N} \setminus \{0\}\}.$$
 $[\inf A = 2, \sup A = +\infty]$

E.I.8. Studiare la limitatezza dei seguenti insiemi numerici, determinando per ognuno di essi sup, inf, max, min.

50.
$$A = \{\frac{3n+1}{n+2}, n \in \mathbb{N} \setminus \{0\}\}.$$
 $[\min A = \frac{4}{3}, \sup A = 3]$

51.
$$A = \{\frac{1}{1+2^{-n}}, n \in \mathbb{N} \setminus \{0\}\}$$
. $[\min A = \frac{2}{3}, \sup A = 1]$

52.
$$A = \{\frac{2n}{n!+1}, n \in \mathbb{N} \setminus \{0\}\}$$
. $[\inf A = 0, \max A = \frac{4}{3}]$

53.
$$A = \{\frac{\log n!}{n!}, n \in \mathbb{N}\}.$$
 $[\min A = 0, \max A = \log \sqrt{2}]$

54.
$$A = \{\frac{n}{\sin(n\frac{\pi}{2}+1)}, n \in \mathbb{N}\}.$$
 $[\inf A = -\infty, \sup A = +\infty]$

55.
$$A = \{\frac{\sqrt{n} - \sqrt{n+2}}{n^2}, n \in \mathbb{N} \setminus \{0\}\}.$$
 $[\min A = -\frac{2}{1+\sqrt{3}}, \sup A = 0]$

56.
$$A = \{ |(-1)^n \frac{n}{n+3} - \frac{1}{5}|, n \in \mathbb{N} \}.$$
 $[\min A = \frac{1}{5}, \sup A = \frac{6}{5}]$

57.
$$A = \{|n^2 + \sin(n\frac{\pi}{2})|, n \in \mathbb{N}\}.$$
 $[\min A = 0, \sup A = +\infty]$

58.
$$A = \{\sin((2n+1)\frac{\pi}{2}) 2^{\frac{1}{n+1}}, n \in \mathbb{N}\}.$$
 $[\min A = -\sqrt{2}, \max A = 2]$

E.I.9. Stabilire se i seguenti insiemi di numeri reali sono limitati; trovarne il sup e inf, max e min, se esistono.

59.
$$A = \{\frac{1}{1+2n}, n \in \mathbb{N}, n \ge 1\}.$$
 $[\inf A = 0, \max A = \frac{1}{3}]$

60.
$$A = \{x \in \mathbb{R} : \frac{x}{x+1} > \frac{1}{2}\}.$$
 $[A = (-\infty, -1) \cup (1, +\infty); \inf A = -\infty, \sup A = \infty]$

61.
$$A = \{x \in \mathbb{R} : \sqrt{x^2 - 2x} < \frac{1}{2}x\}.$$
 $[\min A = 2, \sup A = \frac{8}{3}]$

62.
$$A = \{x \in \mathbb{R} : \sqrt{\log(\sin x)} \in \mathbb{R}\}. \ [A = \{\frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}\}; \inf A = -\infty, \sup A = +\infty]$$

63.
$$A = \{x \in \mathbb{R} : 1 \le 3^{2x+1} < 9\}.$$
 $[\min A = -\frac{1}{2}, \sup A = \frac{1}{2}]$

64.
$$A = \{x \in \mathbb{R} : 5 < \frac{1}{5}^{3x-3} \le 25\}.$$
 $[\min A = \frac{1}{3}, \sup A = \frac{2}{3}]$

65.
$$A = \{1 - \frac{(-1)^n}{n}, n \in \mathbb{N} \setminus \{0\}\}.$$
 $[\min A = \frac{1}{2}, \max A = 2]$

66.
$$A = \left\{ \begin{array}{ll} \frac{4}{2n+1}, & n \in \mathbb{N}, \ n \ \text{pari} \\ 2 - \frac{1}{n+1}, & n \in \mathbb{N}, \ n \ \text{dispari} \end{array} \right\}.$$
 [inf $A = 0, \max A = 4$]

- **67**. Costruire un insieme infinito attraverso una successione non monotona che abbia 0 come inf e 1 come sup .
- 68. Calcolare inf e sup delle aree delle superfici dei rettangoli aventi perimetro uguale a 4a, dove a è un numero reale positivo o nullo.

Capitolo 2

Funzioni di una variabile

2.1 Insieme di definizione di funzioni

E.II.1. Determinare l'insieme di definizione delle seguenti funzioni e studiare la limitatezza di tali insiemi. Disegnare inoltre un grafico qualitativo delle funzioni stesse.

69.
$$f(x) = \sqrt{x^2 - 1}$$
.

70.
$$f(x) = \sqrt{\frac{1-x}{x+2}}$$
.

71.
$$f(x) = \sqrt[4]{\frac{|1-x|}{x+2}}$$
.

72.
$$f(x) = \log_{\frac{1}{2}}(1 - |x|)$$
.

73.
$$f(x) = \sqrt[6]{\log_{\frac{1}{3}}(2-|x|)}$$
.

74.
$$f(x) = \sqrt{\log_2(x^2 - 2x - 5) - 1}$$
.

75.
$$f(x) = \sqrt{\log_3(2x+2) - \log_3 x}$$
.

76.
$$f(x) = \sqrt{\log_3(\frac{x+2}{x})}$$
.

77.
$$f(x) = \sqrt{\log_3(x+1) - \log_9(x+2) + 1}$$
.

78.
$$f(x) = 2^{\frac{x+2}{x^2 - 3x - 4}}$$
.

79.
$$f(x) = \log_5(6^{2x} - |4 \cdot 6^x - 1|)$$
.

80.
$$f(x) = \cos(\frac{2x-1}{x+1})$$
.

81.
$$f(x) = \sqrt{\cos(\frac{2x-1}{x+1})}$$
.

82.
$$f(x) = (\cos(\frac{2x-1}{x+1}) - \frac{1}{2})^{\frac{1}{4}}$$
.

83.
$$f(x) = \frac{1}{\sin x + \cos x}$$
.

84.
$$f(x) = 2\log_3(\sin x + 2\cos x)$$
.

85.
$$f(x) = \log_3(\sin x + 2\cos x)^2$$
.

86.
$$f(x) = \log_3^2(\sin x + 2\cos x)$$
.

87.
$$f(x) = \arccos(\frac{x+1}{x-1}).$$

88.
$$f(x) = \arcsin(\frac{x+1}{|x|-1}).$$

89.
$$f(x) = (\log_4(\sin x))^{\frac{1}{2}}$$
.

90.
$$f(x) = \left[2\sqrt[4]{1 - \log_7(x^2 + x)} - (x^2 + x)\right]^{\frac{1}{2}}$$
.

- 91. Indicando con \mathcal{D} l'insieme di definizione per ognuna delle funzioni dell'esercizio **E.II.1**, si determini l'insieme dei suoi punti interni $\overset{\circ}{\mathcal{D}}$ e l'insieme dei suoi punti di frontiera $\partial \mathcal{D}$. Dire inoltre se tali insiemi sono aperti o chiusi e studiarne la limitatezza.
- 92. Determinare l'insieme immagine im f per ciascuna delle funzioni f nell'esercizio **E.II.1** ed il sottoinsieme dei suoi punti di accumulazione.
- 93. Date le funzioni $f, g: A \subseteq \mathbb{R} \to \mathbb{R}$, dimostrare le seguenti implicazioni:
 - 1. $f, g \text{ crescenti} \Longrightarrow f + g \text{ crescente};$
 - 2. f, g decrescenti $\Longrightarrow f + g$ decrescente;
 - 3. f crescente e g strettamente crescente $\Longrightarrow f+g$ strettamente crescente;
 - 4. f decrescente e g strettamente decrescente $\Longrightarrow f+g$ strettamente decrescente.
- 94. Determinare sotto quali condizioni vale la seguente implicazione:

$$f, g$$
 crescenti (decrescenti) $\Longrightarrow f \cdot g$ crescente (decrescente).

95. Esibire un esempio che mostri come il risultato dell'esercizio 94 sia in generale falso, ovvero senza ulteriori ipotesi.

96. Dimostrare che se $f:A\subseteq\mathbb{R}\to\mathbb{R}$ è invertibile, allora.

f crescente (decrescente) $\Longrightarrow f^{-1}$ crescente (decrescente).

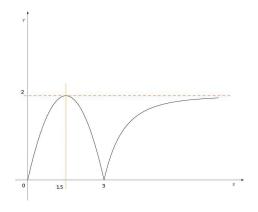
97. Sia $f:A\subseteq\mathbb{R}\to\mathbb{R}$ tale che $0\notin f(A)$. Dimostrare che se f è crescente allora $\frac{1}{f}$ è ...?

98. Siano $f, g: A \subseteq \mathbb{R} \to \mathbb{R}$ delle funzioni iniettive. La funzione f+g è invertibile?

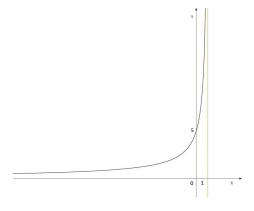
99. Siano $f: X \to Y$ e $g: V \to W$ e sia inoltre $f(X) \cap V \neq \emptyset$. Se f e g sono invertibili, la loro funzione composta $f \circ g$ è invertibile?

100. Dare tre esempi di funzioni $f: X \to X$ tali che $f \equiv f^{-1}$.

101. Sia $g: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$ il cui grafico è



e sia $f:(-\infty,1)\to\mathbb{R}$ con grafico



Disegnare un grafico qualitativo di $f\circ g$ e di $g\circ f.$

2.2 Invertibilità di funzioni

E.II.2. Studiare l'invertibilità delle seguenti funzioni nel loro insieme di definizione.

102.
$$f(x) = 2^x + x$$
.

103.
$$f(x) = -x + \log_{\frac{1}{2}} x$$
.

104.
$$f(x) = x^2 + \log_3(1+x)$$
.

105.
$$f(x) = \frac{5^x}{1+5^x} + x^3$$
.

106.
$$f(x) = x|x| + 1$$
.

107.
$$f(x) = \begin{cases} \frac{1}{x-1} & \text{se } x > 1 \\ x+a & \text{se } x \le 1 \end{cases}$$
 al variare di $a \in \mathbb{R}$.

$$\mathbf{108.} \ f(x) = \begin{cases} x^2 + ax & \text{se } x \le 0 \\ -\frac{1}{x} & \text{se } x > 0 \end{cases}$$
al variare di $a \in \mathbb{R}$.
$$\mathbf{109.} \ f(x) = \begin{cases} x^3 & \text{se } |x| \ge 1 \\ ax & \text{se } |x| < 1. \end{cases}$$
al variare di $a \in \mathbb{R}$.

109.
$$f(x) = \begin{cases} x^3 & \text{se } |x| \ge 1 \\ ax & \text{se } |x| < 1. \end{cases}$$
 al variare di $a \in \mathbb{R}$

110. Siano $f:X \to Y$ e $g:V \to W$ due funzioni invertibili per le quali sia ben definita la funzione composta $g \circ f$. Dette f^{-1} e g^{-1} rispettivamente le loro inverse, dimostrare che

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

E.II.3. Dopo aver verificato che le seguenti funzioni sono invertibili, determinarne l'inversa, precisandone il dominio.

111.
$$f(x) = x|x| + x$$
.

112.
$$f(x) = x(x-2), x \le 0$$
.

113.
$$f(x) = \log_{\frac{1}{2}}(1 - x^3)$$
.

114.
$$f(x) = \frac{3^{x+1}}{1+3^{x+1}}$$
.

115.
$$f(x) = \sqrt{e^{2x} + e^x + 1}$$
.

116.
$$f(x) = \sin^3(\frac{x^2}{x^2+1}), \ x \le 0.$$

117.
$$f(x) = \arccos(\log_2 x)$$
.

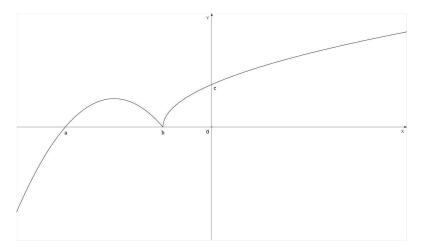
118.
$$f(x) = \tan(x^3 + 1)$$
, $\frac{\pi}{2} < x^3 + 1 < \frac{3}{2}\pi$.

119.
$$f(x) = \arctan(x^3 + 1)$$
.

120.
$$f(x) = \arcsin(\sqrt{x^2 + 1}), \quad x < 0.$$

2.3 Composizione qualitativa di funzioni

121. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione con grafico

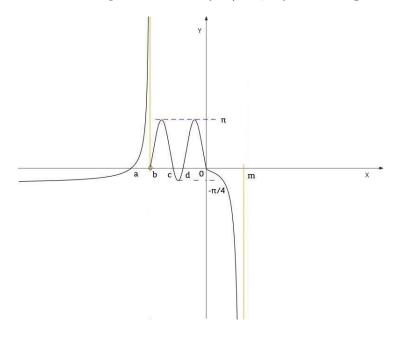


Disegnare un grafico qualitativo di:

$$|f(x)|, f_{+}(x), f_{-}(x), f(|x|), f(x_{+}), f(x_{-}), f(2x), f(x+2), f(x-3), -f(x), f(-|x|),$$

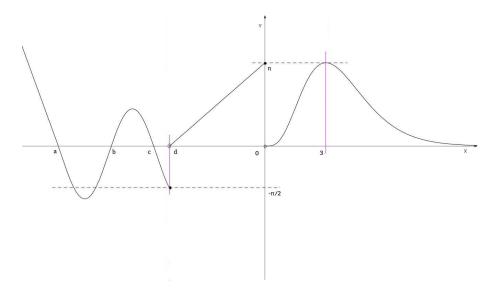
 $1 + f(x), f(-x), 1 - f(x), \sqrt{f(x)}, \log_3 f(x), \frac{1}{f(x)}, 4^{f(x)}, 4^{f(x)}, 4^{f(x)}, \arctan f(x), \arctan \frac{1}{f(x)}.$

122. Come per l'esercizio 2.3 per la funzione $f:(-\infty,\,m)\to\mathbb{R}$ con grafico



Disegnare in oltre: $\tan(f(x))$, $\arcsin(f(x))$, $\arccos(f(x))$, $f(2^x)$, $f(-2^x)$.

123. Come per l'esercizio 2.3 per la funzione $f:\mathbb{R}\to\mathbb{R}$ con grafico



Disegnare in oltre: $\cot(f(x))$, $\arcsin(f(x))$, $\arccos(f(x))$, $f(2^{-x})$, $f((-\frac{1}{2})^x)$.

Capitolo 3

Limiti di funzioni di una variabile

3.1 Verifiche della definizione di limite

E.III.1. Verificare la definizione di limite nei seguenti casi

124.
$$\lim_{x\to 1} x = 1$$
.

125.
$$\lim_{x\to +\infty} \frac{1}{x} = 0$$
.

126.
$$\lim_{x\to 3} 2x + 1 = 7$$
.

127.
$$\lim_{x\to 2} x^2 = 4$$
.

128.
$$\lim_{x\to 0} \frac{1}{x^2} = +\infty$$
.

129.
$$\lim_{x\to 0} \frac{1}{x^3}$$
 \nexists .

130.
$$\lim_{x\to 1} 3^x = 3$$
.

131.
$$\lim_{x \to \frac{\pi}{2}} \sin x = 1$$
.

132.
$$\lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty$$
.

133.
$$\lim_{x\to 1^+} x - [x] = 0$$
.

134.
$$\lim_{x\to 1^-} x - [x] = 1$$
.

135.
$$\lim_{x\to 0^+} \log_{\frac{1}{2}} x = +\infty$$
.

136.
$$\lim_{x\to+\infty} \frac{x+2}{2x+2} = \frac{1}{2}$$
.

137.
$$\lim_{x \to +\infty} \sin \frac{1}{x} = 0$$
.

3.2 Calcolo di limiti

E.III.2. Calcolare, se esistono, i seguenti limiti

138.
$$\lim_{x\to 2} x^2 + \frac{1}{x}$$
. $\left[\frac{9}{2}\right]$

139.
$$\lim_{x\to+\infty} \frac{x+x^2}{x^3+1}$$
. [0]

140.
$$\lim_{x\to 0} \frac{x \sin x}{1-\cos x}$$
. [2]

141.
$$\lim_{x\to +\infty} \sqrt{x^2+4} - x$$
. [0]

142.
$$\lim_{x\to +\infty} \sqrt{2x+x^2} - x$$
. [1]

143.
$$\lim_{x \to +\infty} \frac{\log_2(x+x^2)}{\log_3 x - 1}$$
. [2 log₂ 3]

144.
$$\lim_{x\to 0} \frac{\sin x - x}{\frac{9}{10}}$$
. [0]

145.
$$\lim_{x\to 4} \frac{\sqrt{x^2+1}-\sqrt{17}}{x-4}$$
. $\left[\frac{4}{\sqrt{17}}\right]$

146.
$$\lim_{x\to 0^+} 4^{\frac{1}{x}}$$
. $[+\infty]$

147.
$$\lim_{x\to 0^-} 4^{\frac{1}{x}}$$
. [0]

148.
$$\lim_{x\to 0} \frac{\sin x - \sqrt{x}}{1-\cos \sqrt[4]{x}}$$
. [-2]

149.
$$\lim_{x\to 0} \frac{\sin x - x^2}{\sqrt{1-\cos x^2}}$$
. $[+\infty]$

150.
$$\lim_{x \to \frac{\pi}{2}} 2^{\frac{\sin x - 1}{x^4}}$$
. [1]

151.
$$\lim_{x\to 0} \frac{\frac{1}{2}\sin^2 x + \cos x - 1}{x^2}$$
. [0]

152.
$$\lim_{x\to+\infty} \log_4(\frac{x+1}{x-1})$$
. [0]

153.
$$\lim_{x\to 0} \frac{\log_3(x+1)}{x}$$
. $[\log_3 e]$

154.
$$\lim_{x\to 0} \frac{\log_{\frac{1}{2}}(\cos x)}{x^2}$$
. $[\log_4 e]$

155.
$$\lim_{x\to 1^+} (\sin x)^{\frac{1}{\log_2 x}}$$
. [0]

156.
$$\lim_{x\to+\infty} \frac{x^3}{2^x}$$
. [0]

157.
$$\lim_{x\to +\infty} \frac{\log_3 x}{x}$$
. [0]

158.
$$\lim_{x \to +\infty} \frac{x^3}{2^{\log_3(\log_2 x)}}$$
. [+\infty]

E.III.3. Determinare dominio ed immagine delle seguenti funzioni, precisando se sono periodiche, pari o dispari.

3.2 Calcolo di limiti 17

159.
$$f(x) = \sqrt{2\sin^2 x + \cos x - 1}$$
.

160.
$$f(x) = \log_3(\sin^3 x - \cos^3 x)$$
.

161.
$$f(x) = \log_{\frac{1}{2}}(|\sin 2x| + \cos x).$$

162.
$$f(x) = 4^{\frac{\sin x + \cos x}{\sin x - \cos x}}$$
.

163.
$$f(x) = \frac{1}{2^{\sin x} - 3^{\cos x}}$$
.

164.
$$f(x) = |x|^{\alpha} \sin \frac{1}{x^3}$$
, al variare di $\alpha \in \mathbb{R}$.

165.
$$f(x) = \arcsin(\frac{2+e^x}{e^{2x}-3})$$
.

166.
$$f(x) = \sqrt[4]{\tan^2(x^2+1) - \tan(x^2+1) - 6}$$
.

167.
$$f(x) = \frac{5^x + 5^{-x}}{2}$$
.

168.
$$f(x) = \arctan \frac{5^x - 5^{-x}}{2}$$
.

E.III.4. Disegnare un grafico qualitativo delle funzioni studiate nei precedenti esercizi

159, 162, 164, 167 e 168.

 ${\bf E.III.5.}$ Calcolare, se esistono, i seguenti limiti

169.
$$\lim_{x\to+\infty}(x+5)\sqrt{\frac{x+1}{x-1}}-x$$
. [6]

170.
$$\lim_{x\to +\infty} x[\log(x+1) - \log x].$$
 [1]

171.
$$\lim_{x\to+\infty} \left(\frac{x^3-2x+1}{x^2+x^3}\right)^{\frac{2x^2+1}{x-3}}$$
. $[e^{-2}]$

172.
$$\lim_{x\to 0} \frac{\log(\cos x)}{\sin 2x^2}$$
. $[-\frac{1}{4}]$

173.
$$\lim_{x\to 0^+} (\sin x)^{x^2+3x\log x}$$
. [1]

174.
$$\lim_{x\to 0} \frac{\log(1+\sin x)}{\sin 2x+x^2 \log x}$$
. $\left[\frac{1}{2}\right]$

175.
$$\lim_{x\to 0} \frac{e^{2x-3}-e^{-3}}{\sin x}$$
. [2 e^{-3}]

176.
$$\lim_{x\to 0} \frac{\sin(\sqrt{1+x^2}-1)}{x}$$
. [0]

177.
$$\lim_{x\to 0} \left(\frac{\log(1+x)+\sin x+x}{x+x^2}\right)^2$$
. [9]

178.
$$\lim_{x\to 0} \frac{e^{-\frac{1}{x^2} + \log(1 + x^{\frac{1}{5}} - \sin \sqrt[3]{x})}}{\sqrt[3]{x} - 2\sqrt[5]{x}}$$
. $\left[-\frac{1}{2}\right]$

179.
$$\lim_{x\to +\infty} \frac{\sin(\frac{x^5}{3^x})}{x^{42-x}}$$
. [0]

E.III.6. Calcolare, se esistono, i seguenti limiti

180.
$$\lim_{x\to 1} \frac{\sqrt{x-\cos(x-1)}}{\log x}$$
. $\left[\frac{1}{2}\right]$

181.
$$\lim_{x\to 2} (\sin\frac{\pi x}{4})^{\frac{1}{\log(3-x)}}$$
. [1]

182.
$$\lim_{x\to 1} |x-1|^{x-1}$$
. [1]

183.
$$\lim_{x\to 0^+} x^{\frac{1}{\log x}}$$
. [e]

184.
$$\lim_{x \to +\infty} \left(\frac{\cos \frac{1}{x}}{\cos \frac{2}{x}}\right)^{\frac{x^2+1}{x}}$$
. [1]

185.
$$\lim_{x\to 0^+} \frac{(2x^x-1)^{\frac{1}{\sqrt{x}}}-1}{\sqrt{x}\log x}$$
. [2]

186.
$$\lim_{x\to+\infty} x^2 [(e^{\frac{1}{x}}+1)^{\frac{1}{2}}-\cos(\frac{1}{x})].$$
 [+\infty]

187.
$$\lim_{x\to+\infty} x^2 [(2e^{\frac{1}{x^2}}-1)^{\frac{1}{2}}-\cos(\frac{1}{x})].$$
 $\left[\frac{3}{2}\right]$

188.
$$\lim_{x\to 3} \frac{e^{-\frac{1}{(3-x)^2}} + e(4-3\cos(x-3))^{\frac{1}{5}} - e^{\sqrt{4-x}}}{\sqrt{1-\cos(x-3)}}.$$
 $\left[-\frac{e}{\sqrt{2}}\right]$

189.
$$\lim_{x \to +\infty} (\sin x^{-1}) \log(x^2 + e^{\frac{1}{x}} + 2^{\frac{x^2}{x+1}}).$$
 [log 2]

190.
$$\lim_{x \to +\infty} \frac{1}{\log^{10}(x^2 + x + 1)} \left[\sin\left(\frac{1}{\frac{x}{x+1} \log^{10}(x^3 + x + 1)}\right) \right]^{-1}$$
. $\left[\left(\frac{3}{2}\right)^{10} \right]$

191.
$$\lim_{x\to 0} \frac{\arcsin\sqrt{x}}{\sqrt{\cos\sqrt[4]{x}-1}}$$
. [-4]

192.
$$\lim_{x\to 0} (1+\sin x)^{\frac{1}{\arctan x}}$$
. [e]

E.III.7. Calcolare, se esistono, i seguenti limiti

193.
$$\lim_{x \to +\infty} \frac{x^2 + \sin x}{x + \log(x + e^{2x^2})}$$
. $\left[\frac{1}{2}\right]$

194.
$$\lim_{x\to+\infty} (x^4 e^{-x} + \sin(\frac{1}{x^2}) + 1)^{\sqrt{1+2x^4}}$$
. $[e^{\sqrt{2}}]$

195.
$$\lim_{x \to +\infty} \frac{(\sqrt{x+x^3}-x)\log(\frac{\sqrt{4x+1}}{2\sqrt{x+3}})}{x\arctan x}$$
. $\left[-\frac{3}{\pi}\right]$

196.
$$\lim_{x \to +\infty} \frac{x^{\arctan x} - x^{\frac{\pi}{2}}}{(1+x)^{\frac{\pi}{2} + \frac{1}{\sqrt{\log x}}}}.$$
 [0]

197.
$$\lim_{x\to+\infty} \frac{x^{\arctan x} - x^{\frac{\pi}{2}}}{(1+x)^{\frac{\pi}{2}-1}}$$
. $[-\infty]$

198.
$$\lim_{x \to 0^+} \frac{e^{-\frac{1}{x} + x^2 + \frac{1}{\log^2 x} + x \log(e^{-\frac{1}{x}} + e^{-\frac{2}{x}}) + 1}}{e^x - 1}$$
. $[+\infty]$

199.
$$\lim_{x\to 0^+} \frac{x \sin x - \cos x + e^{\frac{x^2}{2}}}{\sqrt{1 - \cos x} \arcsin x}$$
. $\left[\frac{4}{\sqrt{2}}\right]$

200.
$$\lim_{x \to 1} \frac{(x^2 - 2x + 1)\tan(x - 1) - \sin^3(x - 1)}{\sqrt{\cos(x - 1) - 1}}$$
. [0]

3.2 Calcolo di limiti 19

201.
$$\lim_{x\to 0^+} \frac{x(\cos\sqrt{x^3}-1)+\sin^2x^{\frac{3}{4}}}{x^3e^{-\frac{1}{\sqrt{x}}}+\sqrt{x}(e^{x^2}-1)}$$
. [$+\infty$]

202.
$$\lim_{x\to 0^+} \frac{x(\cos\sqrt{x^3}-1)+\sin^2x^{\frac{3}{4}}}{x^3e^{-\frac{1}{\sqrt{x}}}+\frac{1}{\sqrt{x}}(e^{x^2}-1)}$$
. [1]

203.
$$\lim_{x\to 0^+} \frac{\log|\log x| + \log x}{\log(1+x^{\log x})}$$
. [0]

204.
$$\lim_{x\to 1} \frac{e^{3x-x^2}-e^2\cos(x-1)-x+1}{\log(\sin(\frac{\pi}{2}x))}$$
. $\left[\left(\frac{2e}{\pi}\right)^2\right]$

E.III.8. Calcolare, se esistono, i seguenti limiti

205.
$$\lim_{x\to 0^+} x^x$$
; $\lim_{x\to 0^+} x^{x^x}$; $\lim_{x\to 0^+} x^{x^{x^x}}$. [1; 0; 1]

206.
$$\lim_{x\to 0^+} x^{x^{x^{-1}}}$$
.

[1 se n è pari, 0 se n è dispari]

207.
$$\lim_{x\to 1} \left(\frac{(x-1)^2}{\sin(\pi x)(e-e^x)}\right)^{\log x}$$
. [1]

208.
$$\lim_{x \to +\infty} \frac{\cos \frac{1}{x} - e^{-\frac{1}{x^2}}}{(\sqrt{x^4 - x^2} - x^2) \log \sqrt{\frac{x^2 + 2}{x^2 + 1}}}.$$
 [-2]

$$\begin{aligned} \mathbf{209}. \ \lim_{x \to 0^+} \frac{\sin(e^{x^2} - \cos x + 2\sin x^2 \sqrt{1 + 2\sin^2 x})}{2\sin^2 x}. & \left[\frac{7}{4}\right] \\ \mathbf{210}. \ \lim_{x \to 0^+} \frac{\sqrt{e^{x^2} - \cos x + 2\sin x^3 \sqrt{1 + 2\sin x^3}}}{2\sin^3 x}. & \left[+\infty\right] \end{aligned}$$

210.
$$\lim_{x\to 0^+} \frac{\sqrt{e^{x^2} - \cos x + 2\sin x^3}\sqrt{1 + 2\sin x^3}}{2\sin^3 x}$$
. [$+\infty$]

211.
$$\lim_{x\to 0^+} \frac{\sqrt{1+x\sin x} - \sqrt{\cos 2x}}{\tan^2(\frac{x}{2})}$$
. [6]

212.
$$\lim_{x\to 0} \frac{\log(2-\cos x)(2-\cos x)^{\frac{1}{x^2}}\sin x^2}{\sin^2 x^2}$$
. $\left[\frac{\sqrt{e}}{2}\right]$

213.
$$\lim_{x\to 0} \frac{\log(\cos^2 x)(x-\sqrt{x^2+3x+1})}{1+e^{-\frac{1}{x}}-\cos x}$$
. [2]

214.
$$\lim_{x\to 0} [(\sin x + 2)^2 \log(\sin x + 1)]^{\frac{\sqrt{1+3x^2}-1}{x^2}}$$
. [0]

215.
$$\lim_{x \to +\infty} \frac{\log(\frac{e^{-\frac{1}{x}}}{x^4} + 1) + \sin^3(\frac{1}{x})}{\log(\frac{2+x^3}{x^3})}$$
. $\left[\frac{1}{2}\right]$

E.III.9. Disporre in ordine di infinito (infinitesimo) crescente le seguenti funzioni e successioni, dopo aver determinato l'ordine di infinito (infinitesimo), se esiste.

216. Per
$$x \to +\infty$$
: a) $\frac{e^x}{x^2}$, b) $x \log x$, c) $\frac{x^2}{\log x}$, d) $\frac{1}{\sin \frac{1}{x}}$. [d, b, c, a. Ord.: d=1]

217. Per
$$n \to +\infty$$
: a) 2^n , b) $n!$, c) n^n , d) $(\frac{3}{2})^{n^2}$. [a, d, b, c]

218. Per
$$x \to +\infty$$
: a) x^x , b) $x \log^2 x$, c) $x^{2 \log x}$, d) $\frac{x^5 + x^3 + 2}{x^2 + 1} \log \frac{x + 1}{x}$.

$$[b, d, c, a. Ord.: d=2]$$

219. Per
$$x \to 0^+$$
: a) $\frac{1}{\log x}$, b) x^2 , c) $\frac{\sqrt[3]{1-\cos x}}{\sqrt{\arcsin x}}$, d) $(\log x) \arcsin x$. [a, c, d, b. Ord.: b=2, c= $\frac{1}{6}$]

220. Per
$$x \to 0^+$$
: a) $\log x$, b) $\log |\log x|$, c) $\frac{1}{x \log x}$, d) $\frac{1}{\log(1+x)}$. [b, a, c, d. Ord.: d=1]

221. Per
$$x \to 1^+$$
: a) $e^{-\frac{1}{(x-1)^2}}$, b) $\sqrt[10]{x} - \cos(x-1)$, c) $\sin^3 \sqrt[3]{x^2 - x}$, d) $\frac{x-1}{\log^{20}(x-1)}$. [c, d, b, a. Ord.: b=1, c= $\frac{1}{3}$]

222. Per
$$x \to 2^+$$
: a) $\frac{1}{(x-2)^{\frac{3}{2}}}$, b) $\frac{1}{(x-2)^{\frac{3}{4}}\log(x-2)}$, c) $e^{\frac{\sqrt{x-2}}{\sin(x-2)}}$, d) $(x-2)^{\frac{1}{-x+2}}$. [a, b, c, d. Ord.: $a=\frac{3}{2}$]

223. Per
$$x \to 0^+$$
: a) $x \arctan x$, b) $\frac{1 - \cos x}{\log x}$, c) $x^x - 1$, d) $\sin^3 \sqrt[4]{x}$. [d, c, b, a. Ord.: $a = 2, d = \frac{3}{4}$]

E.III.10. Disporre in ordine di infinito (infinitesimo) crescente le seguenti funzioni e successioni, dopo aver determinato l'ordine di infinito (infinitesimo), se esiste.

224. Per
$$x \to +\infty$$
: a) x^2 , b) $\log(1+x^3+e^{x^3})$, c) $\frac{x^2}{x+1}$, d) $(\frac{x^2}{x+1})^{1+\frac{1}{\sqrt{\log x}}}$. [c, d, a, b. Ord.: a=2, b=3, c=1]

225. Per
$$n \to +\infty$$
: a) $\frac{\sqrt{n}}{n^2+1}$, b) $\frac{1}{n \log n}$, c) $\frac{\log^2 n}{n}$, d) $\frac{n!}{(n+1)!-(n-1)!}$. [c, d, b, a. Ord.: $a=\frac{3}{2}, d=1$]

226. Per
$$n \to +\infty$$
: a) $(\sqrt[n]{n} - 1)^{-1}$, b) $n(\sqrt{3 + n^2} + n)$, c) $(\cos(\frac{1}{n}) - 1)2^{\frac{n^3}{n+1}}$, d) n^n . [a, b, c, d. Ord.: b=2]

227. Per
$$x \to 0^+$$
: a) $\frac{x^2(1-\cos x)^2}{\log(1+\sin^4 x)}$, b) $\log(x+1)$, c) $x \log x$, d) $\sin(x \log(1+x)) \log x$. [c, b, d, a. Ord.: a=2, b=1]

228. Per
$$x \to +\infty$$
: a) $\frac{x^2 \log(2-\cos\frac{1}{x})}{\sin^2\frac{1}{x}}$, b) $\frac{x^{\sqrt{x}}}{x^{100}}$, c) $x^2 \log(\frac{x^2+1}{x})$, d) $x \log^{100}(1+x)$. [d, a, c, b. Ord.: a=2]

229. Per
$$x \to 3^+$$
: a) $(e^{\frac{(x-3)^2}{(3-x)(x+1)^3}} - 1)\sin(x-3)^{\frac{9}{4}}$, b) $\sin^3(x-3)$, c) $(x-3)^3\log(x-2)$, d) $(x-3)^3\log^{10}(x-3)$. [d, b, a, c. Ord.: $a=\frac{13}{4}$, b=3, c=4]

230. Per
$$x \to 0^+$$
: a) $x \log(1+x^2)$, b) $x^{2-\frac{x}{x^2+1}}$, c) $(\frac{\sqrt[3]{x^2+x}}{\sqrt[4]{x^2+2x}})^{25}$, d) $x^3 \log^{10} x$. [b, c, d, b. Ord.: a=3, b=2, c= $\frac{25}{12}$]

3.2 Calcolo di limiti 21

231. Per
$$x \to 0^+$$
: a) $x \arctan \sqrt{x}$, b) $\frac{(1-\cos x)^2\sqrt{x+1}}{\sqrt{x^4+1}\log(1+x^2)}$, c) $x^2 \log(\frac{x^2+1}{x})e^{\sqrt{x}}$, d) $\sin(x^3 \log x)$. [a, c, b, d. Ord.: $a=\frac{3}{2}$, b=2]

E.III.11. Calcolare il limite delle seguenti successioni

232.
$$\lim_{n\to+\infty} \frac{e^{n^2}}{n^n}$$
. $[+\infty]$

233.
$$\lim_{n\to+\infty} \frac{e^{n^{\frac{3}{2}}}}{n^{n^2}+e^n}$$
. [0]

234.
$$\lim_{n\to+\infty} \frac{\sqrt{n^2+n^3}-n+\sin n}{\sqrt[4]{1+n^5+2n^6}}$$
. [2^{-\frac{1}{4}}]

235.
$$\lim_{n\to+\infty} \frac{2^{(1+\log^{\frac{1}{2}}n)}}{n^{\frac{1}{2}}}.$$
 [0]

236.
$$\lim_{n\to+\infty} (\log(n^2+1) - \log n - \log(n+1))\sqrt{1+n^2}$$
. [-1]

237.
$$\lim_{n\to+\infty} \frac{2^n-3^n}{4^n}$$
. [0]

E.III.12. Calcolare il limite delle seguenti successioni

238.
$$\lim_{n\to+\infty} \sqrt[n]{(n^2+1)\sin\frac{1}{n}}$$
. [1]

239.
$$\lim_{n\to+\infty} \frac{n^n}{(n!)!}$$
. [0]

240.
$$\lim_{n\to+\infty} \sqrt[n]{n!}$$
. [+\infty]

241.
$$\lim_{n\to+\infty} \left|\log \frac{n}{n+1}\right|^{\frac{1-2\sqrt{n+1}}{n+\sqrt{n}}}$$
. [1]

242.
$$\lim_{n\to+\infty} (1+\frac{n!}{n^n})^{\frac{(n-1)^n n}{(n+1)!}}$$
. $[\sqrt[e]{e}]$

243.
$$\lim_{n\to+\infty} \sqrt{n^2+1} \arcsin(e^{-n}+\frac{1}{n^2+n})$$
. [0]

244.
$$\lim_{n\to+\infty} (1+\cos\frac{1}{n}-\cos\frac{2}{n})^{-(\arcsin\frac{1}{n})^{n^2}}$$
. [1]

245.
$$\lim_{n \to +\infty} \left(\frac{n^2 + n^3 + 3}{\sqrt{n} + n + n^3 - 1} e^{-\frac{1}{n}} \right)^n$$
. [1]

246.
$$\lim_{n\to+\infty} \frac{n^6 + e^{n\log n} + 2^{n^4 \arcsin \frac{1}{n}}}{n^n - n! + e^{n^3}}$$
. [0]

247.
$$\lim_{n\to+\infty} \sqrt[n^2]{n^3+1+e^{n^2}}$$
. [e]

248.
$$\lim_{n\to+\infty} \sqrt[n]{e^n + \sin(\frac{\pi}{2}n)}$$
. [e]

249.
$$\lim_{n\to+\infty} \sqrt[n]{2+\sin n}$$
. [non esiste]

250*. Sia $\{a_n\}$ una successione a termini positivi tale che

$$\lim_{n \to +\infty} \log \frac{a_n}{a_{n+1}} \ge 0.$$

Produrre almeno due controesempi che mostrino come da questa relazione non sia possibile dedurre che

$$\lim_{n \to +\infty} a_n = +\infty$$

Dire inoltre sotto quali ipotesi ulteriori sarebbe valido il risultato.

251. Usando il teorema del confronto, dimostrare che

$$\lim_{n \to +\infty} \frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \dots + \frac{1}{n^2 + n} = 0.$$

 ${\bf 252}^*.$ Sia $\{a_n\}$ una successione a termini positivi. Provare che

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = r \in \mathbb{R}^+ \cup \{0\} \quad \Rightarrow \quad \lim_{n \to +\infty} \sqrt[n]{a_n} = r$$

Utilizzare la successione $a_n = e^{\frac{1}{n}} + \sin(\frac{\pi}{2}n) + 1$ per dimostrare che in generale non vale il viceversa.

253*. Provare, esibendo un controesempio, che se $\{a_n\}$ è una successione a termini non negativi, allora

$$\lim_{n \to +\infty} a_n^{\frac{1}{n}} = l \quad \Rightarrow \quad \lim_{n \to +\infty} \frac{a_n}{l^n} = 1$$

Dimostrare inoltre che se $\lim_{n\to\infty} a_n^{\frac{1}{n}} = l > 1$ allora $a_n \to +\infty$ per $n \to +\infty$.

Capitolo 4

Studio di funzioni di una variabile

4.1 Asintoti

E.IV.1. Determinare gli eventuali asintoti (verticali, orizzontali, obliqui) per le seguenti funzioni, dopo aver precisato l'insieme di definizione. Calcolare inoltre i limiti di ciascuna funzione nei punti di frontiera del proprio dominio.

254.
$$f(x) = \frac{x+1}{-2x+3}$$
.

255.
$$f(x) = \frac{1}{x(x-2)}$$
.

256.
$$f(x) = \frac{\sqrt{x^4+1}}{x-2}$$
.

257.
$$f(x) = x \log(1+x)$$
.

258.
$$f(x) = \frac{x}{x^2+1}$$
.

259.
$$f(x) = \frac{x}{x^2 - 1}$$
.

260.
$$f(x) = x \arcsin \frac{1}{x+1}$$
.

261.
$$f(x) = e^{(\log^2(\frac{x}{x-1}) + \log(3x-3) + 2)}$$
.

262.
$$f(x) = \log(1 - 3e^x + 2e^{2x})$$
.

263.
$$f(x) = xe^{\frac{x}{x^2-1}}$$
.

264.
$$f(x) = x\sqrt{\cos\frac{x}{x^2+1}}$$
.

265.
$$f(x) = \frac{\log|x|}{3 + \log|x|} + \sqrt{x^2 + 2x}$$
.

266. $f(x) = x \arctan x$. (Si usi la formula $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}, x > 0$).

267.
$$f(x) = x^{1 + \frac{1}{\log x}}$$
.

268.
$$f(x) = x^{1 + \frac{\log x}{\sqrt{1 + \log^2 x}}}$$
.

269.
$$f(x) = \frac{x^2}{x^4 - 1} e^{-\frac{1}{x^2}}$$
.

4.2 Continuità e derivabilità

E.IV.2. Determinare l'insieme di definizione e di continuità delle seguenti funzioni.

270.

$$f(x) = \begin{cases} x - [x] - 1, & x \le 2 \\ x - [x], & x > 2. \end{cases}$$

271.
$$f(x) = [x] + \sqrt{x - [x]}$$
.

272.
$$f(x) = 4^{\frac{1}{\sin x}}$$
.

273.
$$f(x) = \frac{\sin(\log x)}{\log x}$$
.

274.

$$f(x) = \begin{cases} \sin(\cot x), & x \neq k\pi, k \in \mathbb{Z} \\ 0, & x = k\pi, k \in \mathbb{Z}. \end{cases}$$

275. Determinare $a \in \mathbb{R}$ tale che la seguente funzione risulti continua

$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 1}, & x \neq -1 \\ a, & x = -1. \end{cases}$$

276. Dire se può applicarsi il Teorema di Weierstass sull'esistenza degli estremi alla funzione

$$f(x) = \begin{cases} x, & 0 \le x < 1 \\ 1 - x, & 1 \le x \le 3. \end{cases}$$

E.IV.3. Determinare l'insieme di continuità e di derivabilità delle seguenti funzioni e calcolare la loro derivata.

277.
$$f(x) = \tan 2x$$
.

278.
$$f(x) = e^{2x} - e^{-2x}$$
.

279.
$$f(x) = 3^{2x}$$
.

280.
$$f(x) = x^{x^2+1}$$
.

281.
$$f(x) = \frac{2x+3}{x-4}$$
.

282.
$$f(x) = \sqrt{\frac{2x+3}{x-4}}$$
.

283.
$$f(x) = \frac{\sqrt{x}}{x^2+1}$$
.

284.
$$f(x) = (\arcsin x)^3$$
.

285.
$$f(x) = e^{\sin x}$$
.

286.
$$f(x) = \arctan(\frac{x}{1-x^2}).$$

287.
$$f(x) = \log \tan x$$
.

288.
$$f(x) = \arcsin(\frac{1}{1+\sqrt{x}}).$$

289.
$$f(x) = \arcsin(\frac{x^2}{x^2 - 1})$$
.

290.
$$f(x) = xe^{\frac{1}{1-x}}$$
.

291.
$$f(x) = 2^{\arccos(3x)}$$
.

292.
$$f(x) = \log 2|x|$$
.

293.
$$f(x) = \frac{\log x}{3 - 2\log(2x)}$$
.

E.IV.4. Come in E.IV.3 per le funzioni degli esercizi E.IV.1, E.II.1, E.II.3.

E.IV.5. Come in E.IV.3 per le funzioni seguenti .

294.
$$f(x) = |x|x + e^x$$
.

295.
$$f(x) = \sqrt{x^2 + x^4} \arctan x$$
.

296.
$$f(x) = \sqrt{1 - \cos x}$$
.

297.
$$f(x) = \sqrt{\log(\frac{x^2}{x^2 - 1})}$$
.

4.3 Invertibilità e derivata dell'inversa

E.IV.6. Verificare l'invertibilità delle seguenti funzioni e determinare l'insieme di derivabilità delle inverse.

298.
$$f(x) = 2x + \log x$$
.

299.
$$f(x) = -x + e^{-2x}$$
.

300.
$$f(x) = x|x| + \log(1+x)$$
.

301.
$$f(x) = x + \sin x$$
.

302.
$$f(x) = x\sqrt{|x|} + \arctan x$$
.

303.
$$f(x) = \sqrt[5]{1 - x - \cos x}$$
.

- **304**. Detta g la funzione inversa corrispondente a ciascuna funzione nell'esercizio **E.IV.6**, calcolare: g'(2), g'(1), $g'(1 + \log 2)$, $g'(\frac{\pi}{2} + 1)$, $g'(1 + \frac{\pi}{4})$, g'(0). Scrivere inoltre l'equazione della retta tangente passante per essi.
- 305. Utilizzare il teorema del valor medio per dimostrare

$$|\sin x - \sin y| \le |x - y|, \quad x, y \in \mathbb{R}.$$

4.4 Punti critici

E.IV.7. Determinare gli eventuali punti critici delle seguenti funzioni.

306.
$$f(x) = \frac{x}{x^2+1}$$
.

307.
$$f(x) = \frac{x}{x^2 - 1}$$
.

308.
$$f(x) = \frac{\log x}{x}$$
.

309.
$$f(x) = xe^{-\frac{1}{x}}$$
.

310.
$$f(x) = \sqrt{x} |1 + \frac{1}{\log x}|$$
.

311.
$$f(x) = x \log x$$
.

312.
$$f(x) = x^3 + x^2 - x$$
.

313.
$$f(x) = \sqrt{-x(x+1)}$$
.

314.
$$f(x) = e^x(\frac{3}{2}|x| + \frac{1}{2}(3x - 8)).$$

315.
$$f(x) = ((2-x)^6)^{\log|x-2|}$$
.

4.5 Monotonia 27

4.5 Monotonia

E.IV.8. Determinare gli intervalli di monotonia delle funzioni nell'esercizio E.IV.7.

4.6 Polinomi di Taylor e Mac Laurin

E.IV.9. Determinare il polinomio di Mac Laurin delle seguenti funzioni fino all'ordine indicato.

- **316**. $f(x) = \sin(x^2)$, all'ordine 4.
- **317**. $f(x) = \sqrt{1+2x}$, all'ordine 3.
- **318.** $f(x) = \log(1 + x^3)$, all'ordine 8.
- **319**. $f(x) = \sin^2(x)$, all'ordine 4.
- **320**. $f(x) = e^{x+1}$, all'ordine 5.

E.IV.10. Determinare il polinomio di Taylor, di centro x_0 e fino all'ordine indicato, delle seguenti funzioni.

- **321**. $f(x) = e^x$, $x_0 = 2$, all'ordine 3.
- **322**. $f(x) = \cos x$, $x_0 = 3$, all'ordine 4.
- **323**. $f(x) = \log(1+x)$, $x_0 = 2$, all'ordine 3.
- 324. Determinare il polinomio di Mac Laurin, di ordine 4 per la funzione
- $f(x) = \log(1 + x\sin x).$

E.IV.11. Determinare il polinomio di Mac Laurin, di ordine 5 per le funzioni seguenti.

- **325**. $f(x) = (1+x)e^x$.
- **326**. $f(x) = x \sin x + \cos x$.
- **327**. $f(x) = (\sin x) \log(1+x)$.

4.7 Uso dei polinomi di Taylor per il calcolo dei limiti

E.IV.12. Calcolare i seguenti limiti.

328.
$$\lim_{x\to+\infty} \frac{x^3}{x+1} \left(e^{\frac{1}{x+1}} - 1 \right) - x.$$
 $\left[-\frac{3}{2} \right]$

329.
$$\lim_{x\to 0^+} \frac{\frac{1}{2}x\sin x + \cos x - e^{x^4}}{x^2\log(1+x^2)}$$
. $\left[-\frac{25}{24}\right]$

330.
$$\lim_{x \to 1^+} \frac{e^{-\frac{1}{x-1}} + \sqrt{x^x} - x \log x}{\left(x \log \left(x \cos(x-1)\right)\right)^2}$$
. $\left[+\infty\right]$
331. $\lim_{x \to +\infty} \frac{x^5 + x^2 \log x}{x^3 + x^6 \log \left(\frac{2 \arctan x}{\pi}\right) - \frac{2}{\pi} x^5}$

331.
$$\lim_{x \to +\infty} \frac{x^5 + x^2 \log x}{x^3 + x^6 \log \left(\frac{2 \arctan x}{\pi}\right) - \frac{2}{\pi} x^5}$$
 $\left[-\frac{\pi}{4}\right]$

4.8 Continuità uniforme

332. Verificare, attraverso la definizione, che $f(x) = x^2$ non è una funzione uniformemente continua su $X = [1, +\infty)$.

333. Stabilire se $f(x) = \frac{\arctan x}{x}$ è una funzione uniformemente continua quando rispettivamente definita sui seguenti domini:

$$X_a = (0, +\infty); \quad X_b = (1, +\infty); \quad X_c = [1, +\infty); \quad X_d = (-\infty, -1) \cup (2, +\infty).$$

334. Verificare se $f(x) = x - \log x$ risulta essere una funzione lipschitziana sul dominio $X = [1, +\infty)$.

E.IV.13. Verificare se le seguenti funzioni risultano essere uniformemente continue sul loro dominio di definizione

335.

$$f(x) = \begin{cases} xe^{-\frac{1}{|x|}}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

336.

$$f(x) = \begin{cases} 2\sin x + 1, & x < 0\\ \log[e(2x+1)], & x \ge 0. \end{cases}$$

337.
$$f(x) = \sin(e^{\sin x})$$

E.IV.14. Per ognuna delle funzioni di seguito determinare $a \in \mathbb{R}$ in modo che esse risultino continue e verificare se con tale a le stesse risultano essere uniformemente continue su tutto il loro dominio di definizione.

338.

$$f(x) = \begin{cases} a(e^x - 1), & x < 1 \\ e^{-x}, & x \ge 1. \end{cases}$$

339.

$$f(x) = \begin{cases} \frac{\log x}{x} + e^{(1-x)}, & x > 1\\ a, & x = 1\\ \sqrt{2-x} + \frac{\pi}{4} - \arctan x, & x < 1. \end{cases}$$

$$f(x) = \begin{cases} \sqrt{x^2 - 2x + 2}, & x \le 0\\ \frac{a \log(x+1)}{x}, & x > 0. \end{cases}$$

$$f(x) = \begin{cases} \frac{2\sin x}{x} - \frac{1}{\sqrt{\log(1+x)+1}}, & x > 0\\ a, & x = 0\\ x(e^x + 1) = 1, & x < 0. \end{cases}$$

Capitolo 5

Prove scritte Analisi matematica 1/I

5.1 Primo Esonero Analisi matematica 1/I

I esonero Analisi Matematica 1/I. A.A. 2000/2001

1) Determinare il dominio e l'immagine della seguente funzione

$$f(x) = 5 + \sqrt[4]{-\log\left(-\left|\frac{x}{x-2}\right| + 46\right) + \log 40}.$$

Si chiede inoltre di:

- a) determinare \sup /\max , \inf /\min del dominio di f;
- b) determinare $\sup f/\max f$, $\inf f/\min f$;
- c) scrivere la definizione di punto di accumulazione di un insieme $A \subseteq \mathbb{R}$;
- d) determinare l'insieme dei punti di accumulazione del dominio di f;
- e) disegnare un grafico qualitativo di f.
- 2) Calcolare il seguente limite:

$$\lim_{x \to -\infty} \left(x^3 \left(\cos \left(\frac{1}{x} \right) - 1 \right) + \sqrt[3]{x^2 + x} + \frac{x}{\log x^2} \right) \log \left(1 + \frac{2}{x} \right).$$

FACOLTATIVO. Studiare la limitatezza e determinare l'insieme dei punti di accumulazione del seguente insieme:

$$A = \left\{ \left| (-1)^n \frac{n}{n+3} - \frac{1}{5} \right|, n \in \mathbb{N} \right\}.$$

I esonero Analisi Matematica 1/I. A.A. 2001/2002

1) Determinare il dominio e l'immagine della seguente funzione

$$f(x) = \left| \log \left(-e^{\frac{x-1}{x-2}} + 3 \right) \right|.$$

Si chiede inoltre di:

- a) determinare l'insieme dei punti di accumulazione del dominio di f;
- b) disegnare un grafico qualitativo di f.
- 2) Calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{e^{-\frac{1}{x^2}} + (\log(1+3x))^2 + x^3 - \sqrt{x^5 + x^6}}{x^3 \log x + \sin x^4 + \arctan x^2}$$

3) Studiare la limitatezza e determinare l'insieme dei punti di accumulazione del seguente insieme:

$$A = \left\{ (-1)^n \, 2^{\frac{1}{n+1}}, \, n \in \mathbb{N} \right\}.$$

FACOLTATIVO. Determinare i valori di $a \in \mathbb{R}^+$ per i quali risulta invertibile la seguente funzione:

$$f_a(x) = \begin{cases} \frac{1}{4}(\arctan x + x), & x \le 1\\ a^{x-1} + a, & x > 1. \end{cases}$$

34

I esonero Analisi Matematica 1/I. A.A. 2002/2003

1) Studiare la limitatezza e determinare, dopo aver dato la definizione di punto di accumulazione, il derivato del seguente insieme:

$$A = \left\{ \frac{n^3 - 4n^2 + \left(\sin(\frac{\pi}{2} + n\pi)\right)n^3}{n^2 + 1}, n \in \mathbb{N} \right\} \cup (-3, 10].$$

2) Determinare il dominio e l'immagine della seguente funzione

$$f(x) = \arccos\left(\left|\frac{\log x}{4\log x + 4}\right| - \frac{1}{3}\right).$$

Si chiede inoltre di determinare:

- a) \sup /\max , \inf /\min del dominio di f;
- b) $\sup f/\max f$, $\inf f/\min f$;
- c) l'insieme dei punti di accumulazione del dominio di f;
- d) disegnare un grafico qualitativo di f.
- 3) Calcolare il seguente limite:

$$\lim_{x \to +\infty} \frac{\left(e^{-3x}\right)^{\frac{1}{\log x}} + \left(\sin\left(\frac{1}{x^2}\right) - 1 + e^{\frac{4}{x}}\right)\log x}{\left(3\log(x^2 + 5x) - \log x\right)\sqrt[4]{1 - \cos\left(\frac{1}{x^2}\right)}}$$

FACOLTATIVO. Studiare l'invertibilità della seguente funzione al variare di $\alpha \in \mathbb{R} \setminus \{0\}$:

$$f_{\alpha}(x) = \begin{cases} 1 + e^x + \arctan x, & x < 0\\ \frac{x}{\alpha(x+1)} - \alpha, & x \ge 0. \end{cases}$$

I esonero Analisi Matematica 1/I. 07.11.03. A.A. 2003/2004

1) Determinare il dominio e l'immagine della seguente funzione

$$f(x) = \log\left(\left|\frac{2e^{x+1} - 4}{e^{x+1} - 3}\right| - \frac{2}{3}\right)$$

e disegnare un grafico qualitativo.

2) Determinare inf/min, sup/max e l'insieme derivato di

$$A \,=\, \Big\{\arctan\Big(\frac{n^3\,+\,4\,-\,(-1)^n\,n^3}{n^3\,+\,1}\Big),\, n\in\mathbb{N}\Big\}\,\cup\, \Big\{\arctan2\Big\}.$$

3) Calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{\left[\cos(\sin x)\right]^{\frac{1}{x}} - x^{\sin x}}{\log\left[\left(2e^x - 1\right)^{\log x^2}\right] + x^{-10}e^{-\frac{1}{2\sqrt{x}}}}.$$

4) Verificare, utilizzando la definizione, che

$$\lim_{n \to +\infty} \frac{n^2}{n+1} = +\infty.$$

5.1.1 Altri esercizi

1. Verificare, applicando la definizione di limite, che

$$\lim_{x \to 2} |x - 7| + 1 = 6.$$

2. Verificare, utilizzando la definizione, che

$$\lim_{n \to +\infty} \frac{-n^2 + 1}{n + 5} = -\infty.$$

3. Calcolare i seguenti limiti:

$$\lim_{x \to 0} \frac{x \log(1+x^2) + 2(e^{x^4} - 1)}{(e^{-\frac{1}{x^6}} + 2x^3 - x^4 \log^2 x)}$$

$$\lim_{x \to -0^+} \frac{e^{-\frac{1}{2}x^2} - \cos x^2 + x^3 \log x - \sqrt[3]{x^7 + e^{-\frac{1}{x}}}}{(1+x^2)^{\frac{1}{4}} - 1 + \log(1+x^3)}$$

$$\lim_{x \to +\infty} \frac{e^{\sqrt{\log x}} + \left(\cos\left(\frac{1}{x^3}\right) + \sqrt{\frac{8}{x^2} + 1} - 2\right)e^{2x}}{\sqrt[4]{x - \frac{1}{3}e^{8x}}\log\left(\frac{x^2}{x^2 + 1}\right)}$$

$$\lim_{x \to 0^+} \frac{\left[1 + \sin\left(e^{x^2} - 1\right)\right]^{\frac{1}{\sin x}} - x^x + x^{-\frac{1}{4}}e^{-\frac{1}{\sqrt{x}}}}{\log\left[(1 + 5\sin x)^{\log x^4}\right]}.$$

$$\lim_{x \to 0^+} \frac{\left[\cos(e^x - 1)\right]^{\frac{1}{x}} - (\sin x)^x + x^{-\frac{7}{2}}e^{-\frac{1}{x}}}{\log\left[(2\tan x + 1)^{\log x^5}\right]}.$$

$$\lim_{x \to 0^+} \frac{\left[1 + \sin\left(\cos x - 1\right)\right]^{\frac{2}{x}} - x^{(e^x - 1)}}{\log\left[(\cos(2\sqrt{x}))^{\log x^3}\right] + \frac{e^{-\frac{4}{x^5}}}{e^{\frac{x^5}{x^3}}}}.$$

4. Studiare la limitatezza e determinare l'insieme dei punti di accumulazione del seguente insieme:

$$A = \left\{ (-1)^n \left(\frac{1}{2}\right)^n, n \in \mathbb{N} \right\}.$$

5. Studiare la limitatezza e determinare, dopo aver dato la definizione di punto di accumulazione, il derivato del seguente insieme:

$$A = \left\{ \frac{-2n^4 + 5n^3 - 2\cos(n\pi)n^4}{n^3 + 3}, n \in \mathbb{N} \right\} \cup (-8, 3].$$

6. Studiare la limitatezza dell'insieme

$$A = \left\{ \arcsin\left((-1)^n \frac{n}{2n+1}\right), n \in \mathbb{N} \right\} \cup \left\{ \frac{\pi}{4}, -2 \right\}.$$

precisando sup /max , inf /min . Inoltre:

- a) dare la definizione di punto di accumulazione;
- b) determinare gli eventuali punti di accumulazione di A; utilizzare la definizione di punto di accumulazione per verificare il risultato.
- 7. Studiare la limitatezza, precisando sup/max, inf/min, e determinare i punti di accumulazione di:

$$A = \left\{ \frac{1}{n+1} + 1, n \in \mathbb{N} \right\} \cup \left\{ 0, 3 \right\} \cup (-2, -1].$$

8. Studiare la limitatezza del seguente insieme, precisando sup /max , inf /min , e l'insieme dei suoi punti di accumulazione:

$$A = \left\{ \frac{x}{x+4}, x \in (-2,3) \right\} \cup \left\{ \frac{4}{2n+1}, n \in \mathbb{N} \right\} \subseteq \mathbb{R}.$$

9. Studiare la limitatezza dell'insieme che segue, precisando il l'eventuale sup $/\max$, inf $/\min$:

$$A = \left\{ (-1)^n e^{(-1)^{n+1} n^2}, \, n \in \mathbb{N} \right\}.$$

Inoltre:

- a) dare la caratterizzazione dell'estremo superiore di un sottoinsieme di \mathbb{R} ;
- b) determinare gli eventuali punti di accumulazione di A, come sottoinsieme di \mathbb{R} ; utilizzare la definizione di punto di accumulazione per verificare il risultato.

10. Determinare inf/min, sup/max e l'insieme derivato di

$$A = \left\{ \arctan\left(\frac{(-1)^n n^4 - 3 - n^4}{n^4 + 1}\right), n \in \mathbb{N} \right\} \cup \left\{ \arctan(-2) \right\}.$$

11. Determinare il dominio e l'immagine della seguente funzione

$$f(x) = \arcsin\left(\left|\frac{\log(-x)}{3\log(-x) + 3}\right| - \frac{1}{2}\right).$$

Si chiede inoltre di determinare:

- a) \sup /\max , \inf /\min del dominio di f;
- b) $\sup f/\max f$, $\inf f/\min f$;
- c) l'insieme dei punti di accumulazione del dominio di f;
- d) disegnare un grafico qualitativo di f.
- 12. Determinare il dominio e l'immagine della seguente funzione

$$f(x) = \log\left(\left|\frac{3e^{x+4} - 9}{e^{x+4} - 2}\right| - \frac{9}{4}\right)$$

e disegnare un grafico qualitativo.

13. Determinare i valori di $a \in \mathbb{R}^+$ per i quali risulta invertibile la seguente funzione:

$$\begin{cases} \frac{1}{4}(\arctan x + x) - 2, & x \ge 1\\ a^{x-1} - a, & x < 1. \end{cases}$$

5.2 Prova finale Analisi matematica 1/I

Prova scritta del 30.11.01 Analisi Matematica 1/I. A.A. 2001/2002

1) Studiare la funzione:

$$f(x) = \log\left(2e^{2|x-1|} - 12e^{|x-1|} + 16\right) - 2x + 2,$$

precisando: dominio, eventuali asintoti, punti di estremo, punti angolosi, cuspidi, intervalli di monotonia, intervalli di convessità/concavità, flessi. Disegnare un grafico qualitativo.

2) Calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{e^{-\frac{x^2}{2(x+1)}} - \frac{\cos x}{x+1} - \frac{x}{x+1}}{x^5 \log^9 x + \left(1 + x^2 + \sin x^2\right)^{x^2} - 1}$$

FACOLTATIVO. Determinare per quali valori di $\gamma \in \mathbb{R}$ la seguente funzione è invertibile:

$$f_{\gamma}(x) = \begin{cases} e^{\gamma x} + x, & x \ge \frac{1}{4} \\ 4x^3 + 3x|x|, & x < \frac{1}{4}. \end{cases}$$

Per tali valori determinare il dominio di f_{γ}^{-1} e di $\left(f_{\gamma}^{-1}\right)'$. Calcolare infine $\left(f_{\gamma}^{-1}\right)'(-7)$.

RECUPERO. Studiare la limitatezza del seguente insieme, precisando l'eventuale sup/max, inf/min:

$$A = \left\{ \arctan\left((-1)^n n^2 + 1 \right), n \in \mathbb{N} \right\} \cup \left\{ -2, 3 \right\}.$$

Inoltre:

- a) dare la definizione di punto di accumulazione;
- b) determinare gli eventuali punti di accumulazione di A; utilizzare la definizione di punto di accumulazione per verificare il risultato.

40

Prova scritta del 05.12.01 Analisi Matematica 1/I. A.A. 2001/2002

1) Studiare la funzione:

$$f(x) = 4\arctan\left(\frac{1}{x}\right) + \log\left(\frac{|1-x|}{1+x}\right).$$

Si richiede anche lo studio della concavità/convessità. Disegnare un grafico qualitativo.

2) Determinare il polinomio di Mac Laurin di ordine 7 di

$$f(x) = 1 + x^3 + x^8 + 4x \log(1 + \sin(x^3)).$$

3) Determinare, se esiste, l'ordine di infinitesimo per $x \to 0^+$ di:

$$f(x) = e^{x^{\frac{1}{3}}} - x^{\frac{1}{6}} \sin x^{\frac{1}{6}} - 2\cos x^2 + x^x.$$

4) Studiare la limitatezza, precisando sup/max, inf/min, e determinare i punti di accumulazione di:

$$A = \left\{ \frac{2}{n+2} - 2, n \in \mathbb{N} \right\} \cup \left\{ 0, -6 \right\} \cup [4, 6).$$

5) Dare un esempio di funzione invertibile, continua ma non strettamente monotona.

PARTE FACOLTATIVA.

6) Studiare, al variare di $a \in \mathbb{R}^+$, l'invertibilità di:

$$f_a(x) = \begin{cases} x^3 - a^2 x, & x \ge 1\\ \frac{5}{\pi} \arctan e^{-x} - e^x - 5, & x < 1. \end{cases}$$

Determinare dom f_a^{-1} , Im $f_a^{-1} \in (f_a^{-1})'(0)$.

7) Calcolare $\lim_{x\to 0^+} \frac{g(x)}{\varphi(x)}$ dove f è la funzione definita nell'esercizio 3) e

$$g(x) = x^{-\frac{10}{3}} \left(e^{-\frac{1}{x \log^4 x + x^2}} + 1 - \frac{x}{x+2} \cos x - \frac{2 + \sin(\frac{x^3}{2})}{x+2} \right).$$

Prova scritta del 18.01.02 Analisi Matematica 1/I. A.A. 2001/2002

1) Studiare, senza calcolare la derivata seconda, la seguente funzione:

$$f(x) = \left(x^2 + 4x + 3\right)^{-(x^2 + 4x + 3)}.$$

Disegnare un grafico qualitativo.

2) Calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{e^{-\frac{1}{x^3 + x}} + x^{\frac{3}{2}} \log x + \sin(x^{\frac{1}{3}}) - \sqrt[6]{1 - \cos(\sqrt{2}x)}}{\log(1 + \arctan x)}.$$

3) Studiare la limitatezza del seguente insieme, precisando $\sup \max$, $\inf \min$, e l'insieme dei suoi punti di accumulazione:

$$A = \left\{ \frac{x}{x+2}, \, x \in (-1,2) \right\} \cup \left\{ \frac{1}{n+1}, \, n \in \mathbb{N} \right\} \subseteq \mathbb{R}.$$

4) Determinare il polinomio di Mac Laurin di ordine 5 di

$$f(x) = 1 + 4x^2 + 3x^6 + e^{x^2 + x^3}.$$

42

Prova scritta del 24.09.02 Analisi Matematica 1/I. A.A. 2001/2002

1) Studiare la seguente funzione:

$$f(x) = xe^{\frac{|x-1|}{x-2}}.$$

Precisare tutte le sue caratteristiche e disegnare un grafico qualitativo.

2) Dopo aver dato la definizione di ordine d'infinitesimo, determinarlo per $x \to 0^+$, per la funzione:

$$f(x) = (x+1)^x + \cos(\sqrt[4]{x}) - 2e^{-\frac{1}{4}\sqrt{x}} + \frac{x}{\log x} + \sin^2(\sqrt{x}).$$

3) Determinare i valori di $a \in \mathbb{R}$ per i quali risulta invertibile la funzione seguente:

$$f_a(x) = \begin{cases} x^2 - ax + a + 4, & x \ge 0\\ \frac{2}{\pi} \arctan\left(\frac{x}{x-1}\right) + e^{\frac{1}{x}}, & x < 0. \end{cases}$$

Calcolare, se esiste, $\left(f_a^{-1}\right)'\left(\frac{2}{\pi}\arctan\left(\frac{1}{2}\right)+e^{-1}\right)$.

4) Determinare sup /max, inf /min, e l'insieme dei punti di accumulazione dell'insieme:

$$E = \left\{ \frac{n+2}{n+1} \sin\left(\frac{\pi}{2} + n\pi\right), \ n = 0, 1, 2, \dots \right\} \cup \left(-\frac{1}{2}, \frac{1}{2}\right].$$

II prova esonero Analisi Matematica 1/I. A.A. 2002/2003

1) Studiare la seguente funzione e disegnare un grafico qualitativo:

$$f(x) = \frac{x^2}{x - 2} e^{\frac{|x - 1|}{x - 2}}.$$

Si chiede di precisare: intervalli di monotonia, punti di estremo, punti angolosi, cuspidi, asintoti. Determinare l'equazione della retta tangente nel punto (4, f(4)).

2) Calcolare il seguente limite:

$$\lim_{x \to 0^+} \left(2 - 4x \sin x - \cos^2 2x + x^5 \log^{10} x \right)^{\frac{1}{x^2 e^x - x^2 - x^3}}.$$

3) Determinare il polinomio di Mac Laurin all'ordine 7 di:

$$f(x) = \sin(\sin(x^2)) + x^6 + 3x^9.$$

Calcolare, se esiste, $\left(f_a^{-1}\right)'\left(\frac{2}{\pi}\arctan\left(\frac{1}{2}\right)+e^{-1}\right)$.

4) Determinare i valori di $\gamma \in \mathbb{R}$ per i quali è invertibile la funzione seguente:

$$f_{\gamma}(x) = \begin{cases} x^2 + \log(1+x), & -1 < x < 0 \\ e^{-x} + \gamma x, & x \ge 0. \end{cases}$$

Calcolare, se esiste, $(f_{\gamma}^{-1})'((e^{-1}-1)^2-1)$.

RECUPERO. Studiare la limitatezza del seguente insieme, precisando l'eventuale sup/max, inf/min:

$$A = \left\{ (-1)^n e^{\left((-1)^n n^2 + 1\right)}, n \in \mathbb{N} \right\}.$$

Inoltre:

- a) dare la caratterizzazione dell'estremo superiore di un sottoinsieme di R;
- b) determinare gli eventuali punti di accumulazione di A, come sottoinsieme di \mathbb{R} ; utilizzare la definizione di punto di accumulazione per verificare il risultato.

44

Prova scritta del 08.01.03 Analisi Matematica 1/I. A.A. 2002/2003

1) Studiare la funzione:

$$f(x) = \log\left(\frac{e^{2x} - e^x}{2e^x - 4}\right) - |x - 2|.$$

Disegnare un grafico qualitativo. Si chiede di precisare eventuali asintoti, max/min, intervalli di monotonia, punti angolosi, cuspidi.

2) Calcolare il seguente limite:

$$\lim_{x \to +\infty} \left(\frac{\cos \frac{1}{\sqrt{x}}}{\cos \frac{2}{\sqrt{x}}} \right)^{x^4 \sin \frac{1}{x} - x^3 e^{\frac{1}{x}} + x^2}.$$

3) Verificare, applicando al definizione di limite, che

$$\lim_{n \to +\infty} \frac{n^2 + 2}{n^2 + 1} = 1.$$

4) Sia $\alpha \in \mathbb{R}$ e

$$f_{\alpha}(x) = \begin{cases} \arctan x + x + 1, & x \ge 0 \\ e^x + \alpha x, & x < 0. \end{cases}$$

Determinare i valori di α per i quali:

- a) f_{α} è invertibile;
- b) f_{α}^{-1} è derivabile in 1.

Calcolare in tali valori $\left(f_{\alpha}^{-1}\right)'\left(\frac{\pi}{4}+2\right)$.

Prova scritta del febbraio 2003 Analisi Matematica 1/I. A.A. 2002/2003

1) Studiare la seguente funzione e disegnare un grafico qualitativo:

$$f(x) = \sqrt{\frac{|x^3 - 4x^2|}{x+1}}.$$

Si chiede di precisare: intervalli di monotonia, punti di estremo, punti angolosi, cuspidi, asintoti. Determinare l'equazione della retta tangente nel punto (1, f(1)).

2) Calcolare il seguente limite:

$$\lim_{x \to +\infty} \frac{\left(2e^{-\frac{3}{x+3}} + x \log\left(\frac{x+1}{x+3}\right)\right) \log\left(e^{x^2} + e^{x \log^{20} x}\right)}{\sqrt[6]{64x^{12} + x^{11}} - 2x^2}.$$

3) Verificare, applicando al definizione di limite, che

$$\lim_{x \to 3} |x - 5| - 1 = 1.$$

4) Studiare, al variare di $\alpha \in \mathbb{R}$, l'invertibilità della seguente funzione

$$f_{\alpha}(x) = \begin{cases} x^3 + \alpha x - 3\alpha, & x \ge -1\\ \frac{3-2x}{x-1} - e^x, & x < -1 \end{cases}$$

Determinare l'insieme di derivabilità di f_{α}^{-1} , se esiste, e calcolare $\left(f_{\alpha}^{-1}\right)'\left(-\frac{7}{3}-e^{-2}\right)$.

46

Prova scritta del 04.09.03 Analisi Matematica 1/I. A.A. 2002/2003

1) Studiare la seguente funzione (senza calcolare f''):

$$f(x) = \sqrt{|x-3|} - x^2$$
.

precisando dominio, eventuali asintoti, punti di estremo, punti angolosi, cuspidi, intervalli di monotonia. Disegnare un grafico qualitativo.

2) Verificare, applicando al definizione di limite, che

$$\lim_{x \to +\infty} \frac{x}{x+1} = 1.$$

3) Determinare i valori di $\alpha \in \mathbb{R}$ tali che la seguente funzione risulti invertibile:

$$f_{\alpha}(x) = \begin{cases} e^{-\alpha x} + x^2, & x \ge 0 \\ \alpha \arctan x, & x < 0. \end{cases}$$

Per tali valori, determinare il dominio di f_{α}^{-1} e $\left(f_{a}^{-1}\right)'$. Calcolare, se esiste, $\left(f_{-5}^{-1}\right)'\left(e+\frac{1}{25}\right)$.

4) Calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{e^{-\frac{x^2}{2(x+1)}} - \frac{\cos x}{x+1} - \frac{x}{x+1}}{\left(x^3 \log^{10} x + x^2\right) \left[\left(\sin x + 1\right)^x - 1\right]}.$$

Prova scritta del 24.09.03 Analisi Matematica 1/I. A.A. 2002/2003

1) Studiare la seguente funzione :

$$f(x) = (x+2)^2 - \sqrt{(x+2)^3|x|},$$

precisando dominio, eventuali asintoti, punti di estremo, punti angolosi, cuspidi, intervalli di monotonia. Non si richiede il calcolo di f''. Disegnare un grafico qualitativo.

2) Verificare, usando la definizione, che

$$\lim_{x \to -\infty} \frac{2x}{x+4} = 2.$$

3) Determinare i valori di $\alpha \in \mathbb{R}$ tali che la seguente funzione risulti invertibile:

$$f_{\alpha}(x) = \begin{cases} x^2 + 3\alpha \log(e - x), & x \le 0\\ \alpha \arctan x + 1, & x > 0. \end{cases}$$

Per tali valori, determinare il dominio di f_{α}^{-1} e $\left(f_{a}^{-1}\right)'$. Calcolare, se esiste, $\left(f_{\frac{1}{2}}^{-1}\right)'\left(1+\frac{3}{2}\log(e+1)\right)$.

4) Calcolare il seguente limite:

$$\lim_{x \to +\infty} \frac{\left(e^{-\frac{1}{2x^2}} + \log\left(\frac{x}{x+1}\right) - \frac{x}{x+1}\right) \left(x \log^9\left(x^{10} + 7\right) + x^{\frac{3}{2}}\right)}{\left(\sin\frac{1}{\sqrt{x}} + 1\right)^{\frac{1}{x}} - 1}.$$

48

Prova scritta del 04.09.03 Analisi Matematica 1/I. A.A. 2002/2003

1) Studiare la seguente funzione (senza calcolare f''):

$$f(x) = \sqrt{|x-3|} - x^2.$$

precisando dominio, eventuali asintoti, punti di estremo, punti angolosi, cuspidi, intervalli di monotonia. Disegnare un grafico qualitativo.

2) Verificare, applicando al definizione di limite, che

$$\lim_{x \to +\infty} \frac{x}{x+1} = 1.$$

3) Determinare i valori di $\alpha \in \mathbb{R}$ tali che la seguente funzione risulti invertibile:

$$f_{\alpha}(x) = \begin{cases} e^{-\alpha x} + x^2, & x \ge 0\\ \alpha \arctan x, & x < 0. \end{cases}$$

Per tali valori, determinare il dominio di f_{α}^{-1} e $\left(f_{a}^{-1}\right)'$. Calcolare, se esiste, $\left(f_{-5}^{-1}\right)'\left(e+\frac{1}{25}\right)$.

4) Calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{e^{-\frac{x^2}{2(x+1)}} - \frac{\cos x}{x+1} - \frac{x}{x+1}}{\left(x^3 \log^{10} x + x^2\right) \left[\left(\sin x + 1\right)^x - 1\right]}.$$

Prova scritta del 06.09.05 Analisi Matematica 1/I. A.A. 2004/2005

1) Verificare, usando la definizione, che

$$\lim_{x \to 3^{-}} \frac{-3x+5}{x^2-9} = +\infty.$$

2) Studiare la seguente funzione e disegnare un grafico qualitativo (non si richiede lo studio della derivata seconda)

$$f(x) = \log\left(\frac{e^{\frac{2}{|x-5|}} - 5}{2e^{\frac{1}{|x-5|}} - 6}\right).$$

3) Calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{e^{(\cos^4 \sqrt{x} - 1)} + \frac{1}{2}\sqrt{x} - \frac{1}{6}x - 1 + e^{\frac{1}{\sqrt[5]{x} \log x}}}{\left[(1 + x^2 + \sin x^2)^{x^2} - 1 \right]^{\frac{3}{8}}}.$$

4) Determinare, motivando le affermazioni, sup/max, inf/min del seguente insieme $A \subseteq \mathbb{R}$:

$$A = \left\{ \frac{5n!}{n^n}, n \in \mathbb{N}, \, n \ge 1 \right\} \, \bigcup \, \left\{ x \in \mathbb{R} : \sqrt{6x - x^2} > -x + 7 \right\} \, .$$

Determinare inoltre gli eventuali punti di accumulazione di A.

5) Determinare per quali valori di $a \in \mathbb{R}$ risulta invertibile la seguente funzione:

$$f_a(x) = \begin{cases} (x-4)^2 \arctan(-x+4), & x < a \\ (x-4)(1-x), & x \ge a. \end{cases}$$

Determinare il dominio di f_a^{-1} , se esiste, e di $(f_a^{-1})'$.

Calcolare in oltre, se esiste, $(f_5^{-1})'(-10)$.

5.2.1 Altri esercizi

1. Studiare la funzione:

$$f(x) = \log\left(3e^{2|x-2|} - 18e^{|x-2|} + 24\right) + 2x - 4,$$

precisando: dominio, eventuali asintoti, punti di estremo, punti angolosi, cuspidi, intervalli di monotonia, intervalli di convessità/concavità, flessi. Disegnare un grafico qualitativo.

2. Studiare la funzione:

$$f(x) = -9 \arctan\left(\frac{1}{x}\right) + \log\left(\frac{|1+x|}{1-x}\right).$$

Si richiede anche lo studio della concavità/convessità. Disegnare un grafico qualitativo

3. Studiare, senza calcolare la derivata seconda, la seguente funzione:

$$f(x) = \left(x^2 - 6x + 8\right)^{-(x^2 - 6x + 8)}.$$

Disegnare un grafico qualitativo.

4. Studiare la seguente funzione e disegnare un grafico qualitativo:

$$f(x) = -\frac{x^2}{x-1}e^{\frac{|x-2|}{x-1}}.$$

Si chiede di precisare: intervalli di monotonia, punti di estremo, punti angolosi, cuspidi, asintoti. Determinare l'equazione della retta tangente nel punto (4, f(4)).

5. Studiare la seguente funzione e disegnare un grafico qualitativo:

$$f(x) = \sqrt{\frac{|x^3 - 2x^2|}{3 - x}}.$$

Si chiede di precisare: intervalli di monotonia, punti di estremo, punti angolosi, cuspidi, asintoti. Determinare l'equazione della retta tangente nel punto (1, f(1)).

6. Calcolare i seguenti limiti:

$$\lim_{x \to \infty} \sqrt{(x^3 \log^{10} x) + x^4} \left(e^{-\frac{1}{2x(x+1)}} - \frac{x}{x+1} \cos \frac{1}{x} - \frac{1}{x+1} \right) \left(\left(1 + \frac{1}{x} - \sin \frac{1}{x} \right)^{x^2} - 1 \right).$$

$$\lim_{x \to 0^+} \frac{x^{-\frac{21}{5}} \left(e^{-\frac{1}{x^4 + x \log^2 x}} + 1 - \frac{x}{x+3} \cos x - \frac{3 + \log(1 + \frac{x^3}{2})}{x+3} \right)}{x^x + \cos x^{\frac{1}{5}} + \frac{1}{2} x^{\frac{1}{5}} \sin x^{\frac{1}{5}} - 2 e^{x^2}}.$$

$$\lim_{x \to 0^+} \frac{x \log^2 x + \cos \left(\sqrt{2} x^{\frac{1}{8}} \right) - 1 + \sqrt{\sin x^{\frac{1}{2}}}}{e^{-\frac{1}{x^4 + x^3}} + \arctan \left(\log \left(1 + x^{\frac{1}{2}} \right) \right)}$$

$$\lim_{x \to 0^+} \left[x \left(\sin x^5 + \frac{1}{x} \right) \right]^{\frac{1}{e^{x^2} \cos x^2 + \frac{x^6}{\log x} - 1 - x^2}}.$$

$$\lim_{x \to +\infty} \frac{\log \left(e^{x^2} + x^2 e^{x \log^{10} x} \right)}{\left(ex^2 \sin \left(\frac{1}{(x+2)^2} \right) - e^{\frac{x-2}{x+2}} \right) \left(\sqrt[3]{x^{15} + 3x^{14}} - x^5 \right)}.$$

7. Determinare il polinomio di Mac Laurin di ordine 5 di

$$f(x) = 1 + x^2 + x^6 - 4x \log(1 + \sin x^2).$$

8. Determinare il polinomio di Mac Laurin di ordine 5 di

$$f(x) = x + 8x^3 + 7x^6 + \log(1 + x^2 + x^3).$$

9. Determinare il polinomio di Mac Laurin all'ordine 4 di:

$$f(x) = \log(\log(x^2 + 1) + 1) + 5x^4 + x^6.$$

10. Determinare, se esiste, l'ordine di infinitesimo per $x \to 0^+$ di:

$$f(x) = x^{x} + \cos x^{\frac{1}{5}} + \frac{1}{2}x^{\frac{1}{5}}\sin x^{\frac{1}{5}} - 2e^{x^{2}}.$$

11. Studiare, al variare di $\alpha \in \mathbb{R}$, l'invertibilità della seguente funzione

$$f_{\alpha}(x) = \begin{cases} -x^3 + \alpha x - 2\alpha, & x \ge -2\\ -\frac{1}{x} + e^{\frac{x-3}{x-2}}, & x < -2 \end{cases}$$

Determinare l'insieme di derivabilità di f_{α}^{-1} , se esiste, e calcolare $\left(f_{\alpha}^{-1}\right)'\left(\frac{1}{4}+e^{\frac{7}{6}}\right)$.

12. Determinare per quali valori di $\gamma \in \mathbb{R}$ la seguente funzione è invertibile:

$$f_{\gamma}(x) = \begin{cases} e^{-2\gamma x} + x, & x \ge \frac{1}{8} \\ 8x^3 + 7x|x|, & x < \frac{1}{8}. \end{cases}$$

Per tali valori determinare il dominio di f_{γ}^{-1} e di $\left(f_{\gamma}^{-1}\right)'$. Calcolare infine $\left(f_{\gamma}^{-1}\right)'\left(-\frac{11}{4}\right)$.

Capitolo 6

Integrali di funzioni di una variabile e Serie numeriche

6.1 Integrali indefiniti immediati

E.VI.1. Calcolare i seguenti integrali indefiniti.

342. $\int \frac{1}{\sqrt[4]{x^3}} dx$.	$[4x^{\frac{1}{4}} + c]$
343 . $\int \sqrt{3qx} dx, q \in \mathbb{R}^+.$	$[\frac{2}{3}(3q)^{\frac{1}{2}}x^{\frac{3}{2}}+c]$
344. $\int (a^{\frac{2}{3}} - x^{\frac{2}{3}})^3 dx$, $a \in \mathbb{R}$.	$\left[a^2 - \frac{9}{5}a^{\frac{4}{3}}x^{\frac{5}{3}} + \frac{9}{7}a^{\frac{2}{3}}x^{\frac{7}{3}} - \frac{1}{3}x^3 + c\right]$
345 . $\int P_n(x) dx$, $P_n(x) = \sum_{k=0}^n a_k x^k$, $a_k \in \mathbb{R}$.	$\left[\sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1} + c\right]$
346. $\int \sum_{k=0}^{n} \alpha_k e^{\beta_k x} dx, \alpha_k, \beta_k \in \mathbb{R}, \beta_k \neq 0.$	$\left[\sum_{k=0}^{n} \frac{\alpha_k}{\beta_k} e^{\beta_k x} + c\right]$
347. $\int \sum_{k=0}^{n} \alpha_k \sin \beta_k x dx, \alpha_k, \beta_k \in \mathbb{R}, \beta_k \neq 0.$	$\left[-\sum_{k=0}^{n} \frac{\alpha_k}{\beta_k} \cos \beta_k x + c\right]$
348 . $\int \frac{x^2 - 3x + 1}{x} dx$.	$[\frac{1}{2}x^2 - 3x + \log x + c]$
349. $\int \frac{3+\sqrt{x}}{\sqrt[5]{x^2}} dx$.	$\left[5\sqrt[5]{x^3} + \frac{10}{11}\sqrt[10]{x^{11}} + c\right]$
350. $\int \frac{a+\sqrt{1-x^2}}{\sqrt{1-x^2}} dx, a \in \mathbb{R}.$	$[a \arcsin x + x + c]$
351. $\int \frac{x^2}{1+x^2} dx$.	$[x - \arctan x + c]$
352 . $\int \tan^2 x dx.$	$[\tan x - x + c]$
353 . $\int \cot^2 x dx.$	$[-\cot x - x + c]$

$$354. \int \frac{1+2x^2}{x^2(1+x^2)} dx. \qquad \left[-\frac{1}{x} + \arctan x + c \right]$$

$$355. \int \frac{\sin 2x}{\cos x} dx. \qquad \left[-2\cos x + c \right]$$

$$356. \int \frac{x^5+1}{x+1} dx. \qquad \left[\frac{x^5}{5} - \frac{x^4}{4} + \frac{x^3}{3} - \frac{x^2}{2} + x + c \right]$$

$$357. \int \frac{x^n - a^n}{x - a} dx, \quad a \in \mathbb{R}. \qquad \left[\frac{x^n}{n} + a \frac{x^{n-1}}{n-1} + a^2 \frac{x^{n-2}}{n-2} + \dots + a^{n-1} x + c \right]$$

$$358. \int \frac{dx}{\sin^2 x \cos^2 x}. \qquad \left[\tan x - \cot x + c \right]$$

$$359. \int \frac{\cos 2x}{\sin x + \cos x} dx. \qquad \left[\cos x + \sin x + c \right]$$

$$360. \int \sin^2 \frac{x}{2} dx. \qquad \left[\frac{1}{2}(x - \sin x) + c \right]$$

$$361. \int \cos^2 \frac{x}{3} dx. \qquad \left[\frac{1}{2}x + \frac{3}{4} \sin \frac{2x}{3} + c \right]$$

$$362. \int \frac{1}{\sin^2 \frac{x}{2} \cos^2 \frac{x}{2}} dx. \qquad \left[2 \tan \frac{x}{2} - 2 \cot \frac{x}{2} + c \right]$$

6.2 Integrali indefiniti per sostituzione

E.VI.2. Calcolare i seguenti integrali indefiniti, ad esempio utilizzando il metodo di sostituzione della variabile.

$$\begin{array}{lll} {\bf 363.} \, \int \sqrt{\sin x} \cos x \, dx. & \left[\frac{2}{3} (\sin x)^{\frac{3}{2}} + c\right] \\ {\bf 364.} \, \int \frac{x}{1-x^2} \, dx. & \left[\log \left|\frac{1}{\sqrt{1-x^2}}\right| + c\right] \\ {\bf 365.} \, \int \frac{1}{a^2+x^2} \, dx, \quad a \in \mathbb{R}^+. & \left[\frac{1}{a} \arctan \frac{x}{a} + c\right] \\ {\bf 366.} \, \int \frac{1}{a^2-x^2} \, dx, \quad a \in \mathbb{R}^+. & \left[-\frac{1}{2a} \log \left|\frac{a-x}{a+x}\right| + c\right] \\ {\bf 367.} \, \int \frac{\sqrt{a-x}}{\sqrt{a+x}} \, dx, \quad a \in \mathbb{R}^+. & \left[a \arcsin \frac{x}{a} + \frac{1}{2} \sqrt{a^2 - x^2} + c\right] \\ {\bf 368.} \, \int \frac{1+e^{-x}}{1+xe^{-x}} \, dx. & \left[\log \left|x + e^x\right| + c\right] \\ {\bf 369.} \, \int \frac{1}{\sqrt{a-bx^2}} \, dx, \quad a, \, b \in \mathbb{R}^+ & \left[\frac{1}{\sqrt{b}} \arcsin \sqrt{\frac{b}{a}} x + c\right] \\ {\bf 370.} \, \int \frac{x}{\sqrt{1-x^2}} \, dx. & \left[-\sqrt{1-x^2} + c\right] \\ {\bf 371.} \, \int \frac{1}{x\sqrt{5x-7}} \, dx. & \left[\frac{2}{\sqrt{7}} \arctan \sqrt{\frac{5x+7}{7}} + c\right] \\ {\bf 372.} \, \int \sin^{\alpha} x \cos x \, dx, \quad \alpha \neq -1. & \left[\frac{1}{a+1} \sin^{\alpha+1} x + c\right] \\ {\bf 373.} \, \int \frac{1}{e^{-x}+e^x} \, dx. & \left[\arctan e^x + c\right] \\ {\bf 374.} \, \int \frac{\cos(\log x)}{x} \, dx. & \left[\sin(\log x) + c\right] \end{array}$$

6.3 Integrali indefiniti per parti

E.VI.3. Calcolare i seguenti integrali indefiniti, ad esempio utilizzando il metodo di integrazione per parti.

394.
$$\int \frac{\log x}{x^3} dx.$$

$$\left[-\frac{1}{2x^2} (\log x + \frac{1}{2}) + c \right]$$

395.
$$\int \sin^3 x dx.$$

$$\left[-\frac{1}{2} (\sin^2 x \cos x + 2 \cos x) + c \right]$$

396.
$$\int \sin^4 x \, dx. \qquad \left[\left[\frac{3}{8}x - \frac{1}{4} \sin^2 x + \frac{1}{32} \sin 4x + c \right] \right]$$
397.
$$\int \sin^5 x \, dx. \qquad \left[-\cos x + \frac{2}{3} \cos^3 x - \frac{1}{5} \cos^5 x + c \right]$$
398.
$$\int \frac{\sin x}{e^x} \, dx. \qquad \left[-\frac{1}{2} (\sin x e^{-x} + \cos x e^{-x}) + c \right]$$
399.
$$\int x^3 \arctan x \, dx. \qquad \left[\frac{x^4}{\alpha} \arctan x + \frac{1}{2} (x - \frac{x^3}{3} - \arctan x) + c \right]$$
400.
$$\int \frac{\log^2 x}{x} \, dx, \quad \alpha \in \mathbb{R}. \qquad \left[\frac{\log^{\alpha+1} x}{\alpha+1} + c, \alpha \neq 0; \log |x| + c, \alpha = 0; \log |\log x| + c, \alpha = -1 \right]$$
401.
$$\int x e^x \, dx. \qquad \left[x e^x - e^x + c \right]$$
402.
$$\int x^2 e^x \, dx. \qquad \left[e^x (x^2 - 2x + 2) + c \right]$$
403.
$$\int x^n e^x \, dx, \quad n \in \mathbb{N}. \qquad \left[e^x (x^n - nx^{n-1} + n(n-1)x^{n-2} - \dots + (-1)^n n!) + c \right]$$
404.
$$\int x \sin x \, dx. \qquad \left[-x \cos x + \sin x + c \right]$$
405.
$$\int x \cos x \, dx. \qquad \left[-x^2 \cos x + 2x \sin x + 2 \cos x + c \right]$$
406.
$$\int x^2 \sin x \, dx. \qquad \left[-x^2 \cos x + 2x \sin x + 2 \cos x + c \right]$$
407.
$$\int x^2 \cos x \, dx. \qquad \left[-x^2 \cos x + 2x \sin x + 2 \cos x + c \right]$$
408.
$$I_n = \int x^n \sin x \, dx, \quad n \in \mathbb{N}, n > 1.$$

$$\left[\text{Detto } I_1 = \int x \cos x \, dx, \quad n \in \mathbb{N}, n > 1. \right]$$

$$\left[\text{Detto } I_1 = \int x \cos x \, dx, \quad n \in \mathbb{N}, n > 1. \right]$$

$$\left[\text{Detto } I_1 = \int x \cos x \, dx, \quad n \in \mathbb{N}, n > 1. \right]$$

$$\left[\text{Detto } I_1 = \int x \cos x \, dx, \quad n \in \mathbb{N}, n > 1. \right]$$

$$\left[\text{Detto } I_2 = \int x \cos x \, dx, \quad n \in \mathbb{N}, n > 1. \right]$$

$$\left[\text{Detto } I_1 = \int x \cos x \, dx, \quad n \in \mathbb{N}, n > 1. \right]$$

$$\left[\text{Detto } I_2 = \int x \cos x \, dx, \quad n \in \mathbb{N}, n > 1. \right]$$

$$\left[\text{Detto } I_2 = \int x \cos x \, dx, \quad n \in \mathbb{N}, n > 1. \right]$$

$$\left[\text{Detto } I_2 = \int x \cos x \, dx, \quad n \in \mathbb{N}, n > 1. \right]$$

$$\left[\text{Detto } I_2 = \int x \cos x \, dx, \quad n \in \mathbb{N}, n > 1. \right]$$

$$\left[\frac{1}{2} \left(-x \sin x \cos x + \frac{x^2}{2} + \frac{\sin^2 x}{2} + c \right) \right]$$
410.
$$\int x \sin^2 x \, dx. \qquad \left[\frac{1}{2} \left(-x \sin x \cos x + \frac{x^2}{2} + \frac{\sin^2 x}{2} + c \right) \right]$$
411.
$$\int \sqrt{1 - x^2} \, dx. \qquad \left[\frac{x^2}{2} \arcsin x + \frac{1}{4} \left(x \sqrt{1 - x^2} - \arcsin x \right) \right] + c \right]$$
412.
$$\int x \arcsin x \, dx. \qquad \left[x \cos x \, dx, \quad n \in \mathbb{N}, n \in \mathbb{N$$

418.
$$\int e^x \sin x \, dx$$
. $\left[\frac{1}{2} e^x (\sin x - \cos x) + c \right]$

419.
$$\int e^x \cos x \, dx$$
. $\left[\frac{1}{2} e^x (\sin x + \cos x) + c \right]$

420.
$$\int e^{\alpha x} \sin x \, dx$$
, $\alpha \in \mathbb{R}$. $\left[\frac{1}{\alpha^2 + 1} e^{\alpha x} (\alpha \sin x - \cos x) + c\right]$

421.
$$\int e^{\alpha x} \cos x \, dx$$
, $\alpha \in \mathbb{R}$. $\left[\frac{1}{\alpha^2 + 1} e^{\alpha x} (\sin x + \alpha \cos x) + c\right]$

422.
$$\int e^{\alpha x} \sin \beta x \, dx$$
, $(\alpha, \beta) \in \mathbb{R}^2$, $(\alpha, \beta) \neq (0, 0)$. $\left[\frac{1}{\alpha^2 + \beta^2} e^{\alpha x} (\alpha \sin \beta x - \beta \cos \beta x) + c\right]$

423.
$$\int e^{\alpha x} \cos \beta x \, dx$$
, $(\alpha, \beta) \in \mathbb{R}^2$, $(\alpha, \beta) \neq (0, 0)$. $\left[\frac{1}{\alpha^2 + \beta^2} e^{\alpha x} (\beta \sin \beta x + \alpha \cos \beta x) + c\right]$

424.
$$\int e^x \cos^n x \, dx$$
, $n \in \mathbb{N}$.

[Si usi il risultato dell'esercizio 423 e la formula:

$$\cos^{n} x = \begin{cases} \frac{1}{2^{n-1}} \sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n}{k} \cos(n-2k)x, & n \text{ dispari} \\ \frac{1}{2^{n}} \binom{n}{\frac{n}{2}} + \frac{1}{2^{n-1}} \sum_{k=0}^{\left[\frac{n}{2}\right]-1} \binom{n}{k} \cos(n-2k)x, & n \text{ pari} \end{cases}$$

425. $\int e^x \sin^n x \, dx$, $n \in \mathbb{N}$.

[Si usi il risultato dell'esercizio 422 e la formula:

$$\sin^{n} x = \begin{cases} \frac{1}{2^{n-1}} \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^{\left[\frac{n}{2}-k\right]} \binom{n}{k} \sin(n-2k)x, & n \text{ dispari} \\ \frac{1}{2^{n}} \binom{n}{\frac{n}{2}} + \frac{1}{2^{n-1}} \sum_{k=0}^{\left[\frac{n}{2}\right]-1} (-1)^{\left[\frac{n}{2}-k\right]} \binom{n}{k} \cos(n-2k)x, & n \text{ pari} \end{cases}$$

426. $I_{m,n} = \int \sin^m x \cos^n x \, dx$, $m, n \in \mathbb{Z}$.

Si ottengono le seguenti formule di riduzione equivalenti:

$$I_{m,n} = -\frac{\sin^{m-1}x\cos^{n+1}x}{n+1} + \frac{m-1}{n+1}I_{m-2,n+2} = \frac{\sin^{m+1}x\cos^{n-1}x}{m+1} + \frac{n-1}{m+1}I_{m+2,n-2} = \frac{\sin^{m+1}x\cos^{n+1}x}{m+1} + \frac{m+n+2}{m+1}I_{m+2,n} = -\frac{\sin^{m+1}x\cos^{n+1}x}{n+1} + \frac{m+n+2}{n+1}I_{m,n+2}]$$

427*. $\int e^{\alpha x} \sin^m \beta x \, dx$, $\alpha, \beta \in \mathbb{R}$, $m \in \mathbb{Z}$. [utilizzare i risultati degli esercizi precedenti]

428*. $\int e^{\alpha x} \cos^n \beta x \, dx$, $\alpha, \beta \in \mathbb{R}$, $n \in \mathbb{Z}$. [utilizzare i risultati degli esercizi precedenti]

E.VI.4. Calcolare i seguenti integrali indefiniti.

429.
$$\int \frac{x^2+2}{(x-3)^2(x+2)} dx. \qquad \left[\frac{19}{25} \log|x-3| - \frac{11}{5(x-3)} + \frac{6}{25} \log|x+2| + c\right]$$

430.
$$\int \frac{4x-3}{(x-1)(x-2)^3} dx. \qquad \left[-\log|x-1| + \log|x-2| + \frac{2}{(x-2)} - \frac{5}{2(x-2)} + c \right]$$

431.
$$\int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx.$$

$$\left[\frac{x^3}{3} + \frac{x^2}{2} + 4x + 2 \log|x| + 5 \log|x - 2| - 3 \log|x + 2| + c \right]$$

432.
$$\int \frac{x}{(x^2+1)(x-1)} dx. \qquad \left[\frac{1}{2}(-\frac{1}{2}\log(x^2+1) - \frac{1}{2}\arctan x + \log|x-1|) + c\right]$$

433.
$$\int \frac{x+1}{x^2+1} dx$$
.

$$\left[\frac{1}{2}\log(x^2+1) + \arctan x + c\right]$$

434.
$$\int \frac{x^3 - 6}{x^4 + 6x^2 + 8} \, dx.$$

$$\left[-\frac{5}{2(x-2)^2} + \frac{1}{x-2} + \log|x-2| - \log|x-1| + c \right]$$

435.
$$\int \frac{x^3 - 2x^2 + 5}{x^4 + 3x^3 + 3x^2 - 3x - 4} \, dx.$$

$$\left[\frac{1}{4}\log|x-1| - \frac{1}{2}\log|x+1| + \frac{5}{8}\log(x^2 + 3x + 4)\right]$$

$$-\frac{31}{4\sqrt{7}}\arctan\left(\frac{2x+3}{\sqrt{7}}\right)+c$$

436.
$$\int \frac{2x^3 - 3x + 3}{(x - 1)(x^2 - 2x + 5)} dx.$$

437.
$$\int \frac{x^2 + x + \frac{1}{2}}{x^2 + 1} dx.$$

438.
$$\int \frac{3x^2 - 6x + 7}{(x - 2)^2 (x + 5)} \, dx.$$

439.
$$\int \frac{2x^2 + x}{(x^2 + 1)(x^2 + 2x + 2)} dx.$$

440.
$$\int \frac{x^3+x-1}{(x^2+2)^2} dx$$
.

441.
$$\int \frac{1}{(x^3+1)^2} dx$$
.

442.
$$\int \frac{1}{(x^2+1)^2} dx$$
.

443.
$$\int \frac{4}{x^4+1} dx$$
.

444.
$$\int \frac{\tan^2 x}{\tan^3 x + 1} dx$$
.

445.
$$\int \frac{\sin^2 x}{\cos^2 x + 2\sin^2 x} dx$$
.

446.
$$\int \frac{1}{\sin^m x \cos^n x} dx, \quad m, n \in \mathbb{N}.$$

447.
$$\int \cos mx \sin nx \, dx$$
, $m, n \in \mathbb{N}$.

448.
$$\int \frac{\sqrt{x}}{\sqrt[4]{x+1}} dx$$
.

449.
$$\int \frac{\sqrt[3]{x}}{\sqrt{x}+x^2} dx$$
.

450.
$$\int \frac{1+\tan x}{1-\tan x} dx.$$

451.
$$\int \frac{1}{3+5\cos x} dx$$
.

6.4 Integrali definiti

E.VI.5. Calcolare i seguenti integrali definiti:

452.
$$\int_{-2}^{3} \frac{x}{x^2+1} \, dx.$$

453.
$$\int_{-3}^{3} \frac{x}{x^2+1} dx$$
.

454.
$$\int_{-3}^{3} \frac{x^2}{x^2+1} dx$$
.

455.
$$\int_{-3}^{3} \sin^3 x \cos x \, dx$$
.

456.
$$\int_0^{2\pi} \sin^3 \cos 2x \, dx$$
.

457.
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{x}{\sin^2 x} dx$$
. $\left[\frac{\pi}{4} + \log \sqrt{2}\right]$

458.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x \cos x \, dx$$
. $\left[\frac{\pi}{4}\right]$

459.
$$\int_0^{\pi} x \sin^2 x \, dx$$
. $\left[-\frac{4}{9} \right]$

460.
$$\int_{\frac{1}{2}}^{e} x |\log x| \, dx$$
. $\left[\frac{e^2}{4} + \frac{1}{2} - \frac{3}{4e^2}\right]$

461.
$$\int_2^5 \frac{e^{2x}}{\sqrt{e^x - 1}} dx$$
.

462.
$$\int_2^5 \frac{\cos(\frac{1}{t+2})\log(\sin^2(\frac{1}{t+2})+4)}{(\frac{1}{t+2})^2(1+\sin(\frac{1}{t+2}))^3} dt.$$

463*.
$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx$$
, $n \in \mathbb{N}$.

464*.
$$\int_0^{\frac{\pi}{2}} \sin^n x \cos^m x \, dx$$
, $n, m \in \mathbb{N}$.

E.VI.6. Calcolare gli integrali definiti delle funzioni indicate.

465.
$$\int_{-10}^{10} f(x) dx$$
,

$$f(x) = \begin{cases} x^2 + 2, & x \le -2\\ \frac{\sqrt{x^2 - 4}}{x}, & -2 < x < 2\\ \sqrt{x}, & x \ge 2 \end{cases}$$

466.
$$\int_{-3}^{5} f(x) dx$$
,

$$f(x) = \begin{cases} \frac{1}{\sqrt{x^2 + 4}}, & x \le 0\\ \frac{x^2}{x^2 + 1}, & x > 0 \end{cases}$$

467.
$$\int_{-3}^{5} f(x) dx$$
,

$$f(x) = \begin{cases} \sin \frac{x}{2}, & x > 0\\ \cos \frac{x}{2}, & x < 0 \end{cases}$$

- **468**. Calcolare l'area della superficie compresa tra i grafici delle curve di equazione $y = x^3$ ed $y = 2 x^2$.
- **469**. Calcolare l'area della superficie compresa i grafici delle curve di equazione $y = -x^2 + x + 2$ ed $y = x^2 1$.

6.5Integrali impropri

E.VI.7. Mostrare la convergenza o divergenza dei seguenti integrali impropri

470.
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx.$$
 (Calcolare, se esiste, il valore). $[\pi]$

471.
$$\int_0^{\ln 3} \frac{1}{e^x - 3} dx$$
. $[-\infty]$

472.
$$I = \int_2^\infty \frac{1}{x \ln^\alpha x} dx$$
, $\alpha \in \mathbb{R}$. $[\alpha > 1, I \frac{-(\ln 2)^{-a+1}}{-a+1}] \cdot \alpha < 1, I = +\infty, \alpha = 1, I = -\infty$

473.
$$\int_4^6 \frac{1}{(x-4)-\ln(x-3)} dx$$
. [divergente]

474.
$$\int_2^4 \frac{1}{|\cos(x\frac{\pi}{2})|^{\frac{3}{5}}} dx$$
. [convergente]

475.
$$\int_{1}^{+\infty} \frac{1}{((\ln x)(x^{5}+x-2))^{\frac{1}{5}}} dx$$
. [divergente] **476.** $\int_{0}^{+\infty} \frac{\sin x \log x}{(x+1)^{\frac{3}{2}}-1} dx$. [convergente]

476.
$$\int_0^{+\infty} \frac{\sin x \log x}{(x+1)^{\frac{3}{2}}-1} dx$$
. [convergente]

477.
$$\int_{1}^{+\infty} \frac{e^{\frac{1}{x^2}} - e^{\frac{1}{x}}}{\sqrt{x}} dx$$
. [convergente]

478.
$$\int_0^{\frac{\pi}{2}} \frac{e^{-\frac{1}{x}}}{\sqrt{\sin x}} dx$$
. [convergente]

479.
$$\int_0^{+\infty} \frac{1}{mx + e^x} dx$$
, $m \ in \mathbb{R}^+$. [convergente]

480.
$$\int_{2}^{+\infty} \frac{1}{\sqrt{(\ln x)^{2}(x^{3}+x)}} dx$$
. [convergente]

E.VI.8. Discutere l'integrabilità in senso improprio dei seguenti integrali.

481.
$$\int_{1}^{+\infty} \frac{\log(t+1)}{t^3+2t+1} dt$$
. [convergente]

482.
$$\int_0^1 \frac{\log t}{(1-t)^{\frac{5}{4}}t^{\frac{1}{2}}} dt$$
. [convergente]

483.
$$\int_0^{+\infty} \frac{1}{\sqrt{t(t^2+1)\ln(1+\sqrt{t})}} dt$$
. [divergente]

484.
$$\int_0^{+\infty} \frac{\sin(\frac{1}{\sqrt{y}})}{(y-1)^{\frac{1}{2}}} dy$$
. [divergente]

485.
$$\int_{1}^{+\infty} \frac{\log(2+x^2)}{\sqrt{x} \arctan x^2} dx.$$
 [divergente]

486.
$$\int_0^{+\infty} \frac{e^{-\frac{y^2}{2}}}{\sqrt{2y} + \arctan(y^{\frac{1}{4}})} dy$$
. [convergente]

487.
$$\int_{\frac{1}{2}}^{+\infty} \frac{e^{-x}}{(x-3)^{\frac{1}{3}}(x-\frac{1}{2})^{\frac{1}{2}}} dx.$$
 [convergente]

488.
$$\int_{+\infty}^{-1} \frac{e^{-x}}{(x-4)^2(x+\frac{1}{2})^{\frac{1}{3}}} dx$$
. [divergente]

489.
$$\int_{\frac{1}{2}}^{+\infty} \frac{1}{(y-3)^{\frac{1}{3}}(y-\frac{1}{2})^{\frac{1}{2}}} dy$$
. [divergente]

490.
$$\int_{\frac{1}{2}}^{+\infty} \frac{1}{|x-3|^{\frac{3}{4}}(x-\frac{1}{2})^{\frac{1}{2}}} dx$$
. [convergente]

491.
$$\int_{3}^{+\infty} \frac{\log(3+x^{-\frac{1}{4}})}{(x-3)^{\frac{3}{4}}(x-\frac{1}{2})^{\frac{1}{2}}} dx.$$
 [convergente]

492.
$$\int_0^1 \frac{\log x^2}{(1-x)^{\frac{9}{4}} x^{\frac{1}{2}}} dx$$
. [divergente]

493. Se
$$I_a = \int_a^{+\infty} \frac{e^{-x}}{(x-3)^2(x-\frac{1}{2})^{\frac{1}{2}}} dx$$
, trovare $a \in \mathbb{R}$ tale che $I_a < +\infty$. $[a > 3]$

494. Se
$$I_a = \int_1^{+\infty} \frac{dy}{(1+y)^2(y+2)^a} dy$$
, trovare $a \in \mathbb{R}$ tale che $I_a < +\infty$. Calcolare inoltre I_1 .
$$[a > -1. I_1 = \frac{1}{2} + \ln \frac{2}{3}]$$

E.VI.9. Determinare i valori di $\alpha \in \mathbb{R}$ per i quali risultano convergere i seguenti integrali impropri.

495.
$$\int_0^1 \frac{(\tan x)^{\alpha}}{\ln(1+\sin x)} dx.$$
 $[\alpha > 0]$

496.
$$\int_0^{+\infty} \frac{\arctan(\frac{1}{x^{\alpha}})}{\sqrt{x}+2} dx$$
. $[\alpha > \frac{1}{2}]$

497.
$$\int_0^1 \frac{\cos x + 3}{x^{\alpha} + \sqrt{x}} dx$$
. $[\alpha < 1]$

498.
$$\int_{2}^{+\infty} \frac{\arctan(x+7)}{x \ln^{\alpha}(x-2)} dx$$
. [$\alpha > 1$]

499.
$$\int_2^{+\infty} \frac{\ln^{\alpha}(1+\frac{1}{x})}{\sqrt{x+1}} dx$$
. $\left[\alpha > \frac{1}{2}\right]$

500.
$$\int_{1}^{+\infty} \frac{|\sin(\frac{1}{x}) - \frac{1}{x}|^{\frac{\alpha^{2}}{2}}}{\sqrt[3]{x}} dx.$$
 $[|\alpha| > \frac{2}{3}]$

501.
$$\int_{1}^{+\infty} (1 - \cos \frac{1}{x^3})^{\alpha} x^{\frac{\alpha}{2}} dx$$
. $[\alpha > \frac{2}{11}]$

502.
$$\int_0^{+\infty} (\arctan x)^{\alpha} (\sqrt{x} + 3)^{2\alpha} dx$$
. [sempre divergente]

503.
$$\int_0^{+\infty} \left(e^{-x} + \frac{x^{2\alpha}+1}{\sqrt{x}}\right) dx.$$
 [sempre divergente]

504.
$$\int_{-1}^{+\infty} \frac{\arctan(x^2+3)}{(x+1)^{\alpha}(x+2)} dx.$$
 [0 < \alpha < 1]

505.
$$\int_0^{+\infty} \arctan(\frac{1}{x})^{\alpha} (x^2 + 3)^{2\alpha} dx$$
. $\left[\alpha < -\frac{1}{4}\right]$

506.
$$\int_3^{+\infty} \frac{e^{-t}}{(t-3)^{\alpha} \sqrt{t}} dt$$
. [$\alpha < 1$]

507.
$$\int_0^{+\infty} \frac{(\sin \frac{1}{\sqrt{t}})^{\alpha}}{\sqrt{t} \ln^{\alpha}(t+1)} dt.$$
 [sempre divergente]

508.
$$\int_{-1}^{2} \frac{(e^{x+3}+7\sin^2 x)}{x^{\alpha}(e^x+1)} dx.$$
 [\alpha < 1]

509.
$$\int_{-\infty}^{+\infty} e^{-\frac{\alpha x^2}{2}} dx$$
. $[\alpha > 0]$

510.
$$\int_{1}^{+\infty} (e^{\frac{1}{x}} - 1)^{\alpha} \frac{\ln(2+x)}{x^2} dx$$
. $[\alpha > -1]$

511.
$$\int_4^{+\infty} \frac{\ln^{\alpha+1}(x-3)}{\sqrt{e^{x-4}-1}} dx. \quad \text{Calcolare in oltre per } \alpha = -1. \qquad [\alpha > -\frac{3}{2}. \quad \pi]$$

512.
$$\int_0^{+\infty} \frac{\sin(\frac{x}{x^2+1})}{(x^2-\sin x^2)^{\alpha}} dx.$$
 $[0 < \alpha < \frac{1}{3}]$

513.
$$\int_0^{+\infty} \frac{3 + 2\sin x}{(x - 1)^{\frac{1}{3}}(x + 2)^{4\alpha}} dx. \qquad [\alpha > \frac{1}{6}]$$

514.
$$\int_0^{+\infty} \frac{\ln(1+x^{\alpha})}{x^3} dx$$
. [$\alpha > 2$]

515.
$$\int_0^1 \frac{1}{x(-\log x)^{\alpha} + x^2(1-x^2)^{\frac{1}{3}}} dx.$$
 $[\alpha > 1]$

E.VI.10. Determinare per quali α e β convergono i seguenti integrali.

516.
$$\int_0^1 \frac{|\ln x|^{\alpha}}{|\sin \pi x|^{\beta}} dx$$
. [$\beta < 1, \beta - \alpha < 1$]

517.
$$\int_0^{+\infty} \frac{e^{\alpha x + \frac{\beta}{x}}}{x+1} dx$$
. [$\alpha < 0, \beta \le 0$]

518.
$$\int_0^{+\infty} \frac{(\arctan x)^{\alpha}}{x^{\beta}(2+\cos x)} dx. \qquad [\beta > 1, \beta - \alpha < 1]$$

6.6 Serie numeriche

E.VI.11. Determinare il carattere delle seguenti serie numeriche.

519.
$$\sum_{k=1}^{\infty} \frac{1}{k+\sqrt{k}}.$$
 [divergente]

520.
$$\sum_{k=1}^{\infty} \frac{k}{k + \log k}.$$
 [divergente]

521.
$$\sum_{k=1}^{\infty} \frac{1}{k^{\log k}}$$
. [convergente]

522.
$$\sum_{k=1}^{\infty} \left(\frac{\log(\log k)}{\log k} \right)^k$$
. [convergente]

523.
$$\sum_{k=1}^{\infty} \frac{(k!)^2}{(2k)!}$$
. [convergente]

524.
$$\sum_{k=1}^{\infty} k^2 e^{-\sqrt{k}}.$$
 [convergente]

525.
$$\sum_{k=1}^{\infty} (\sqrt{k^2 + 1} - k) \log(1 + \frac{1}{k}).$$
 [convergente]

526.
$$\sum_{k=1}^{\infty} (\sqrt{k+1} - \sqrt{k})^2$$
. [divergente]

527.
$$\sum_{k=1}^{\infty} (\sqrt{1+\sin\frac{3}{k}}-1)(1-e^{-\frac{1}{k}}).$$
 [convergente]

528.
$$\sum_{k=1}^{\infty} (e^{\frac{1}{k^2}} - 2\cos\frac{1}{k} + 1).$$
 [convergente]

529.
$$\sum_{k=1}^{\infty} \frac{1}{3+e^{\alpha k}}, \quad \alpha \in \mathbb{R}.$$
 [$\alpha > 0$ convergente]

530.
$$\sum_{k=1}^{\infty} \frac{k^2}{4+e^{\alpha k}}, \quad \alpha > 0.$$
 [\$\alpha > 0\$ convergente]

6.6 Serie numeriche 63

531.
$$\sum_{k=1}^{\infty} 1 - \sqrt{e} (\cos \frac{1}{k})^{k^2}$$
. [convergente]

532.
$$\sum_{k=1}^{\infty} (\frac{5}{9-2\cos k})^k$$
. [convergente]

533.
$$\sum_{k=1}^{\infty} [\log(1 + \frac{3}{\sqrt[3]{k^2}}) - \frac{\alpha}{\sqrt[3]{k^2}}].$$
 [$\alpha = 3$ convergente]

534.
$$\sum_{k=1}^{\infty} (k \sin \frac{1}{k})^{k^3}.$$
 [convergente]

E.VI.12. Determinare la natura delle seguenti serie

535.
$$\sum_{k=1}^{\infty} (1 - \frac{1}{k^{\frac{1}{3}}})^{k^2}$$
. [convergente]

536.
$$\sum_{k=1}^{\infty} \left(\frac{3}{5+\cos^2 k}\right)^k.$$
 [convergente]

537.
$$\sum_{k=1}^{\infty} \frac{6}{3^n} + \frac{(-1)^{n+1}}{4^n}$$
. Calcolare, se possibile, la somma. [converge a $\frac{23}{3}$]

538.
$$\sum_{n=1}^{\infty} \frac{n^{\sqrt{n}}}{e^{n^2}}.$$
 [convergente]

539.
$$\sum_{k=1}^{\infty} \left(\frac{3x^2-3}{x^2+1}\right)^{2n} + \frac{n+1}{n^2(\log n)^x+2}, \qquad x \in \mathbb{R}.$$
 [1 < x < $\sqrt{2}$ convergente]

E.VI.13. Determinare la natura delle seguenti serie al variare del parametro α .

540.
$$\sum_{k=4}^{\infty} \frac{1}{k^2} (1 - \frac{1}{k})^{k^{\alpha}}$$
. $[\alpha \in \mathbb{R}]$

541.
$$\sum_{n=1}^{\infty} \frac{n^{\alpha}(x+1)^{2n}}{(2n)!}$$
, $x \in \mathbb{R}$. [convergente per ogni $\alpha, x \in \mathbb{R}$]

542.
$$\sum_{n=1}^{\infty} n(1-(1+\frac{1}{n^{2\alpha}})^{\frac{1}{4}}).$$
 [\$\alpha > 1\$ convergente]

543.
$$\sum_{n=1}^{\infty} \frac{n^8}{(n-\log n)^{10}-n^{\alpha}}.$$
 [\$\alpha\$ \$\int 10\$ convergente]

544.
$$\sum_{n=1}^{\infty} n^{\alpha} [(n^4 - 5n^2)^{\frac{1}{4}} - (n^3 - 3n)^{\frac{1}{3}}].$$
 [$\alpha < 0$ convergente]

545. Trovare i valori di α reale per i quali le due serie seguenti hanno lo stesso carattere.

$$\sum_{n=1}^{\infty} (e^{(n^{\alpha} + \frac{1}{n})} - 1), \quad \sum_{n=1}^{\infty} \log(1 + n^{\alpha}).$$
 [\alpha \geq -1]

546. Si studi il carattere della serie $\sum_{n=1}^{\infty} 3^{(-1)^n} 3^{\alpha n}$ al variare del parametro reale α .

Si calcoli inoltre la sua somma dopo aver calcolato quella delle serie $\sum_{n=1}^{\infty} 3 \cdot 3^{2\alpha n}$ ed $\sum_{n=1}^{\infty} \frac{1}{3} \cdot 3^{(2n+1)\alpha}$. [converge per $\alpha < 0$ al valore $\frac{9+3^{\alpha}}{3(1-3^{2\alpha})}$]

E.VI.14. Discutere la convergenza semplice ed assoluta delle serie seguenti.

547.
$$\sum_{n=0}^{\infty} \arctan \frac{1}{n+1}$$
. [convergente, semp. e ass.]

548.
$$\sum_{n=0}^{\infty} \left(\frac{\alpha}{2\alpha+3}\right)^n \frac{1}{\log n}.$$
 [\$\alpha < -3, \alpha > -1\$ semp., \$\alpha < -3, \alpha \geq -1\$ ass.]

549.
$$\sum_{k=1}^{\infty} (-1)^k (e^{\frac{1}{k^{\frac{1}{4}}}} - 1)^{\alpha}$$
. [$\alpha > 0$ semp., $\alpha > 4$ ass.]

Capitolo 7

Funzioni di più variabili

7.1 Insiemi in più dimensioni

E.VII.1. Rappresentare graficamente i seguenti insiemi.

550.
$$A = \{(x, y) \in \mathbb{R}^2 : x(x - 1) \le y < \frac{1}{x}\}.$$

551.
$$A = \{(x, y) \in \mathbb{R}^2 : x^3 = y^2\}.$$

552.
$$A = \{(x, y) \in \mathbb{R}^2 : 4 \le x^2 + y^2 \le 8 + 2y\}.$$

Calcolare l'area della superficie individuata dall'insieme ${\cal A}.$

553.
$$A = \{(x, y) \in \mathbb{R}^2 : |x| - |y| \le 2\}.$$

554.
$$A = \{(x, y) \in \mathbb{R}^2 : y - 1 \le x \le \log_3 y\}.$$

555.
$$A = \{(x, y) \in \mathbb{R}^2 : 2^{x+y} < 3\}.$$

556.
$$A = \{(x,y) \in \mathbb{R}^2 : \sqrt{1 - |x+y|} < x\}.$$

557.
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, y < \sin x\}.$$

Calcolare l'area della superficie individuata dall'insieme A.

558.
$$A = \{(x,y) \in \mathbb{R}^2 : 3\frac{x}{y} < 1, x(y+x^3) < 0\}.$$

559.
$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, z > \frac{1}{2}\}.$$

560.
$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 3\}.$$

561.
$$A = \{(x, y, z) \in \mathbb{R}^3 : z = |x| + |y|\}.$$

562.
$$A = \{(x, y, z) \in \mathbb{R}^3 : |x| - |\sin y| \le 0, |y| - |\sin x| \le 0, x^2 + y^2 \le \pi^2\}.$$

Calcolare l'area della superficie individuata dall'intersezione dell'insieme A ed un qualsiasi piano z= costante.

7.2 Limiti in più dimensioni

E.VII.2. Calcolare, se esistono, i seguenti limiti.

563.
$$\lim_{(x,y)\to(1,2)} \frac{x^2-2x+y-1}{\sqrt{(x-1)^2+(y-2)^2}}$$
. $[\nexists]$

564.
$$\lim_{(x,y)\to(3,4)} \frac{\log(x-6+y)}{|x-3|+|y-4|^3}$$
. [\sharp]

565.
$$\lim_{(x,y)\to(1,1)} \frac{1-\cos(x-y)}{|x-1|+|y-1|}$$
. [0]

566.
$$\lim_{(x,y)\to(1,0)} \frac{y(x-1)^3}{(x-1)^6+y^2}$$
. [\nexists]

567.
$$\lim_{(x,y)\to(0,0)} \frac{1+x^2+y^2}{x^2+y^2}$$
. $[+\infty]$

568.
$$\lim_{(x,y)\to(0,0)} \frac{1+x+y}{x}$$
. $[+\infty]$

569.
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$
. $[\nexists]$

570.
$$\lim_{(x,y)\to(0,0)} (x^2+y^4) \log \sqrt{x^2+y^2}$$
. [0]

571.
$$\lim_{(x^2+y^2+z^2)\to\infty} \frac{x^2+y^2+z^2+x-y}{x^2+y^2+z^2}$$
. [1]

572. $\lim_{(x,y)\to(0,0)} f(x,y)$, dove

$$f(x,y) = \begin{cases} 1, & \text{se } x^2 + (y-1)^2 \le 1, \\ 0, & \text{se } y > 0 \text{ e } x^2 + (y-1)^2 > 1, \\ 1, & \text{se } y \le 0. \end{cases}$$

[#]

573.
$$\lim_{(x,y)\to(1,1)} \frac{(x+y)(x-1)^2\sin(x-y)}{\sqrt{1+x^2}-\sqrt{1+y^2}}$$
.

574.
$$\lim_{(x,y)\to(-1,1)} \frac{|y-1|\tan(x+y)}{\sqrt{1+x^2}-\sqrt{1+y^2}} (x-y)^2$$
.

575.
$$\lim_{(x,y)\to\infty} \frac{xy^2}{x^4+y^2+1}$$
.

7.3 Funzioni di più variabili

E.VII.3. Determinare insieme di definizione e insiemi di livello delle seguenti funzioni e rappresentarli graficamente.

576.
$$f(x,y) = \sqrt{y-x^2} + 1$$
.

577.
$$f(x,y) = \sin(\frac{x}{y})$$
.

578.
$$f(x,y) = \log(2x + 2y - 1)$$
.

579.
$$f(x,y) = y^2 - x^3 + xy$$
.

580.
$$f(x,y) = \arctan(\frac{|x|+|y|}{|x|-|y|}).$$

581.
$$f(x,y) = e^{\frac{x^2 - y^2}{y}}$$
.

582.
$$f(x,y) = \log \arcsin(\frac{x}{y})$$
.

583.
$$f(x,y) = \sqrt{\log \sin(x^2 + y^2)}$$
.

584.
$$f(x,y) = \arctan \frac{x+y}{x-y}$$
.

585.
$$f(x, y, z) = (x^2 + y^2 + z^2)^{\frac{1}{6}}$$
.

586.
$$f(x, y, z) = (x^2 + y^2 - z^2)^{\frac{1}{2}}$$
.

587.
$$f(x, y, z) = \arcsin(x + y + z)$$
.

588.
$$f(x, y, z) = \log(z - \sqrt{2x^2 + y^2}).$$

589.
$$f(x, y, z) = e^{\frac{|x| + |y|}{z}}$$
.

590.
$$f(x, y, z) = y^2 - x \sin \frac{1}{x}$$
.

E.VII.4. Determinare l'insieme dei punti di continuità delle seguenti funzioni, dopo aver precisato l'insieme di definizione, se non specificato.

591.
$$f(x,y) = \sqrt{|xy|}$$
.

592.
$$f(x,y) = ye^{\frac{x}{y}}$$
.

593.
$$f(x, y, z) = \frac{y-z}{z+x}$$
.

594.
$$f(x,y) = \frac{xy}{x^2 + y^4}$$
.

.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) \neq (0,0). \end{cases}$$

.

$$f(x,y) = \begin{cases} \frac{\arctan(xy)}{y}, & y \neq 0\\ 0, & y \neq 0. \end{cases}$$

.

$$f(x,y) = \begin{cases} 0 & \text{se } x = 0\\ ye^{-\frac{y^2}{x^2}} & \text{altrimenti.} \end{cases}$$

.

$$f(x,y) = \begin{cases} xe^{-\frac{y}{x^2+y^2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

E.VII.5. Determinare gli $\alpha \in \mathbb{R}$ per i quali risultano continue le seguenti funzioni.

.

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^{\alpha}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

600.

$$f(x,y) = \begin{cases} \frac{|x|^{\alpha} + y}{(x^2 + y^2)^{\frac{1}{4}}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{altrimenti.} \end{cases}$$

.

$$f(x,y) = \begin{cases} \frac{|x|^{\alpha} \log(x^2 + y^2)}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

.

$$f(x,y) = \begin{cases} \frac{\sin(x-y)}{|x-y|^{\alpha}} & \text{se } x \neq y \\ 0 & \text{se } x = y. \end{cases}$$

603.

$$f(x,y) = \begin{cases} \frac{1-\cos(xy)}{|x|^{\alpha}} & \text{se } x \neq 0\\ 0 & \text{se } x = 0. \end{cases}$$

.

$$f(x,y) = \begin{cases} \frac{x^2 + y^2 - 2y + 1}{x|y - 1|^{\alpha}} & \text{se } (x,y) \neq (0,1) \\ 0 & \text{se } (x,y) = (0,1). \end{cases}$$

618. $f(x,y) = \frac{x}{y} \log(xy)$.

605.

$$f(x,y) = \begin{cases} \frac{\tan(xy)}{y^{\alpha}} & \text{se } y \neq 0\\ x & \text{se } y = 0. \end{cases}$$

E.VII.6. Determinare le derivate parziali delle seguenti funzioni.

$$\begin{aligned} \textbf{606.} \ \ f(x,y) &= x^2 + 3xy. & [f_x = 2x + 3y, \, f_y = 3x] \\ \textbf{607.} \ \ f(x,y) &= x^4y^2 - 3xy + 2y. & [f_x = 4x^3y^2 - 3y, \, f_y = 2x^4y - 3x + 2] \\ \textbf{608.} \ \ f(x,y) &= \frac{x+y}{x-y}. & [f_x &= -\frac{2y}{(x-y)^2}, \, f_y &= \frac{2x}{(x-y)^2}] \\ \textbf{609.} \ \ f(x,y) &= \sin(xy). & [f_x &= y\cos(xy), \, f_y = x\cos(xy)] \\ \textbf{610.} \ \ f(x,y) &= \log(x+y). & [f_x &= \frac{1}{x+y}, \, f_y &= \frac{1}{x+y}] \\ \textbf{611.} \ \ f(x,y) &= e^{-(x^2+y^2)}. & [f_x &= -2xe^{-(x^2+y^2)}, \, f_y &= -2ye^{-(x^2+y^2)}] \\ \textbf{612.} \ \ f(x,y) &= \sqrt{x^2+y^2}. & [f_x &= \frac{x}{\sqrt{x^2+y^2}}, \, f_y &= \frac{y}{\sqrt{x^2+y^2}}] \\ \textbf{613.} \ \ f(x,y) &= \sqrt{x^2y}. & [f_x &= \frac{1}{2}\frac{y}{\sqrt{x^2y}}, \, f_y &= \frac{1}{2}\frac{x^2}{\sqrt{x^2y}}] \\ \textbf{614.} \ \ f(x,y) &= \sin x + \sin y. & [f_x &= \cos x, \, f_y &= \cos y] \\ \textbf{615.} \ \ f(x,y) &= x^y. & [f_x &= -2x\log yy^{-x^2}, \, f_y &= -\frac{x^2}{y}y^{-x^2}] \\ \textbf{617.} \ \ f(x,y) &= y^{-x^2}. & [f_x &= -2x\log yy^{-x^2}, \, f_y &= -\frac{x^2}{y}y^{-x^2}] \end{aligned}$$

E.VII.7. Dato $\underline{v} = (v_x, v_y) = (\cos \vartheta, \sin \vartheta)$, calcolare $\frac{\partial f(x,y)}{\partial \underline{v}}$ e grad f(x,y) per le seguenti funzioni.

 $[f_x = \frac{1}{u}(\log(xy) + 1), f_y = \frac{1}{u^2}(1 - \log(xy))]$

619.
$$f(x,y) = x^2 + 2y^2$$
. $[f_v = 2xv_x + 4yv_y; \operatorname{grad} f(x,y) = (2x,4y)]$

620.
$$f(x,y) = x^2 - y^2$$
. $[f_v = 2xv_x - 2yv_y; \operatorname{grad} f(x,y) = (2x, -2y)]$

621.
$$f(x,y) = \sqrt{x^2 + y^2}$$
. [Se $(x,y) \neq (0,0)$ $f_{\underline{v}} = \frac{x}{\sqrt{x^2 + y^2}} v_x + \frac{y}{\sqrt{x^2 + y^2}} v_y$; grad $f(x,y) = (\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}})$; se $(x,y) = (0,0)$ $f_{\underline{v}} = v_x + v_y$, grad $f = (1,1)$]

E.VII.8. Studiare derivabilità, esistenza delle derivate direzionali e differenziabilià delle funzioni nell'esercizio **E.VII.4**.

E.VII.9. Studiare continuità, derivabilità, esistenza delle derivate secondo una generica direzione $\underline{v} \in \mathbb{R}^2$ nel punto (0,0) e differenziabilità delle seguenti funzioni.

.

$$f(x,y) = \begin{cases} \sin(xy), & y \neq 0 \\ 0, & y = 0. \end{cases}$$

.

$$f(x,y) = \begin{cases} \frac{x^2 + y^2 - |x - y|}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 1, & (x,y) = (0,0). \end{cases}$$

.

$$f(x,y) = \begin{cases} \frac{\sin xy}{y^2}, & y \neq 0 \\ 0, & y = 0. \end{cases}$$

.

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^4 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

E.VII.10. Studiare continuità, derivabilità e differenziabilità delle seguenti funzioni.

.

$$f(x,y) = \begin{cases} (x^2 + y^2)\sin(\frac{1}{x^2 + y^2}), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

.

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{y}, & y \neq 0\\ 0, & y = 0. \end{cases}$$

.

$$f(x,y) = \begin{cases} \left(\frac{x^2y}{x^4+y^2}\right)^2, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

Verificare inoltre che $\frac{\partial f(0,0)}{\partial \underline{u}} = 0$ per ogni $\underline{v} \in \mathbb{R}^2$.

.

$$f(x,y) = \begin{cases} (x+y)^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

.

$$f(x,y) = \begin{cases} \frac{x^{\frac{3}{3}}y}{x^2 + y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

631.

$$f(x,y) = \begin{cases} (1+y)^{\frac{1}{3}} e^{\frac{x^2}{y^2(y-x^2)}}, & y \neq 0 \\ 0, & y = 0. \end{cases}$$

632. Determinare grad f e $\frac{\partial f}{\partial \underline{u}}$ per la funzione $f(x,y)=e^{x+y}-1$, nei casi in cui \underline{v} sia la direzione che forma un angolo di $\frac{1}{6}\pi$ col semiasse positivo delle ascisse, oppure un angolo di $\frac{5}{6}\pi$ con lo stesso semiasse.

633. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ una funzione differenziabile in $(x_0, y_0) \in \mathbb{R}^2$ e sia $\frac{\partial f(x_0, y_0)}{\partial \underline{u}} = 1$, e $\frac{\partial f(x_0, y_0)}{\partial \underline{v}} = 2$, dove $\underline{u} = \binom{1}{2}$, $\underline{v} = \binom{2}{1}$. Calcolare $f_x(x_0, y_0)$ e $f_y(x_0, y_0)$.

634. Dire se esiste $f: \mathbb{R}^2 \to \mathbb{R}$ tale che $\frac{\partial f(x,y)}{\partial v} > 0$ per ogni $\underline{v} \in \mathbb{R}^2$.

635. Provare che se per $f: \mathbb{R}^2 \to \mathbb{R}$ esistono A e B > 0 tali che $|f_x| \le A$ e $|f_y| \le B$ per ogni $(x,y) \in I$, dove I = ((0,0),r), è un intorno circolare dell'origine di raggio r > 0, allora f è continua in (0,0).

E.VII.11. Studiare derivabilità, esistenza delle derivate direzionali e differenziabilià delle funzioni nell'esercizio **E.VII.5** al variare di $\alpha \in \mathbb{R}$.

636. Stabilire se la funzione

$$f(x,y) = \begin{cases} \frac{x^2(y+2)}{x^2+y^2+4y+4}, & (x,y) \neq (0,-2) \\ 0, & (x,y) = (0,-2) \end{cases}$$

è continua, ammette derivate direzionali ed è differenziabile nel punto P = (0, -2).

637. Stabilire se la funzione

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

è continua in (0,0); se esiste grad f(0,0) ed in caso affermativo calcolarlo; se f è differenziabile in (0,0).

638. Stabilire in quali punti la funzione $f(x,y) = y^2(|x| - y)e^{x-y}$ è differenziabile.

639. Data la funzione

$$f(x,y) = \begin{cases} \frac{x^n + y^m}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y)y = (0,0) \end{cases}$$

con $m, n \in \mathbb{N} \setminus \{0\}$. Determinare i valori di n e m per i quali: 1) f è continua in (0,0); 2) f è derivabile in (0,0); 3) f è differenziabile in (0,0).

640. Stabilire se la funzione

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^{\frac{1}{2}}} e^{\frac{x^2}{x^2+y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y)y = (0,0) \end{cases}$$

1) f è continua in (0,0); 2) f è derivabile rispetto ad ogni direzione $\underline{v} \in \mathbb{R}^2$ in (0,0); 3) f è differenziabile in (0,0).

641. Data la funzione $f(x,y)=y(x^2+\log y)$ scrivere l'equazione del piano tangente al grafico di f nel punto $(0,\frac{1}{e},-\frac{1}{e})$.

7.4 Sviluppi di Taylor di funzioni di più variabili

642. Scrivere il polinomio di Taylor di ordine 2 con punto iniziale (1,2) per la funzione $f(x,y) = x^3 + 2x^2y + 3xy^2 - 4y^3$.

E.VII.12. Scrivere il polinomio di Taylor di ordine 2 con punto iniziale (0,0) per le funzioni seguenti.

643.
$$f(x,y) = (1 - \cos x)e^y$$
.

644.
$$f(x,y) = x \sin y$$
.

645.
$$f(x,y) = xy + x \sin y$$
.

7.5 Concavità/convessità

E.VII.13. Studiare la concavità/convessità delle seguenti funzioni.

646.
$$f(x,y) = -2x^2y + xy^2 + x - y - 1$$
.

647.
$$f(x,y) = x^2y^2$$
.

648.
$$f(x,y) = -(x^2 + y^2)$$
.

649.
$$f(x,y) = \sqrt{x^2 + y^2}$$
.

650.
$$f(x,y) = \sqrt{1 - x^2 - y^2}$$
.

651.
$$f(x,y) = x^4 + y^4$$
.

652.
$$f(x,y) = x^3 - y^3$$
.

Esercizi d'esame

7.6 Primo Esonero Analisi matematica I/2

Primo esonero Analisi Matematica I/2. A.A. 2001/2002

1) Calcolare, se esiste finito, il seguente integrale:

$$\int_{100}^{+\infty} \frac{\arctan\sqrt{x}}{\sqrt{x}(x-2\sqrt{x}+1)^{\frac{3}{2}}} dx.$$

2) Determinare i valori di $a \in \mathbb{R}$ per i quali risulta convergente il seguente integrale improprio:

$$\int_{2}^{+\infty} \left[\frac{2}{(x-2)^{\frac{1}{2}}} - a \left(1 - \cos \left(\frac{1}{(x-2)^{\frac{1}{4}}} \right) \right) \right]^{\frac{6}{5}} \log^{3}(x-2) dx.$$

3) Studiare il carattere delle seguenti serie:

$$\sum_{n=1}^{\infty} \left(\sin \left(\frac{1}{n^2 + 1} \right) + e^{\frac{n}{n^4 + 1}} \right)^{n \log n}; \qquad \sum_{k=1}^{\infty} \left(\frac{k!}{k^k} + (-1)^k (\sqrt{k+1} - \sqrt{k}) \left(e^{\frac{k^{\frac{1}{2}}}{100 + k}} - 1 \right) \right).$$

4) Studiare al variare di $\alpha \in \mathbb{R}$ la convergenza semplice/assoluta della seguente serie:

$$\sum_{k=1}^{\infty} (-1)^k \left(-\log\left(1 + \frac{1}{k^3}\right) + \frac{1}{k^3}\right)^{\alpha}.$$

Primo esonero Analisi Matematica I/2. A.A. 2002/2003

1) Calcolareil seguente integrale:

$$\int_{2}^{5} \frac{\cos\left(\frac{1}{t+2}\right)\log\left(\sin^{2}\left(\frac{1}{t+2}\right)+4\right)}{\left(t+2\right)^{2}\left(1+\sin\left(\frac{1}{t+2}\right)\right)^{3}} dt.$$

2) Studiare la convergenza del seguente integrale improprio:

$$\int_{-1}^{+\infty} \frac{t}{t+7} \left(\frac{1}{\sqrt{|t|}} - \frac{1}{\sqrt{|t|}} \cos \left(\frac{1}{\log^{\frac{2}{7}} (t+1)} \right) \right)^2 dt$$

3) Studiare la convergenza delle seguenti serie:

a)
$$\sum_{n=1}^{\infty} \left(\frac{1 - \sin\left(\frac{1}{2k}\right)}{\cos\left(\frac{1}{\sqrt{k}}\right)} \right)^{k \log k + k^{\beta}}, \quad \beta \in \mathbb{R};$$

b)
$$\sum_{n=1}^{\infty} \left(\frac{n^{2n}}{(n!)^3} + (-1)^n \frac{n}{n+1} \log \left(1 + \frac{1}{n+1} \right) \right);$$

$$c) \qquad \sum_{n=1}^{\infty} \frac{\left(e^x - e^{2x}\right)^n}{n\log^{\frac{3}{4}}(n+3)}, \quad x \in \mathbb{R}. \text{Discutere anche la convergenza assoluta}.$$

d) Facoltativo

$$\sum_{n=2}^{\infty} \left| e^x - e^{2x} \right|^{\log n}, \qquad x \in \mathbb{R}.$$

Altri esercizi d'esame

Determinare i valori di $b \in \mathbb{R}$ per i quali risulta convergente il seguente integrale improprio:

$$\int_{1}^{+\infty} \left(\frac{5}{(x-1)^{\frac{1}{3}}} - b \sin\left(\frac{2}{(x-1)^{\frac{1}{3}}}\right) \right)^{\frac{7}{5}} \log^{2}(x-1) dx.$$

Studiare il carattere delle seguenti serie:

a)
$$\sum_{n=1}^{\infty} \left(\cos \left(\frac{\sqrt{n^2 + 1}}{n^2 + 3n + 2} \right) + \sin \frac{1}{n+1} \right)^{n^{\frac{1}{2}} + \log n},$$

b)
$$\sum_{k=1}^{\infty} \left(\frac{k!}{(2k)!} - (-1)^k (\sqrt{2k+2} - \sqrt{2k}) \sin\left(\frac{k^{\frac{1}{2}}}{k+200}\right) \right).$$

Studiare al variare di $\alpha \in \mathbb{R}$ la convergenza semplice/assoluta della seguente serie:

$$\sum_{k=1}^{\infty} (-1)^k \left(e^{\frac{1}{k^2}} - 1 - \frac{1}{k^2} \right)^{\alpha}.$$

7.7 Prova finale Analisi matematica I/2

Analisi Matematica I/2. A.A. 2002/2003

1) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ tale che

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} \sin\left(\frac{1}{x^2 + y^2}\right) + y, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

- a) Determinare gli insiemi di continuità, derivabilità e differenziabilità;
- b) calcolare, se esistono, le derivate direzionali in (1,1).
- 2) Studiare la convergenza della serie al variare di $\beta \in \mathbb{R}$.

$$\sum_{n=1}^{\infty} \frac{n!}{e^{n^2}} + (-1)^n (1 - \sin \beta)^{\frac{n^2}{n+1}}.$$

3) Determinare il polinomio di Taylor di ordine 3 nel punto (1,2) di

$$f(x,y) = e^{x+xy}.$$

4) Determinare gli $\alpha \in \mathbb{R}$ per i quali risulta convergente il seguente integrale:

$$\int_{2}^{+\infty} \frac{1}{(x-2)^{\alpha}} \arctan^{3}(x-2) \left| \log \left(\frac{x+4}{2x+2} \right) \right| dx.$$

4) Calcolare:

$$\int_{1}^{3} \frac{1}{x^3} \arctan(x-1) \, dx.$$

Analisi Matematica I/2. Compito del 21.02.02 A.A. 2001/2002

1) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ tale che

$$f(x,y) = \begin{cases} \frac{1}{y}\sin(|x-1|y+y^2), & \text{se } y \neq 0\\ 1-x, & \text{se } y = 0. \end{cases}$$

- a) Determinare gli insiemi di continuità, derivabilità e differenziabilità;
- b) calcolare, se esistono, le derivate direzionali in (0,0);
- c) determinare, se esiste, il differenziale secondo in (0,0).
- 2) Determinare il polinomio di Taylor di ordine 2 nel punto (1,1) di

$$f(x,y) = e^{x^2 + y^2 + xy}.$$

3) Studiare la concavità/convessità di

$$f(x,y) = x^2 + y^2 + \log(xy) + 2xy;$$

Determinare inoltre l'equazione del piano tangente al grafico della funzione nel punto (1,2,f(1,2)).

4) FACOLTATIVO Studiare la funzione

$$f(x) = x \int_{-\infty}^{x} \frac{e^{t}}{t} dt.$$

RECUPERO

1) Studiare, al variare di $\beta \in \mathbb{R}$, la convergenza (semplice/assoluta) delle seguenti serie:

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^{\beta}}{1 + n^{\frac{1}{3}}}; \qquad \sum_{n=1}^{\infty} (1 - \cos \beta)^{n^2}.$$

4) Calcolare il seguente integrale, se esiste:

$$\int_{2}^{+\infty} \frac{1}{(x+2)^{\frac{3}{2}}} \log \left(\frac{x+3}{x+2} \right) dx.$$

Precisare l'ordine di infinitesimo della funzione integranda per $x \to +\infty$.

Analisi Matematica I/2. Compito del 27.02.02 A.A. 2001/2002

1) Determinare gli insiemi di continuità, derivabilità e differenziabilità della funzione

$$f(x,y) = \begin{cases} \frac{y^2 \sin(x+y)}{y^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

Calcolare, se esistono, le derivate direzionali in (0,0).

2) Sia

$$f(x,y) = -\log(-y^2 + 4y - x),$$
 $(x,y) \in \text{dom } f;$

- i) Determinare l'equazione del piano tangente al grafico della funzione nel punto (0,1,f(0,1));
- ii) studiare la concavità/convessità.
- 3) Studiare il carattere di convergenza delle seguenti serie:

$$\sum_{n=1}^{\infty} (-1)^n \arctan^{\alpha}(\sqrt{1+n^2}-n), \quad \alpha \in \mathbb{R}; \qquad \sum_{n=1}^{\infty} (n\sin\frac{1}{n})^{n^3}.$$

Per la prima serie si chiede di studiare anche la convergenza assoluta

4) Determinare gli $\alpha \in \mathbb{R}$ per i quali risulta convergente

$$\int_{1}^{+\infty} \frac{1}{(x-1)^2} \arctan(x-1) \left| \log \left(\frac{x+2}{2x+1} \right) \right|^{\alpha} dx.$$

5) Calcolare

$$\int_4^5 \frac{\arctan x}{(x-1)^2} \, dx.$$

FACOLTATIVO Studiare la funzione

$$f(x) = x \int_{-\infty}^{x} \frac{\log(1-t)}{t^2} dt.$$

Analisi Matematica I/2. Compito del 21.02.02 A.A. 2001/2002

1) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ tale che

$$f(x,y) = \begin{cases} \frac{e^{|y+2|x^2 + x^3} - 1}{x^2}, & \text{se } x \neq 0\\ y + 2, & \text{se } x = 0. \end{cases}$$

- a) Determinare gli insiemi di continuità, derivabilità e differenziabilità;
- b) calcolare, se esistono, le derivate direzionali in (0,0);
- c) determinare, se esiste, il differenziale secondo in (0,0).
- 2) Determinare il polinomio di Taylor di ordine 2 nel punto (1,2) di

$$f(x,y) = \log(x + 2y^2 - xy).$$

3) Studiare la concavità/convessità di

$$f(x,y) = -x^2 - y^2 - \log(-xy) - 2xy;$$

Determinare inoltre l'equazione del piano tangente al grafico della funzione nel punto (2,1,f(2,1)).

4) FACOLTATIVO Studiare la funzione

$$f(x) = x \int_{-\infty}^{x} \frac{e^{-t}}{t} dt.$$

RECUPERO

1) Studiare, al variare di $\beta \in \mathbb{R}$, la convergenza (semplice/assoluta) delle seguenti serie:

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^{\alpha}}{1+n^{\frac{1}{2}}}; \qquad \sum_{n=1}^{\infty} (1+\sin\alpha)^{n^2}.$$

4) Calcolare il seguente integrale, se esiste:

$$\int_{6}^{+\infty} \frac{1}{(x+3)^{\frac{3}{2}}} \log \left(\frac{x+3}{x+4} \right) dx.$$

Precisare l'ordine di infinitesimo della funzione integranda per $x \to +\infty$.

Analisi Matematica I/2. Compito del 24.09.02 A.A. 2001/2002

1) Sia

$$f(x,y) = \begin{cases} x e^{-\frac{x^2}{x^2 + y^2}}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

- a) Studiare continuità, derivabilità e differenziabilità;
- b) calcolare, se esistono, le derivate direzionali in (0,0);
- c) scivere, se esiste, l'equazione del piano tangente in $(1, 0, e^{-1})$.
- 2) Studiare la convergenza del seguente integrale improprio al variare di $\alpha \in \mathbb{R}$

$$I_{\alpha} := \int_0^2 \left[\frac{x}{2-x}\right]^{\alpha} \arctan(2x-x^2) dx.$$

3) Calcolare:

$$\int_0^2 e^x \arctan(2 - e^x) \, dx.$$

4) Studiare, al variare di $x \in \mathbb{R}$, la convergenza semplice/assoluta della seguente serie:

$$\sum_{k=0}^{\infty} \left[\log \left(\frac{k+2}{k+1} \right) \right] \left(\sin x - \frac{1}{2} \right)^{k^2+k}.$$

Analisi Matematica I/2. Compito del 24.02.03 A.A. 2002/2003

1) Determinare l'equazione del piano tangente al grafico della funzione

$$f(x,y) = e^{x+2y} + y\sin x$$

nel punto (2, 0, f(2, 0)).

2) Determinare il polinomio di Taylor di ordine 3 e centro il punto (0,1) per la funzione:

$$f(x,y) = 2 + x\cos(1 + x + y^2) + x^4$$
.

3) Studiare la convessità della seguente funzione nel suo dominio naturale di definizione:

$$f(x,y) = \frac{xy}{x+3y}.$$

4) Sia

$$f(x,y) = \begin{cases} y^3(x-1)^{\frac{1}{3}} \frac{e^{-(x^2+y^2)}-1}{x^4+y^4}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

- a) Studiare continuità, derivabilità e differenziabilità;
- b) calcolare, se esistono, le derivate direzionali in (0,0);

RECUPERO

a) Studiare la convergenza semplice/assoluta della seguente serie:

$$\sum_{n=0}^{\infty} \frac{n^{n^{\frac{3}{4}}}}{e^n}.$$

b) Studiare, al variare di x > -1, la convergenza (semplice/assoluta) della seguente serie:

$$\sum_{n=1}^{\infty} \left[\log(x+1) \right]^n \left(\log \left(100 \, n \, + \, 1 \, + \, n^2 \right) \, - \, \log \left(1 \, + \, n^2 \right) \right).$$

c) Studiare la convergenza del seguente integrale al variare di $\alpha \in \mathbb{R}$:

$$\int_{2}^{+\infty} \frac{\sqrt[3]{3x - 9} \log^{\alpha} \left(e^{x+1} + 1 \right)}{(x - 3) \log^{2}(x)} dx.$$

Analisi Matematica I/2. Compito del 26.02.03 A.A. 2002/2003

1) Calcolare, se esiste:

$$\int_0^{+\infty} \frac{\log(x+1)}{\sqrt{x}(x+2\sqrt{x}+1)} \, dx.$$

2) Studiare, al variare di $x \neq -\frac{1}{2}$, la convergenza della seguente serie:

$$\sum_{n=2}^{\infty} \left(\frac{x-1}{2x+1}\right)^n \frac{(n+1)\log n}{n^2 \log n + 1}.$$

3) Sia

$$f(x,y) = \log(-3x + y^2) - y^2|x| + (x + \frac{1}{3})^2(y - \sqrt{2})^2.$$

Determinare:

a) il polinomio di Taylor di ordine 3 nel punto $(-\frac{1}{3}, \sqrt{2})$;

b) l'equazione del piano tangente in $(-\frac{1}{3}, \sqrt{2}, f(-\frac{1}{3}, \sqrt{2}))$.

4) Studiare la concavità di

$$f(x,y) = x \log(xy) + x^4.$$

5) Sia

$$f(x,y) = \begin{cases} \left(\sin\frac{y}{x}\right) \frac{x^3 y^2}{x^4 + y^4}, & \text{se } x \neq 0\\ 0, & \text{se } x = 0. \end{cases}$$

a) Studiare continuità, derivabilità e differenziabilità in \mathbb{R}^2 ;

b) calcolare, se esistono, le derivate direzionali in (0,0);

Analisi Matematica I/2. Compito del 04.09.03 A.A. 2002/2003

1) Calcolare il seguente integrale:

$$\int_0^1 \frac{e^x}{(e^x + 1)^3} \log(e^{2x} + 2) \, dx.$$

2) Studiare la convergenza della seguente serie al variare di $\alpha \in \mathbb{R}$:

$$\sum_{n=0}^{\infty} \left[n^3 \left(e^{\frac{n^2}{n^2 + 1}} - e \right) + en - \frac{3}{2} \frac{en}{n^2 + 1} \right] \frac{\log \left(e^{n^{\alpha}} + 5 \right)}{\log^2 n}.$$

3) Studiare la concavità/convessità di

$$f(x,y) = -x^2 + y^3 + x^4 - 2xy.$$

Determinare l'equazione del piano tangente al grafico della funzione f nel punto di coordinate (1,2,f(1,2)).

4) Studiare continuità, derivabilità e differenziabilità deella funzione

$$f(x,y) = \begin{cases} \frac{y}{x^2+1} e^{-\frac{x^2}{y^2}}, & \text{se } y \neq 0\\ 0, & \text{se } y = 0 \end{cases}$$

in \mathbb{R}^2 . Calcolare, se esistono, le derivate direzionali nel punto (0,0).

Analisi Matematica I/2. Compito del 24.09.03 A.A. 2002/2003

1) Calcolare il seguente integrale:

$$\int_{\frac{2}{s}}^{1} \frac{\arctan(\log x)}{x(\log x + 1)} dx.$$

2) Studiare la convergenza della seguente serie al variare di $\alpha \in \mathbb{R}$:

$$\sum_{n=1}^{\infty} \left[n^2 \left(e^{\frac{n+1}{n+2}} - e \right) + en - \frac{5}{2} e \right] \frac{\log \left(e^{n^{\alpha}} + 6 \right)}{\log^{\frac{3}{2}n}}.$$

3) Studiare la concavità/convessità di

$$f(x,y) = y^2 + x^3 - y^4 - 2xy.$$

Determinare l'equazione del piano tangente al grafico della funzione f nel punto di coordinate (2,1,f(2,1)).

4) Studiare continuità, derivabilità e differenziabilità deella funzione

$$f(x,y) = \begin{cases} \frac{-x}{y^2+2} e^{-\frac{x^2+y^2}{x^4}}, & \text{se } x \neq 0\\ 0, & \text{se } x = 0 \end{cases}$$

in \mathbb{R}^2 . Calcolare, se esistono, le derivate direzionali nel punto (0,0).